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RANDOMIZATIONS OF MODELS AS METRIC STRUCTURES

ITAÏ BEN YAACOV AND H. JEROME KEISLER

Abstract. The paper [Ke] introduced the notion of a randomization of a first order
structure M. The idea was to form a new structure whose elements are random elements
of M. In this paper we treat randomizations as continuous structures in the sense of
the paper [BU]. In this setting, the results of [Ke] show that if T is the complete
theory of M, the theory T

R of randomizations of M is a complete theory in continuous
logic which admits elimination of quantifiers and has a natural set of axioms. We show
that T

R is ω-categorical, ω-stable or stable as a continuous theory if and only if T is
ω-categorical, ω-stable or stable as a first order theory.

1. Introduction

In this paper we study randomizations of first order structures in the setting of con-
tinuous model theory. Intuitively, a randomization of a first order structure M is a new
structure whose elements are random elements of M. In probability theory, one often
starts with some structure M and studies the properties of random elements of M. In
many cases, the random elements of M have properties analogous to those of the original
elements of M. With this idea in mind, the paper Keisler [Ke] introduced the notion of
a randomization of a first order theory T as a new many-sorted first order theory. That
approach pre-dated the current development of continuous structures in the paper Ben
Yaacov and Usvyatsov [BU].

Here we formally define a randomization of a first order structure M as a continuous
structure in the sense of [BU]. This seems to be a more natural setting for the concept.
In this setting, the results of [Ke] show that if T is the complete theory of M, the
theory TR of randomizations of M is a complete theory in continuous logic which admits
elimination of quantifiers and has a natural set of axioms.

One would expect that the original first order theory T and the randomization theory
TR will have similar model-theoretic properties. We show that this is indeed the case for
the properties of ω-categoricity, ω-stability, and stability. This provides us with a ready
supply of new examples of continuous theories with these properties.

In Section 2 we define the randomization theory TR as a theory in continuous logic,
and restate the results we need from [Ke] in this setting. In Section 3 we begin with a
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proof that a first order theory T is ω-categorical if and only if TR is ω-categorical, and
then we investigate separable structures.

Section 4 concerns ω-stable theories. In Subsection 4.1 we prove that a complete theory
T is ω-stable if and only if TR is ω-stable. In Subsection 4.2 we extend this result to the
case where T has countably many complete extensions.

Section 5 is about stable theories and independence. Subsection 5.1 contains abstract
results on fibre products of measures that will be used later. In Subsection 5.2 we develop
some properties of stable formulas in continuous theories. In Subsection 5.3 we prove that
a first order theory T is stable if and only if TR is stable. We also give a characterization
of independent types in TR.

In the paper [Be2] another result of this type was proved— that TR is dependent (does
not have the independence property) as a continuous theory if and only if T is dependent
as a first order theory.

We thank the participants of the AIM Workshop on the Model Theory of Metric
Structures, held at Palo Alto CA in 2006, and Isaac Goldbring, for helpful discussions
about this work.

2. Randomizations

We will assume throughout this paper that T is a consistent first order theory with a
vocabulary L such that each model of T has at least two elements.

In this section we will restate some notions and results from [Ke] in the context of
continuous structures. By “measure” we will always mean “σ-additive measure”, unless
we explicitly qualify it as “finitely additive measure”.

The randomization language for T is a two-sorted continuous logic LR with a sort
K with variables x, y, . . . which range over random elements, and a sort B with variables
U, V, . . . which range over events. We use X, Y, . . . to denote parameters of sort K. LR

has an n-ary function symbol Jϕ(·)K of sort Kn → B for each first order formula ϕ(x) of
L with n free variables, a [0, 1]-valued unary predicate symbol µ of sort B for probability,
the Boolean operations ⊤,⊥,⊔,⊓,¬ of sort B, and distance predicates dK and dB for
sorts K,B. Given a model M of T , a randomization of M is a pre-structure (K,B)
for LR equipped with a finitely additive measure µ such that:

• (B, µ) comes from an atomless finitely additive probability space (Ω,B, µ).
• K is a set of functions X : Ω → M, i.e. K ⊆ MΩ.
• For each formula ψ(x) of L and tuple X in K, the event

Jψ( ~X)K = {w ∈ Ω : M |= ψ( ~X(w))}

belongs to B.
• For each U ∈ B and ε > 0 there are X, Y ∈ K such that µ[U∆JX = Y K] < ε

where △ is the Boolean symmetric difference operation.



RANDOMIZATIONS OF MODELS AS METRIC STRUCTURES 3

• For each formula θ(x, y) of L, ε > 0, and tuple Y in K, there exists X ∈ K such
that

µ[Jθ(X, Y )K∆J(∃x θ)(Y )K] < ε.

• The distance predicate dK is the pseudo-metric

dK(x, y) = µJx 6= yK.
• The distance predicate dB is the pseudo-metric

dB(U, V ) = µ(U△V ).

Note that the finitely additive measure µ is determined by the pre-structure (K,B) via
the distance function.

A randomization (K,B) of M is full if in addition

• B is equal to the set of all events Jψ( ~X)K where ψ(x) is a formula of L and X is
a tuple in K.

• K is full in MΩ, that is, for each formula θ(x, y) of L and tuple Y in K, there
exists X ∈ K such that

Jθ(X, Y )K = J(∃x θ)(Y )K.
It is shown in [BU] that each continuous pre-structure induces a unique continuous

structure by identifying elements at distance zero from each other and completing the
metrics. It will be useful to consider these two steps separately here. By a reduced

pre-structure we will mean a pre-structure such that dK and dB are metrics. Then
every pre-structure (K,B) induces a unique reduced pre-structure (K,B) by identifying
elements which are at distance zero from each other. The induced continuous structure
is then obtained by completing the metrics, and will be denoted by (K̂, B̂). We say that
a pre-structure (K,B) is pre-complete if the reduced pre-structure (K,B) is already

a continuous structure, that is, (K̂, B̂) = (K,B). We say that (K,B) is elementarily

pre-embeddable in (K′,B′) if (K̂, B̂) is elementarily embeddable in (K̂′, B̂′).

Note that for any pre-structure (K,B), (K̂, B̂) is elementarily equivalent to (K,B), and

(K̂, B̂) is separable and only if (K,B) is separable.
In [Ke], a randomization of M was defined as a three-sorted first order structure

instead of a continuous two-sorted structure, with the value space [0, 1] replaced by any
first order structure R whose theory is an expansion of the theory of real closed ordered
fields which admits quantifier elimination. When R is the ordered field of reals, such a
structure can be interpreted as a randomization in the present sense.

The paper [Ke] gives axioms for a theory TR, called the randomization theory of T , in
three-sorted first order logic. We now translate these axioms into a theory in the (two-
sorted) continuous logic LR in the sense of [BU], with a connective for each continuous
function [0, 1]n 7→ [0, 1] which is definable in R. We use ϕ for arbitrary formulas of L and
Φ for arbitrary formulas of the continuous logic LR. Following [BU], we use the notation
∀x(Φ(x) ≤ r) for (supx Φ(x)) ≤ r, and ∃x(Φ(x) ≤ r) for (infx Φ(x)) ≤ r. Thus the
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existential quantifiers are understood in the approximate sense. We also use the notation
U

.
= V for the statement dB(U, V ) = 0.
The axioms for the randomization theory TR of a first order theory T are as follows:

Validity Axioms
∀x(Jψ(x)K .

= ⊤)

where ∀xψ(x) is logically valid in first order logic.
Boolean Axioms The usual Boolean algebra axioms in sort B, and the statements

∀x(J(¬ϕ)(x)K .
= ¬Jϕ(x)K)

∀x(J(ϕ ∨ ψ)(x)K .
= Jϕ(x)K ⊔ Jψ(x)K)

∀x(J(ϕ ∧ ψ)(x)K .
= Jϕ(x)K ⊓ Jψ(x)K)

Distance Axioms

∀x∀y dK(x, y) = 1 − µJx = yK, ∀U∀V dB(U, V ) = µ(U∆V )

Fullness Axioms (or Maximal Principle)

∀y∃x(Jϕ(x, y)K .
= J(∃xϕ)(y)K)

As mentioned previously, the quantifiers should be understood in the approximate sense,
so this axiom can also be written in the equivalent form

sup
y

inf
x

(dB(Jϕ(x, y)K, J(∃xϕ)(y)K)) = 0

Event Axiom
∀U∃x∃y(U

.
= Jx = yK)

Measure Axioms

µ[⊤] = 1 ∧ µ[⊥] = 0

∀U∀V (µ[U ] + µ[V ] = µ[U ⊔ V ] + µ[U ⊓ V ])

Atomless Axiom
∀U∃V (µ[U ⊓ V ] = µ[U ]/2)

Transfer Axioms

JϕK .
= ⊤

where ϕ ∈ T .

Theorem 2.1. ([Ke] Theorem 3.10). If T is complete, then TR is complete.

Proposition 2.2. ([Ke], Proposition 4.3) Let T be the complete theory of M. Every
randomization (K,B) of M is a pre-model of the randomization theory TR.
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Let (K,B) and (K′,B′) be pre-models of TR. We say that (K,B) represents (K′,B′)
if their corresponding reduced pre-structures are isomorphic.

Theorem 2.3. (First Representation Theorem) Let T be the complete theory of M.
Every pre-model of TR is represented by some randomization of M.

Proof. Let (K,B) be a pre-model of TR. It follows from [Ke], Corollary 6.6, that (K,B)
is isomorphically embeddable in some randomization of M. Since (K,B) satisfies the
Fullness and Event Axioms, it follows that (K,B) is isomorphic to a randomization of
M. �2.3

Definition 2.4. A pre-model (K,B) of TR has perfect witnesses if the existential
quantifiers in the Fullness Axioms and the Event Axiom have witnesses in which the
axioms hold exactly rather than merely approximately. That is,

Fullness : For each Y in Kn there exists X ∈ K such that

Jϕ(X, Y )K .
= J(∃xϕ)(Y )K.

Event : For each U ∈ B there exist X, Y ∈ K such that U
.
= JX = Y K.

The first order models considered in [Ke] are pre-models with perfect witnesses when
viewed as metric structures.

Proposition 2.5. ([Ke], Proposition 4.3) Let T be the complete theory of M. Every full
randomization (K,B) of M has perfect witnesses.

Theorem 2.6. (Second Representation Theorem, [Ke], Theorem 4.5). Let T be the
complete theory of M. Every pre-model of TR with perfect witnesses is represented by
some full randomization of M.

We now show that every model of TR has perfect witnesses.

Theorem 2.7. For any first order theory T , every pre-complete model of TR has perfect
witnesses. In particular, every model of TR has perfect witnesses.

Proof. Let (K,B) be a pre-complete model of TR. We first show that (K,B) has perfect
witnesses for the Fullness Axioms. Consider a first order formula ϕ(x, y), and let Y be a
tuple in K. Then for each n ∈ ω there exists Xn ∈ K such that

dB(Jϕ(Xn, Y )K, J(∃xϕ)(Y )K) < 2−n.

Using the Fullness Axioms, we can get a sequence Zn in K such that Z1 = X1 and with
probability at least 1− 2−2n, Zn+1 agrees with Zn when ϕ(Zn, Y ) holds, and agrees with
Xn+1 otherwise. Then

dB(Jϕ(Zn, Y )K, J(∃xϕ)(Y )K) < 2−n + 2−2n

and

dK(Zn, Zn+1) < 2−n + 2−2n.
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Then the sequence Zn is Cauchy convergent with respect to dK. By pre-completeness,
Zn converges to an element Z ∈ K with respect to dK. It follows that

dB(Jϕ(Z, Y )K, J(∃xϕ)(Y )K) = 0,

as required.
It remains to show that (K,B) has perfect witnesses for the Event Axiom. Let U ∈ B.

By the Event Axiom, for each n ∈ ω there exists Xn, Yn ∈ K such that µ[U∆JXn =
YnK] < 2−n. Since every model of T has at least two elements, there must exist V,W ∈ K
such that JV = W K .

= ⊥. Taking perfect witnesses for the Fullness Axioms, we can
obtain elements Zn ∈ K such that Zn agrees with V on JXn = YnK, and Zn agrees with
W on JXn 6= YnK. Then the sequence Zn is Cauchy convergent with respect to dK, and
hence converges to some Z in K. It follows that U

.
= JV = ZK. �2.7

Corollary 2.8. Let T be the complete theory of M. Every pre-complete model of TR,
and hence every model of TR, is represented by some full randomization of M.

Theorem 2.9. ([Ke] Theorems 3.6 and 5.1). For any first order theory T , the random-
ization theory TR for T admits strong quantifier elimination.

This means that every formula Φ in the continuous language LR is TR-equivalent to a
formula with the same free variables and no quantifiers of sort K or B (whereas ordinary
quantifier elimination for continuous logic means that every formula can be arbitrarily
well approximated by quantifier free formulas). Note that for each first order formula
ϕ(x) of L, µJϕ(x)K is a formula of LR without quantifiers. The first order quantifiers
within ϕ(x) do not count as quantifiers in LR.

By the Event Axiom and Theorem 2.7, in a model of TR, any element of sort B is equal
to a term JY1 = Y2K with parameters Y1, Y2 of sort K. Therefore, in all discussions of
types in the theory TR, we may confine our attention to types of sort K over parameters
of sort K.

The space of first order n-types in T will be denoted by Sn(T ). If T = Th(M) and
A is a set of parameters in M, Sn(T (A)) is the space of first order n-types in T with
parameters in A. The space of continuous n-types in TR with variables of sort K will
be denoted by Sn(T

R). If (K,B) is a pre-model of TR and C is a set of parameters in
K, Sn(T

R(C)) is the space of continuous n-types in TR with variables of sort K and
parameters from C.

Recall from [BU] that for each p ∈ Sn(T
R) and formula Φ(x) of LR, we have (Φ(x))p ∈

[0, 1].
Let R(Sn(T )) be the space of regular Borel probability measures on Sn(T ). The next

corollary follows from quantifier elimination and the axioms of TR.

Corollary 2.10. For every p ∈ Sn(T
R) there is a unique measure νp ∈ R(Sn(T )) such

that for each formula ϕ(x) of L,

νp({q : ϕ(x) ∈ q}) = (µJϕ(x)K)p.
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Moreover, for each measure ν ∈ R(Sn(T )) there is a unique p ∈ Sn(T
R) such that ν = νp.

Similarly for types with infinitely many variables.

We may therefore identify the type space Sn(T
R) with the space R(Sn(T )).

Remark 2.11. In the special case that M is the trivial two-element structure with
only the identity relation, the above results show that the continuous theory of atomless
measure algebras is complete and admits quantifier elimination. (See [Ke], Section 7A).
This fact was given a direct proof in [BU].

Remark 2.12. Throughout this paper, we could have worked with a one-sorted ran-
domization theory with only the sort K instead of a two-sorted theory with sorts K and
B. In this formulation, we would use the results of Section 7C on [Ke], where the sort B

is eliminated. The main advantages of the event sort B are that it allows a nicer set of
axioms for TR, and makes it easier to describe the models of TR.

3. Separable Structures

In this section we consider small randomizations of M.
We first show that the randomization operation preserves ω-categoricity. We will

use the following necessary and sufficient condition for a continuous theory to be ω-
categorical.

Theorem 3.1. ([BBHU], Theorem 13.8). Let U be a complete continuous theory with a
countable vocabulary. Then U is ω-categorical if and only if for each n ≥ 1, every type
in Sn(U) is realized in every model of U .

Theorem 3.2. Suppose T has a countable vocabulary. Then T is ω-categorical if and
only if TR is ω-categorical.

Proof. Suppose that T is not ω-categorical. Then by the Ryll-Nardzewski Theorem, for
some n there is an n-type q ∈ Sn(T ) which is omitted in some countable model M of T .
Then the type p ∈ Sn(T

R) such that νp({q}) = 1 is omitted in the separable pre-complete
model (M[0,1],L), of TR, so TR is not ω-categorical.

Now suppose T is ω-categorical. Then T = Th(M) for some M. By Ryll-Nardzewski’s
theorem, for each n the type space Sn(T ) is finite. Let p ∈ Sn(T

R). By Corollary 2.10,
νp ∈ R(Sn(T )), and for each formula ϕ(x) of L,

νp({q : ϕ(x) ∈ q}) = (µJϕ(x)K)p.
Since Sn(T ) is finite, for each q ∈ Sn(T ) there is a formula ϕq(x) of L such that q is the
set of T -consequences of ϕq. Let (K′,B′) be a model of TR. By Corollary 2.8, (K′,B′)
is represented by some full pre-complete randomization (K,B) of M. By Theorem 3.1,
it suffices to show that p is realized in (K,B). By the axioms and pre-completeness,
there are events Bq, q ∈ Sn(T ) in B such that Bq, q ∈ Sn(T ) partitions Ω and µ(Bq) =

νp({q}). Since (K,B) has perfect witnesses, for each q there is a tuple Xq in K such that
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µJϕq(Xq)K = 1. Using the Fullness and Event Axioms, there is a tuple X in K which
agrees with Xq on Bq for each q ∈ Sn(T ). It follows that X realizes p in (K,B), as
required. �3.2

We next give a method for constructing small models of TR, and then introduce the
notion of a strongly separable model of TR.

Definition 3.3. Let (Ω,B, µ) be an atomless finitely additive probability space and let
M be a structure for L.

A B-deterministic element of M is a constant function in MΩ (which may be
thought of as an element of M).

A B-simple random element of M is a B-measurable function in MΩ with finite
range.

A B-countable random element of M is a B-measurable function in MΩ with
countable range .

Example 3.4. ([Ke], Examples 4.6 and 4.11))
(i) The set KS of B-simple random elements of M is full, and (KS,B) is a full ran-

domization of M.
(ii) The set KC of B-countable random elements of M is full. If (Ω,B, µ) is a probability

space (i.e. is σ-additive) then (KC ,B) is a full pre-complete randomization of M.

We assume for the rest of this section that the vocabulary L of T is countable

Note that when L is countable, every Borel probability measure on Sn(T ) is regular.
(This follows from [Ha], page 228, and the fact that every open set in Sn(T ) is a countable
union of compact sets).

Definition 3.5. Let ([0, 1],L, λ) be the natural atomless Borel probability measure on
[0, 1]. Given a model M of T , let (M[0,1],L) be the pre-structure whose universe of
sort K is the set of L-countable random elements of M. A pre-model (K,B) of TR

is strongly separable if (K,B) is elementarily pre-embeddable in (M[0,1],L) for some
countable model M of T .

Note that (M[0,1],L) is only a pre-structure, not a reduced pre-structure, because L
has nonempty null sets.

Corollary 3.6. If M is a countable model of T , then (M[0,1],L) is a full randomization
of M and is a strongly separable pre-complete model of TR.

Proof. By Example 3.4 (ii). �3.6

Lemma 3.7. Consider a first order L-structure M. Suppose (Ω,B, µ) is a probability
space and A is a subalgebra of B which is dense with respect to the metric d(A,B) =
µ[A∆B]. Then the set KS of A-simple random elements of M is dense in the set K of
B-countable random elements of M with respect to the distance predicate dK. Therefore

(KS,A) and (K,B) induce the same continuous structure, and K̂S = K̂.
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Proof. By Example 3.4, (KS,A) and (K,B) are full randomizations of M. Let X be an
element of K with range {an : n ∈ N}. Let ε > 0. Take n such that

µ

t
∨

m<n

(X = am)

|
> 1 − ε/2.

For each m < n, let

Bm = {w : X(w) = am} ∈ B.

Then the sets Bm are disjoint and

µ

[
⋃

m<n

Bm

]

> 1 − ε/2.

For each m < n, there is a set Am ∈ A such that d(Am, Bm) < ε/(4n2). Let Cm = Am \⋃
k<mAk. Then Cm ∈ A, the sets Cm are disjoint, and one can check that d(Cm, Bm) <

ε/(2n). There is an A-simple Y ∈ KS such that Y (w) = am whenever m < n and
w ∈ Cm. Then X(w) = Y (w) whenever w ∈ Bm ∩ Cm, so

µJX = Y K > 1 − ε,

and hence dK(X, Y ) < ε. This shows that KS is dense in K. �3.7

Corollary 3.8. Every strongly separable pre-model of TR is separable.

Proof. Let (K,B) be a strongly separable pre-model of TR, so that (K,B) is elementarily
pre-embeddable in (M[0,1],L) for some countable model M of T . L has a countable
dense subalgebra A. By Lemma 3.7, the set of A-simple random elements of M is a
countable dense subset of M[0,1] with respect to dK. Therefore (M[0,1],L) is separable,
and hence (K,B) is separable. �3.8

Lemma 3.9. Let T be complete, p ∈ Sn(T
R), and νp be the corresponding measure on

Sn(T ) defined in Corollary 2.10. Then p is realized in some strongly separable model of
TR if and only if there is a countable set C ⊆ Sn(T ) such that νp(C) = 1.

Proof. Suppose p is realized in some strongly separable model of TR. Then p is realized
by an n-tuple Y in the pre-complete model (M[0,1],L) of TR for some countable model
M of T . Hence νp(C) = 1 where C is the set of types of elements of the range of Y .

Suppose νp(C) = 1 for some countable set C ⊆ Sn(T ), and let M be a countable model
of T which realizes each c ∈ C. Then p is realized in the strongly separable pre-model
(M[0,1],L) of TR by any tuple Y such that

λ({r : tpM(Y (r)) = c}) = νp({c})

for each c ∈ C. �3.9
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Example 3.10. Let T be the first order theory with countably many independent unary
relations P0, P1, . . ., and let p be the type in S1(T

R) such that the events JPn(x)K, n ∈ N

are independent with respect to p. Then p is not realized in a strongly separable model
of TR, and hence TR has separable models which are not strongly separable.

Lemma 3.11. If M is countable and ω-saturated, then (M[0,1],L) is ω-saturated as a
continuous pre-structure.

Proof. Let T be the complete theory of M and let K = M[0,1]. It suffices to show that for
each finite tuple Y in K, every type p ∈ S1(T

R(Y )) is realized in (K,L). Let {bn : n < ω}
be the range of Y in M and let

Bn = {r ∈ [0, 1] : Y (r) = bn} = JY = bnK.
Note that Bn, n ∈ ω is a partition of [0, 1] in L, and

∑

n

µ[Bn] = 1.

Since M is countable and ω-saturated, for each n there are countably many types
q ∈ S1(T (bn)), and each of these types is realized by an element aq in M. Let p ∈ S1(T

R(Y )).
Let A be the set of all deterministic elements of K, and extend p to a type p′ in
S1(T

R(A ∪ Y )). For each n and first order formula ϕ(x, bn), µ[Jϕ(x, bn)K ∩ Bn] is a
continuous formula with parameters in A ∪ Y . Let

f(ϕ, n) = (µ[Jϕ(x, bn)K ∩ Bn])
p′

and for each q ∈ S1(T (bn)) let

g(q, n) = inf{f(ϕ, n) : ϕ ∈ q}.

Since S1(T (bn)) is countable for each n, we have
∑

{g(q, n) : q ∈ S1(T (bn))} = µ[Bn].

There is a function X ∈ K such that for each n and q ∈ S1(T (bn)),

µ{r ∈ Bn : X(r) = aq} = g(q, n).

Then for each n and first order formula ϕ(x, bn),

µ[Jϕ(X, Y )K ∩ Bn] ≥ f(ϕ, n).

It follows that X realizes p in (K,L). �3.11

Theorem 3.12. Let T be complete. The following are equivalent.
(i) T has a countable ω-saturated model.
(ii) TR has a separable ω-saturated model.
(iii) Every separable model of TR is strongly separable.
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Proof. (i) implies (ii) and (iii): Let M be a countable ω-saturated model of T and let
K = M[0,1]. Then (K,L) is strongly separable, and hence is separable by Corollary 3.8.
By Lemma 3.11, (K,L) is ω-saturated, so (ii) holds. It follows that every separable
model of TR is elementarily pre-embeddable in the strongly separable pre-model (K,L),
and hence is itself strongly separable. This proves (iii).

(ii) implies (i): Assume that (i) fails. Then for some n, Sn(T ) is uncountable. Let
(K,B) be a separable pre-model of TR. For each q ∈ Sn(T ) there is an n-type q′ in
Sn(T

R) such that νq′({q}) = 1. If q 6= r then d(q′, r′) = 1. Therefore there must be a
q ∈ Sn(T ) such that q′ is not realized in (K,B), so (K,B) is not ω-saturated.

(iii) implies (i). Again assume (i) fails and Sn(T ) is uncountable. Then by enumerating
the formulas of L one can construct a measure ν ∈ R(Sn(T )) such that ν({q}) = 0 for
each q ∈ Sn(T ). By Corollary 2.10 we may take p ∈ Sn(T

R) such that νp = ν. By
Lemma 3.9, p cannot be realized in a strongly separable model, but p can be realized in
a separable model. Therefore (iii) fails. �3.12

4. ω-Stable Theories

In this section we continue to assume that the vocabulary L of T is countable.

As explained in Section 2, when considering types in TR, we may confine our attention
to types of sort K over parameters of sort K. So we say that TR is ω-stable if for every
separable model (K,B) of TR, the space S1(T

R(K)) of 1-types with parameters in K is
separable.

We show that if T has at most countably many complete extensions, then the random-
ization operation preserves ω-stability. We first take up the case that T is complete.

4.1. Complete Theories.

Theorem 4.1. A complete theory T is ω-stable if and only if TR is ω-stable.

Proof. Assume TR is ω-stable. Let M be an arbitrary countable model of T , let K =
M[0,1], and let A be the set of deterministic elements of K. Then A is countable, so
S1(T

R(A)) is separable.
For each q ∈ S1(T (M)) let pq be the type in S1(T

R(A)) such that for each first order

formula ϕ(x, b) with parameters in M,

(µJϕ(x, b)K)pq =

{
1 if ϕ(x, b) ∈ q

0 otherwise

Then q 7→ pq is a mapping from S1(T (M)) into S1(T
R(A)) which sends each pair of

distinct types to a pair of types at distance one apart. It follows that S1(T (M)) is
countable, so T is ω-stable.

Now assume that T is ω-stable. Then T has a countable saturated model M1, and
M1 has a countable elementary extension M2 which realizes every type in S1(T (M1)).
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Let ([0, 1] × [0, 1],L ⊗ L, λ ⊗ λ) be the natural Borel measure on the unit square. Let
B1 be the subalgebra of L ⊗ L generated by {B × [0, 1] : B ∈ L}, and let B2 = L ⊗ L.
Let K1 and K2 be the sets of B1-countable random elements of M1 and B2-countable
random elements of M2 respectively. Then (K1,B1) and (K2,B2) are full randomizations
of M1 and M2 respectively. By Theorems 2.9 and 2.1, (K1,B1) is an elementary pre-
substructure of (K2,B2). By Lemma 3.11, (K1,B1) is ω-saturated. By Lemma 3.7, K2

has a countable dense subset. It therefore suffices to show that every type in S1(T
R(K1))

is realized in (K2,B2).
Let p be a type in S1(T

R(K1)). Let {q0, q1, . . .} be an enumeration of the countable
set of types S1(T (M1)), and let an realize qn in M2. It follows from the axioms of TR

that for each n, there is a unique (σ-additive) measure νn on L defined by

νn(B) = inf{(µ[Jϕ(x, Y )K ∩B])p : Y deterministic, ϕ(x, Y ) ∈ qn}.

Then νn is absolutely continuous with respect to λ, and ν(B) =
∑

n νn(B) is a probability
measure on L. By the Radon-Nikodym theorem, there is an L-measurable function
fn : [0, 1] → [0, 1] such that νn(B) =

∫
B
fndλ. Define X ∈ K2 as follows. For (r, s) ∈

[0, 1] × [0, 1), let X(r, s) = an if and only if
∑

k<n

fk(r) ≤ s <
∑

k≤n

fk(r).

For r ∈ [0, 1] let X(r, 1) be some particular element of M, say X(r, 1) = a0.
Consider a k-tuple Y in K1. Let Mk

1 = {bm : m ∈ ω}. For each r ∈ [0, 1] we have
Y (r) ∈ {bm : m < ω}. Let Bm = {r ∈ [0, 1] : Y (r) = bm}. Then Bm ∈ L. For each m
and n we have

νn(Bm) =

∫

Bm

fn dλ = (λ⊗ λ){(r, s) : X(r, s) = an ∧ r ∈ Bm}.

By the definition of νn, for each first order formula ϕ(x, bm) ∈ qn,

νn(Bm) ≤ (µ[Jϕ(x, ~Y )K ∩ Bm])p.

It follows that X realizes p in (K2,B2). �4.1

Isaac Goldbring has noted that in the above proof,

νn(B) = (λ⊗ λ){(r, s) : r ∈ B ∧X(r, s) |= qn},

and hence
ν(B) =

∑

n

νn(B) = (λ⊗ λ)(B × [0, 1]) = λ(B).

Thus ν is the usual measure λ on L and does not depend on p.

Remark 4.2. In [Be] it is shown that the theory of atomless measure algebras in con-
tinuous logic is ω-stable. In view of Remark 2.11, in the case that M is the trivial
two-element structure, Theorem 4.1 gives another proof of that fact. So Theorem 4.1
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can be viewed as a generalization of the result that the theory of atomless measures is
ω-stable.

4.2. Incomplete Theories. Let S0(T ) be the space of complete extensions of T . In
this subsection we show that if S0(T ) is countable, then T is ω-stable if and only if TR

is ω-stable.
We first take a brief detour to state a generalization of the Second Representation

Theorem 2.6 which shows that every model of TR can be regarded as a continuous
structure whose elements are random variables taking values in random models of T . A
full randomization (K,B) of an indexed family 〈M(w) : w ∈ Ω〉 of models of T is
defined in the same way as a full randomization of M except that K ⊆ Πw∈ΩM(w).

Theorem 4.3. ([Ke], Proposition 5.6 and Theorem 5.7) A pre-structure (K′,B′) is a
pre-model of TR with perfect witnesses if and only if it can be represented by some full
randomization (K,B) of some indexed family 〈M(w) : w ∈ Ω〉 of models of T .

We now introduce countable convex combinations of pre-complete models of TR. This
construction will be used in proving that the randomization operation preserves ω-
stability. Let S be a countable set, and let (S,B0, µ0) be a probability space where
B0 is the power set of S. For each w ∈ S let (K(w),B(w)) be a pre-complete model
of TR. We then define

∫
S
(K(w),B(w)) dµ0(w) to be the pre-structure (K,B) such that

K = ΠwK(w), B is the set of events with parameters in K, and for each tuple X in K
and first order formula ϕ(x),

µJϕ(X)K =

∫

S

µ(w)Jϕ(X(w))K dµ0(w).

The proof of the following lemma is routine.

Lemma 4.4. Let S, µ0, and (K(w),B(w)) be as above, and let

(K,B) =

∫

S

(K(w),B(w)) dµ0(w).

(i) (K,B) is a pre-complete model of TR.
(ii) If each (K(w),B(w)) is separable, then (K,B) is separable.
(iii) If each (K(w),B(w)) is ω-saturated, then (K,B) is ω-saturated.
(iv) If S1(T

R(K(w))) is separable for each w ∈ S, then S1(T
R(K)) is separable.

Theorem 4.5. Suppose that S0(T ) is countable. Then T is ω-stable if and only if TR is
ω-stable.

Proof. Assume TR is ω-stable. Let M be an arbitrary countable model of T , let K =
M[0,1], and let A be the set of deterministic elements of K. Then A is countable, so
S1(T

R(A)) is separable. As in the proof of Theorem 4.1, the mapping q 7→ pq from
S1(T (M)) into S1(T

R(A)) sends each pair of distinct types to a pair of types at distance
one apart. It follows that S1(T (M)) is countable, so T is ω-stable.
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Suppose T is ω-stable. Let S = S0(T ). Then each w ∈ S is a complete ω-stable
theory which has a countable ω-saturated model M1(w). By Theorem 2.1, each wR

is a complete extension of TR. By Lemma 3.11 and Corollaries 3.6 and 3.8, wR has a
pre-complete separable ω-saturated model (K1(w),B1(w)). By Theorem 4.1, each wR is
an ω-stable theory. Therefore the type space S1(w

R(K1(w))) is separable.
Let (K,B) be a separable model of TR. Let µ0 be the unique measure in R(S) such

that for each sentence ϕ of L and r ∈ [0, 1], if

(K,B) |= µJϕK ≥ r

then µ0({w ∈ S : w |= ϕ}) ≥ r. The pre-models (K,B) and (K1,B1) assign the same mea-
sure to each sentence ϕ of L. Therefore by quantifier elimination, (K1,B1) is elementarily
equivalent to (K,B).

By Lemma 4.4, (K1,B1) =
∫
S
(K1(w),B1(w)) dµ0(w) is an ω-saturated separable pre-

complete model of T , and the type space S1(T
R(K1)) is separable. Since (K,B) is separa-

ble, (K,B) is elementarily pre-embeddable in (K1,B1). Hence the type space S1(T
R(K))

is separable. This shows that TR is ω-stable. �4.5

5. Independence and Stability

5.1. Conditional expectations and fiber products of measures. We have seen
earlier that types in the sense of TR are measures on the type spaces of T . Here we will
give a few results in an abstract measure-theoretic setting that will be useful later on.

Fact 5.1. Let (X,ΣX) and (Y,ΣY ) be two measurable spaces, π : X → Y a measurable
function and let µ a probability measure on X. Let π̂(µ) = µ ◦ π−1 denote the image
measure on Y .

Then for every f ∈ Lp(X,ΣX , µ) there is a unique (up to equality a.e.) function g ∈
Lp(Y,ΣY , π̂(µ)) such that:

∫

S

g dπ̂(µ) =

∫

π−1(S)

f dµ ∀S ∈ ΣY

This unique function will be denoted g = Eµ[f |π]. The mapping Eµ[·|π] has all the usual
properties of conditional expectation: it is additive, linear in the sense that E

µ[(h ◦ π) ·
f |π] = h · Eµ[f |π] for h ∈ Lq(Y,ΣY , π̂(µ)), satisfies Jensen’s inequality and so on.

Proof. Identical to the classical proof of the existence of conditional expectation. Indeed,
the classical case is merely the one where the underlying sets X and Y are equal and π
is the identity. �5.1

When the mapping π : X → Y is clear from the context we may write Eµ[·|Y ] instead
of Eµ[·|π].

Let us add assumptions. Now X and Y are compact Hausdorff topological spaces,
equipped with their respective σ-algebras of Borel sets, and π : X → Y is continuous (so
in particular Borel measurable). Let R(X) denote the set of regular Borel probability
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measures on X, and similarly R(Y ) and so on. Since π is continuous the image measure
of a regular Borel measure is regular as well, so we have π̂ : R(X) → R(Y ).

For a continuous function ϕ : X → R and µ ∈ R(X) let us define 〈ϕ, µ〉 =
∫
ϕdµ.

We equip R(X) with the weak-∗ topology, namely with the minimal topology under
which the mapping 〈ϕ, ·〉 : µ 7→

∫
ϕdµ is continuous for every continuous ϕ : X → [0, 1]

(equivalently, for every continuous ϕ : X → R). It is a classical fact that is a compact
Hausdorff topology.

Fact 5.2 (Riesz Representation Theorem). The mapping µ 7→ 〈·, µ〉 defines a bijection
between R(X) and the positive linear functionals on C(X,R) satisfying λ(1) = 1.

Proof. Rudin, [Rud66, Theorem 2.14]. �5.2

Equipping the space of positive functionals with the topology of point-wise convergence
this bijection is a homeomorphism, whence the compactness of R(X) follows easily.

Let us now consider a “conditional” variant of the functional 〈·, ϕ〉. For ν ∈ R(Y ) let
Rν(X) denote the fiber above ν. For a continuous ϕ : X → [0, 1] and µ ∈ Rν(X) let
ϕ̂ν(µ) = Eµ[ϕ|Y ].

Lemma 5.3. Let ϕ : X → [0, 1] be a continuous function and ν ∈ R(Y ). Then ϕ̂ν : Rν(X) →
L1(Y, ν) is continuous where L1(Y, ν) is equipped with the weak topology. In other words,
for every ψ ∈ L∞(Y, ν) the mapping µ 7→

∫
Y

Eµ[ϕ|Y ]ψ dν is continuous.

Proof. Let ψ ∈ L∞(Y, [0, 1]), and let ε > 0 be given. Since ν is regular there is a

continuous function ψ̃ : Y → C which is close in ν to ψ, i.e., such that ν
{
y : |ψ(y)−ψ̃(y)| >

ε
}
< ε. Then for every measurable χ : Y → [0, 1]:

∣∣∣∣

∫

Y

χψ dν −

∫

Y

χψ̃ dν

∣∣∣∣ < 2ε.

The product ϕ̃ = ϕ · ψ̃ ◦ π is continuous on X so µ admits a neighborhood

U =
{
µ′ ∈ Rν(X) : |〈ϕ̃, µ〉 − 〈ϕ̃, µ′〉| < ε

}
.

We conclude observing that for every µ′ ∈ U
∣∣∣∣

∫

Y

E
µ[ϕ|Y ]ψ dν −

∫

Y

E
µ′ [ϕ|Y ]ψ dν

∣∣∣∣ <
∣∣∣∣

∫

Y

E
µ[ϕ|Y ]ψ̃ dν −

∫

Y

E
µ′ [ϕ|Y ]ψ̃ dν

∣∣∣∣+ 4ε

= |〈ϕ̃, µ〉 − 〈ϕ̃, µ′〉| + 4ε < 5ε. �5.3

Sometimes we will find ourselves in a situation where we have some constraints on a
measure and we wish to decide whether there is a measure µ ∈ R(X) satisfying these
constraints. This will usually take the following form:

Proposition 5.4. Let X be a compact Hausdorff space, A ⊆ C(X,R) any subset and
λ0 : A→ R any mapping. Then the following are equivalent:

(1) There exists a measure µ ∈ R(X) satisfying 〈µ, ϕ〉 ≤ λ0(ϕ) for every ϕ ∈ A.
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(2) Whenever {ϕi}i<ℓ ⊆ A are such that
∑

i<ℓ ϕi ≥ n we also have
∑

i<ℓ λ0(ϕi) ≥ n.

Proof. One direction is clear so we prove the other. Let S denote the set of all partial
functions λ which satisfy the condition in the second item, noticing that it is equivalent
to:

∑

i<ℓ

αiλ(ϕi) ≥ inf
x∈X

∑

i<ℓ

αiϕi(x) for all {(αi, ϕi)}i<ℓ ⊆ R
+ × dom(λ).

For λ ∈ S, ψ ∈ C(X,R) and β ∈ R define λψ,β be the partial functional which coincides
with λ except at ψ and satisfying λψ,β(ψ) = β (so dom(λψ,β) = dom(λ) ∪ {ψ}).

Given λ ∈ S and ψ ∈ C(X,R) one can always find β such that λψ,β ∈ S as well. For
example, β = supψ will always do. The least such β is always given by:

λ̃(ψ) = sup

{
inf

(
ψ +

∑

i<ℓ

αiϕi

)
−
∑

i<ℓ

αiλ(ϕi) : {(αi, ϕi)}i<ℓ ⊆ R
+ × dom(λ)

}
.

In particular if ψ ∈ dom(λ) then λ̃(ψ) ≤ λ(ψ). It is also immediate to check that:

λ̃(α) = α α ∈ R

λ̃(αψ) = αλ̃(ψ) α ∈ R
+

λ̃(ψ + ψ′) ≥ λ̃(ψ) + λ̃(ψ′)

λ̃(ψ + ψ′) ≤ λ(ψ) + λ(ψ′) ψ, ψ′ ∈ dom(λ)

For λ, λ′ ∈ S say that λ � λ′ if dom(λ) ⊆ dom(λ′) and λ(ϕ) ≥ λ′(ϕ) for every ϕ ∈
dom(λ). By Zorn’s Lemma (S,�) admits a maximal element λ � λ0. By its maximality

λ is total and satisfies λ̃(ϕ) = λ(ϕ).
It follows that λ(ϕ + ψ) = λ(ϕ) + λ(ψ) and that λ(αϕ) = αλ(ϕ), first for α ≥ 0 and

then for every
α ∈ R. Therefore λ is a linear functional, and it is positive as it belongs to S. Since in

addition λ(1) = 1, it is necessarily of the form λ = 〈µ, ·〉 : ϕ 7→ 〈µ, ϕ〉 for some measure
µ ∈ R(X). Thus 〈µ, ·〉 � λ0, so µ is as desired. �5.4

One can also show a conditional variant of this but we will not such a result. Instead,
let us re-phrase it a little:

Proposition 5.5. Let X be a compact Hausdorff space, A ⊆ C(X,R) any subset and
λ0 : A→ R any mapping sending 1 7→ 1. Then the following are equivalent:

(1) There exists a measure µ ∈ R(X) satisfying 〈µ, ϕ〉 = λ0(ϕ) for every ϕ ∈ A.
(2) Whenever {(ϕi, mi)}i<ℓ ⊆ A × Z are such that

∑
i<ℓmiϕi ≥ 0 we also have∑

i<ℓmiλ0(ϕi) ≥ 0.

Proof. One direction is clear. For the other observe that if ϕ,−ϕ ∈ A then necessarily
λ0(−ϕ) + λ0(ϕ) = 0. We may therefore define λ1 whose domain is A ∪ −A by λ1(ϕ) =
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λ0(ϕ), λ1(−ϕ) = −λ0(ϕ). Then λ1 satisfies the conditions of the previous Proposition,
and the corresponding measure µ is as desired. �5.5

Let us now consider fiber products of measures. Again we consider general measurable
spaces (i.e., not necessarily topological) X = (X,ΣX), Y = (Y,ΣY ), Z = (Z,ΣZ),
equipped with measurable mappings πX : X → Z, πY : Y → Z. Let X ×Z Y denote the
set theoretic fiber product:

X ×Z Y = {(x, y) ∈ X × Y : πX(x) = πY (y)}.

Let Σ0 = {A×Z B : A ∈ ΣX , B ∈ ΣY } and let ΣX ⊗Z ΣY denote the generated σ-algebra
on X ×Z Y . The set X ×Z Y is thereby rendered a measurable space with the canonical
mappings to X and Y measurable (it is the measurable space fiber product).

Let µ and ν be probability measures on X and Y , respectively, with the same image
measure on Z: π̂X(µ) = π̂Y (ν). For A ∈ ΣX and B ∈ ΣY define:

(µ⊗Z ν)0(A×Z B) =

∫

Z

P
µ[A|Z]Pν [B|Z] dπ̂X(µ)

=

∫

A

P
ν [B|Z] ◦ πX dµ

=

∫

B

P
µ[A|Z] ◦ πY dν.

It is not difficult to check that Σ0 is a semi-ring and that (µ⊗Z ν)0 defined in this manner
is a σ-additive probability measure on Σ0. By Carathéodory’s theorem it extends to a σ-
additive probability measure on a σ-algebra containing Σ0, and in particular to ΣX⊗ZΣY .
We will denote this fiber product measure by µ ⊗Z ν. Its image measures on X and Y
are µ and ν, respectively. If we let M(X) denote the collection of probability measures
on X and so on we have obtained a mapping:

M(X) ×M(Z) M(Y ) → M (X ×Z Y )

(µ, ν) 7→ µ⊗Z ν

Let us switch back to the topological setting, where all spaces are compact Hausdorff
spaces equipped with the σ-algebras of Borel sets and the mappings are continuous.
In particular we have R(X) ×R(Z) R(Y ) ⊆ M(X) ×M(Z) M(Y ). (Going through the
construction one should be able to verify that if (µ, ν) ∈ R(X) ×R(Z) R(Y ) then µ⊗Z ν
is a regular measure on X ×Z Y as well, but we will not need this observation.) Given a
Borel function ρ : X ×Z Y → [0, 1] we may define:

ρ̂ : R(X) ×R(Z) R(Y ) → [0, 1]

(µ, ν) 7→ Eµ⊗Zν [ρ]
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Lemma 5.6. Let X, Y and Z be compact Hausdorff spaces and X×Z Y defined as above.
Let ρ : X ×Z Y → [0, 1] be a Borel function.

Let us fix µ ∈ R(X), letting η = π̂X(µ), and assume we can find a countable family of
Borel subsets Xi ⊆ X such that

(1) µ (
⋃
Xi) = 1.

(2) For each i there is a continuous function ρi(y) : Y → [0, 1] such that ρ(x, y) =
ρi(y) for every (x, y) ∈ Xi ×Z Y .

Then ρ̂(µ, ·) : Rη(Y ) → [0, 1] is continuous.

Proof. We may assume that all the Xi are disjoint. Then:

ρ̂(µ, ν) =

∫
ρ d(µ⊗Z ν)

=
∑

i∈I

∫

Xi×ZY

ρ d(µ⊗Z ν)

=
∑

i∈I

∫
ρi · P

µ⊗Zν [Xi ×Z Y |Y ] dν

=
∑

i∈I

∫
E
ν [ρi|Z] · P

µ⊗Zν [Xi ×Z Y |Z] dη

=
∑

i∈I

∫
E
ν [ρi|Z] · P

µ[Xi|Z] dη

Fixing i ∈ I, the mapping Rη(Y ) → L1(Z,ΣZ , η) defined by ν 7→ Eν [ρi|Z] is continuous
in the weak topology by Lemma 5.3. It follows that ν 7→

∫
Eν [ρi|Z] · Pµ[Xi|Z] dη is

continuous. Finally, the series above converges absolutely and uniformly so, whence the
continuity of ν 7→ ρ(µ, ν). �5.6

Proposition 5.7. Let X, Y and Z be compact Hausdorff spaces and X ×Z Y defined as
above. Let ρ : X ×Z Y → [0, 1] be any function. Assume that:

(1) The set X is covered by a countable family of Borel sets X =
⋃
i∈N

Xi.
(2) Each Xi is covered by a (possibly uncountable) family of relatively open subsets

Xi =
⋃
j∈Ji

Gi,j.

(3) For each pair (i, j) (where i ∈ N and j ∈ Ji) there is a continuous function
ρi,j : Y → [0, 1] such that ρ(x, y) = ρi,j(y) for every (x, y) ∈ Gi,j ×Z Y .

Then ρ is Borel and for every η ∈ R(Z) and µ ∈ Rη(X), the mapping ρ̂(µ, ·) : Rη(Y ) →
[0, 1] is continuous.

Proof. We may assume that the Xi are all disjoint.
Restricted to Gi,j ×Z Y , ρ is continuous. Since each Gi,j is relatively open in Xi, the

set Gi,j ×Z Y is relatively open in Xi ×Z Y . Thus ρ restricted to Xi ×Z Y is continuous
for each i. Moreover, each Xi ×Z Y is Borel in X ×Z Y . If follows that ρ is Borel.
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Now fix η ∈ R(Z), µ ∈ Rη(X). Fix again i ∈ N. Since µ is regular, µ(Xi) is
the supremum of µ(K) where K ⊆ Xi is compact. Each such K can be covered by
finitely many of the Gi,j. Thus there is a countable family J0

i ⊆ Ji such that µ(Xi) =

µ
(⋃

j∈J0
i
Gi,j

)
. It follows that

µ




⋃

i∈N,j∈J0
i

Gi,j



 = 1.

Moreover each Gi,j is relatively open in a Borel set and therefore a Borel set itself. The
conditions of the Lemma are therefore fulfilled. �5.7

5.2. Some reminders regarding stable formulas. Let T denote a first order theory.
Let ϕ(x, y) be a stable formula in T . We may also assume that T eliminates imaginaries.

Since ϕ is stable, every ϕ-type over a model p̂ ∈ Sϕ(M) is definable by a unique
formula dp̂ϕ(y):

p̂(x) = {ϕ(x, b) ↔ dp̂ϕ(b)}b∈M.

Let A ⊆ M denote an algebraically closed set, and we may assume that M is suf-
ficiently saturated and homogeneous over A. Then for every complete type p ∈ Sx(A)
there exists a unique ϕ-type p̂ ∈ Sϕ(M) which is definable over A and compatible with
p. The (unique) definition of p̂ is also referred to as the ϕ-definition of p, denoted dpϕ(y).

Now let A ⊆ M be any set, not necessarily algebraically closed, and p ∈ Sx(A). Let

P̂ ⊆ Sϕ(M) denote the set of global ϕ-types p̂ which are definable over acl(A) and

compatible with p. Then P̂ is non-empty, finite, and Aut(M/A) acts transitively on P̂ .
We define a [0, 1]-valued continuous predicate ρ(p, y) by:

ρ(p, b) =
|{p̂ ∈ P̂ : p̂ ⊢ ϕ(x, b)}|

|P̂ |
.

We consider ρ(p, b) to be the probability that a randomly chosen non-forking ϕ-extension
of p should satisfy ϕ(x, b).

Shelah’s notions of local rank R(·, ϕ) and multiplicity M(·, ϕ), both with values in
N ∪ {∞}, provide a more useful way to calculate ρ(p, b). For our purpose it will be
more convenient to define the multiplicity of a partial type π(x) at each rank n, denoted
M(·, ϕ, n).

(1) If π is consistent then R(π, ϕ) ≥ 0.
(2) Having defined when R(·, ϕ) ≥ n we defineM(·, ϕ, n). We say thatM(·, ϕ, n) ≥ m

if there are types π(x) ⊆ πi(x) for i < m such that for every i < j < m there
is a tuple bij for which πi(x) ∪ πj(x

′) ⊢ ϕ(x, bij) ↔ ¬ϕ(x′, bij), and in addition
R(πi, ϕ) ≥ n for all i < m.

(3) If M(π, ϕ, n) = ∞ then R(π, ϕ) ≥ n+ 1.
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The formula ϕ is stable if and only if R(π, ϕ) is always finite. If R(π, ϕ) = n then
M(π, ϕ) = M(π, ϕ, n) is the ϕ-multiplicity of π. Notice that n < R(π, ϕ) ⇐⇒M(π, ϕ, n) =
∞ and n > R(π, ϕ) ⇐⇒ M(π, ϕ, n) = 0.

If [π] ⊆ Sϕ(M) denoted the (closed) set of global ϕ-types consistent with π then it
is not difficult to check that R(π, ϕ) is precisely the Cantor-Bendixson rank of [π] in
Sϕ(M). Similarly, M(π, ϕ) is the Cantor-Bendixson multiplicity, namely the number of

types in [π] of rank R(π, ϕ). In case p ∈ Sx(A) is a complete type then P̂ is precisely is

set of ϕ-types of maximal Cantor-Bendixson rank n = R(p, ϕ) in [p], so M(p, ϕ) = |P̂ |.

The number of p̂ ∈ P̂ which contain some instance ϕ(x, b) is then precisely the number
of types of rank n in [p(x) ∪ {ϕ(x, b)}], whereby:

ρ(p, b) =
M
(
p ∪ {ϕ(x, b)}, ϕ, n

)

M(p, ϕ, n)
.

Finally, let ξ(x, ā) ∈ p be such that M
(
ξ(x, ā), ϕ, n

)
= M(p, ϕ, n), namely, such that

[ξ(x, ā)] and [p] contain precisely the same types of rank n. Then we have:

ρ(p, b) =
M
(
ξ(x, ā) ∧ ϕ(x, b), ϕ, n

)

M
(
ξ(x, ā), ϕ, n

) .

The value ρ(p, b) only depends on q(y) = tp(b/A), so it is legitimate to write ρ(p, q). We
may re-write p and q as p(x,A) and q(y, A), where W is a tuple of variables corresponding
to A, p(x,W ) ∈ Sx,W (T ) and q(y,W ) ∈ Sy,W (T ) are complete types and p↾W = q↾W ∈
SW (T ). In other words, (p, q) ∈ Sx,W (T )×SW (T )Sy,W (T ). To avoid this fairly cumbersome
notation let us write Σx,y,W for the fiber product Sx,W (T ) ×SW (T ) Sy,W (T ).

Conversely, let (p, q) ∈ Σx,y,W be any pair in the fiber product and let A realize their
common restriction to W . Then ρ

(
p(x,A), q(y, A)

)
only depends on (p, q) and not on the

choice of A. In other words, ρ
(
p(x,W ), q(y,W )

)
makes sense for every (p, q) ∈ Σx,y,W .

Henceforth we will therefore consider ρ as a function ρ : Σx,y,W → [0, 1].
The next step is to show that ρ satisfies the assumptions of Proposition 5.7.
We define Ξn,m as the set of all formulas ξ(x, w̄) for which M

(
ξ(x, w̄), ϕ, n

)
≥ m is

impossible, namely such that for every choice of parameters ā in a model of T :

M
(
ξ(x, ā), ϕ, n

)
< m.

Clearly, if ξ ∈ Ξn,(m+1) then M
(
ξ(x, w̄), ϕ, n

)
≥ m is equivalent to M

(
ξ(x, w̄), ϕ, n

)
= m.

Lemma 5.8. Let χ(x, t) be any formula. Then the property M
(
χ(x, t), ϕ, n

)
≥ m is type-

definable in t. In other words, there is a partial type π(t) such that for every parameter
c:

M
(
χ(x, c), ϕ, n

)
≥ m ⇐⇒ π(c).

Proof. Standard. �5.8
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Lemma 5.9. Assume that ξ(x, w̄) ∈ Ξn,(m+1). Then there are formulas ξ̂n,m,ℓ(y, w̄) for
0 ≤ ℓ ≤ m such that:

(1) The formulas {ξ̂n,m,ℓ : 0 ≤ ℓ ≤ m} define a partition: one and only one of them
holds for every b, ā in a model of T .

(2) ModuloM
(
ξ(x, w̄), ϕ, n

)
= m, the formula ξ̂n,m,ℓ(y, w̄) defines the property M

(
ξ(x, w̄)∧

ϕ(x, y), ϕ, n
)

= ℓ.

Proof. For 0 ≤ ℓ ≤ m let πℓ(w̄, y) be the partial type expressing that:

M
(
ξ(x, w̄) ∧ ϕ(x, y), ϕ, n

)
≥ ℓ & M

(
ξ(x, w̄) ∧ ¬ϕ(x, y), ϕ, n

)
≥ m− ℓ.

If ℓ < ℓ′ then πℓ ∧ πℓ′ imply that M
(
ξ(x, w̄), ϕ, n

)
≥ ℓ′ + m − ℓ > m contradicting the

assumption on ξ. Thus {πℓ : 0 ≤ ℓ ≤ m} are mutually contradictory. We can therefore

find formulas ξ̂n,m,ℓ ∈ πℓ which contradict one another as ℓ varies from 0 to m. We may

further replace ξ̂n,m,m with ¬
∨
ℓ<m ξ̂n,m,ℓ to achieve a partition. On the other hand, if

M
(
ξ(x, ā), ϕ, n

)
= m and b is arbitrary then πℓ(ā, b) holds for precisely one 0 ≤ ℓ ≤ m,

whence the second item. �5.9

Lemma 5.10. Assume that ξ(x, w̄) ∈ Ξn,(m+1). Then is a continuous predicate ξ̂n,m(y, w̄)

taking values in { ℓ
m

: 0 ≤ ℓ ≤ m} such that modulo M
(
ξ(x, w̄), ϕ, n

)
= m:

ξ̂n,m(y, w̄) =
M
(
ξ(x, w̄) ∧ ϕ(x, y), ϕ, n

)

M
(
ξ(x, w̄), ϕ, n

)

Proof. This is just a re-statement of the previous Lemma. �5.10

We define:

P 0
n,m(x,W ) = {¬ξ(x, w̄) : w̄ ⊆W, ξ ∈ Ξn,m}.

Lemma 5.11. Let p(x,W ) = tp(a/A) (in a model of T ). Then the following are equiv-
alent:

(1) M
(
p(x,A), ϕ, n

)
≥ m.

(2) p(x,W ) contains no member of Ξn,m.
(3) p(x,W ) ⊇ P 0

n,m(x,W ).

In other words, P 0
n,m(x,W ) expresses that M

(
tp(x/W ), ϕ, n

)
≥ m.

Proof. The implications (i) =⇒ (ii) ⇐⇒ (iii) are immediate. If M
(
p(x,A), ϕ, n

)
< m

then the existence of a certain tree whose leaves satisfy p(x,A) is contradictory. By
compactness this is due to some formula ξ(x, w̄) ∈ p(x,W ) in which case ξ ∈ Ξn,m. �5.11

For ξ ∈ Ξn,(m+1) it is convenient to define:

P ξ
n,m(x,W ) = P 0

n,m(x,W ) ∪ {ξ(x, w̄)}.
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Let also:

Pn,m =
⋃

ξ∈Ξn,(m+1)

[P ξ
n,m] = [P 0

n,m] \ [P 0
n,(m+1)] ⊆ Sx,W (T ).

This is the collection of types p(x,W ) ∈ Sx,W (T ) such that M
(
p(x,W ), ϕ, n

)
= m. While

it is in general neither open nor closed it is locally closed and therefore a Borel set. Thus
family {Pn,m : n < ω, 1 ≤ m < ω} forms a countable partition of Sx,W (T ) into Borel sets.
On the other hand Pn,m is a union of relatively clopen subsets of the closed set [P 0

n,m].

Moreover, let (p, q) ∈ Σx,y,W and assume that p(x,W ) |= P ξ
n,m(x,W ), ξ(x, w̄) ∈ Ξn,(m+1).

Let ξ̂n,m(y, w̄) be as in Lemma 5.10. Then ρ(p, q) = ξ̂n,m(y, w̄)q.
We have thus checked that ρ : Σx,y,W → [0, 1] satisfies the conditions of Proposition 5.7.

5.3. The main results. We continues with the same assumptions, namely that T is a
classical first order theory and ϕ(x, y) a stable formula.

For our purposes here it will be more convenient to consider the theory TR in a single-
sorted language in which we have a predicate symbol P[ψ(x̄)] for every formula ψ(x̄) in
the original language. Each such predicate is definable in the two-sorted language given
earlier by the identity P[ψ] = µ(JψK). Moreover, TR admits quantifier elimination in this
language as well (for example, since the atomic formulas separate types).

Let us translate the conclusion of Proposition 5.7 applied to ρ to the situation at hand.
First of all we know that R

(
Sx,W (T )

)
= Sx,W (TR) and so on, so:

R
(
Sx,W (T )

)
×

R

(
SW (T )

) R
(
Sy,W (T )

)
= Sx,W (TR) ×SW (TR) Sy,W (TR).

Let A ⊆ MMM |= TR and let p(x,A) ∈ Sx(A). Let r(W ) = tp(A), so p(x,W ) lies in the
fiber above r. Similarly, the fiber of Sy,W (TR) lying above r can be identified with Sy(A).
Then Proposition 5.7 says that the function ρ̂(p(x,A), ·) : Sy(A) → [0, 1] is continuous.
We may therefore identify it with an A-definable predicate:

ρ̂
(
p(x,A),b

)
:= ρ̂

(
p, tp(b,A)

)

Proposition 5.12. Assume that b ∈ A. Then ρ̂
(
p(x,A),b

)
= P[ϕ(x,b)]p(x,A). In other

words, ρ̂
(
p(x,A), y

)
is the P[ϕ]-definition of p(x,A).

Proof. Indeed, let q(x,W ) = tp(b,A), and say that w0 ∈W corresponds to b ∈ A. Then
the measure q is concentrated on those types q(y,W ) which satisfy y = w0, and similarly
the measure p⊗W q on Σx,y,W is concentrated on those pairs (p, q) where q is such. For
such pairs we have ρ(p, q) = 1 if p |= ϕ(x, w0) and zero otherwise, so

ρ̂
(
p(x,A),b

)
= E

p⊗W q[ρ] = P[ϕ(x, w0)]
p = P[ϕ(x,b)]p(x,A). �5.12

We now have everything we need in order to prove preservation of stability.

Theorem 5.13. If ϕ(x, y) is a stable formula of T then P[ϕ(x, y)] is a stable formula of
TR. If T is a stable theory then so is TR.
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Proof. We have shown that if ϕ is stable then every P[ϕ]-type is definable, so P[ϕ] is
stable as well. Assume now that T is stable. Then every atomic formula of TR is stable,
so every quantifier free formula is stable, and by quantifier elimination every formula is
stable. Therefore TR is stable. �5.13

Given p(x,A) where A ⊆MMM, define:

p̂(x) = {P[ϕ(x,b)] = ρ̂(p(x,A),b) : b ∈MMM}.

Lemma 5.14. The set of conditions p̂(x) is a P[ϕ]-type over MMM, i.e., p̂(x) ∈ SP[ϕ](MMM).
Moreover, it is consistent with p(x,A).

Proof. It is enough to prove the moreover part. For this matter, it is enough to show
that for any finite tuple b̄ = b0, . . . ,bn1 the following is consistent:

p(x,A) ∪ {P[ϕ(x,bi)] = ρ̂(p(x,A),bi) : i < n1}.

Let q(ȳ,W ) = tp(b̄,A), qi = tp(bi,A). Then we need to prove that the following is
consistent with TR:

p(x,W ) ∪ q(ȳ,W ) ∪ {P[ϕ(x, yi)] = ρ̂(p,qi) : i < n1}.(1)

Given a sequence of formulas and integer numbers (χk, mk)k<ℓ let [(χk, mk)k<ℓ] denote
the formula stating that

∑
k<ℓmk1χk

≥ 0 (this is indeed expressible by a first order
formula). By Proposition 5.5, in order to show that (1) is consistent with TR it is enough
to check that:

T |= [(ϕ(x, yi), fi)i<n1 , (ψj(x, w̄), gj)j<n2, (χk(ȳ, w̄), hk)k<n3]

=⇒
∑

i<n1

fiρ̂(p,qi) +
∑

j<n2

gjP[ψj(x, w̄)]p +
∑

k<n3

hkP[χk(ȳ, w̄)]q ≥ 0.

The sum can be rewritten as:

E
p⊗W q

[
∑

i<n1

fiρ(p, q↾x,yi,W
) +

∑

j<n2

gj1ψj
(x, w̄)p +

∑

k<n3

hk1χk
(ȳ, w̄)q

]
.

It will therefore be enough to show for every (p, q) ∈ Σx,ȳ,W :

∑

i<n1

fiρ(p, q↾x,yi,W
) +

∑

j<n2

gj1ψj
(x, w̄)p +

∑

k<n3

hk1χk
(ȳ, w̄)q ≥ 0

We may assume that q(ȳ,W ) = tp(b̄, A) where b̄, A ⊆ M |= T . Let P̂ ⊆ Sϕ(M) be the
set of ϕ-types compatible with p(x,A) and definable over acl(A). Then the left hand side
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becomes:
∑

i<n1

fiρϕ(p(x,A), bi) +
∑

j<n2

gj1ψj
(x, w̄)p +

∑

k<n3

hk1χk
(ȳ, w̄)q

=
∑

i<n1

fi
{p̂ ∈ P̂ : p̂ ⊢ ϕ(x, bi)}

|P̂ |
+
∑

j<n2

gj1ψj
(x, w̄)p +

∑

k<n3

hk1χk
(ȳ, w̄)q

=
1

|P̂ |

∑

p̂∈P̂

(
∑

i<n1

fi1ϕ(x, bi)p̂(x) +
∑

j<n2

gj1ψj
(x, w̄)p(x,W ) +

∑

k<n3

hk1χk
(ȳ, w̄)q(ȳ,W )

)

It will therefore be enough to show that the sum inside the parentheses is positive for every
p̂ ∈ P̂ . Since p̂ is compatible with p(x,A) there is a complete type r̃(x,M) extending
both. Let r(x, b̄, A) be its restriction to the parameters which interest us, where as usual
r(x, ȳ,W ) ∈ Sx,ȳ,W (T ). Then we have:

∑

i<n1

fi1ϕ(x, bi)p̂(x) +
∑

j<n2

gj1ψj
(x, w̄)p(x,W ) +

∑

k<n3

hk1χk
(ȳ, w̄)q(ȳ,W )

=
∑

i<n1

fi1ϕ(x, yi)r +
∑

j<n2

gj1ψj
(x, w̄)r +

∑

k<n3

hk1χk
(ȳ, w̄)r.

Since r is a type of T this is indeed always positive. �5.14

Theorem 5.15. Assume ϕ is a stable formula of T , and let A ⊆MMM |= TR. Then every
P[ϕ]-type over A is stationary. If T is stable then every type over A is stationary.

Proof. We have shown that if p(x) ∈ Sx(A) then there exists a P[ϕ]-type p̂(x) ∈ SP[ϕ](MMM)
which is definable over A (rather than merely over acl(A)) and compatible with p. �5.15

Here A consists of random elements in sorts of T . The theory TR necessarily introduces
new imaginary sorts (even if T admits elimination of imaginaries) and types over elements
from these new sorts need not be stationary.

In the course of the proof we have given an explicit characterization of the unique
non forking extension of a type in TR. Let us restate this characterization in a slightly
modified fashion. First of all we observe that the entire development above goes through
for a formula of the form ϕ(x, y, w̄) where w̄ ⊆W is a fixed tuple of parameter variables
(alternatively, we could name the tuple w̄ by new constants). Define ρϕ : Σx,y,W → [0, 1]
and ρ̂ϕ accordingly.

Corollary 5.16. Let c,b,A ⊆ MMM. Then c |⌣A
b if and only if for every ā ⊆ A with

corresponding w̄ ⊆W , and for every formula P[ϕ(x, y, w̄)]:

P[ϕ(c,b, ā)] = ρ̂ϕ(tp(c,A), tp(b,A)).
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