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Abstract

This article concerns an extension of the topological derivative concept for 2D potential prob-

lems involving penetrable inclusions, whereby a cost function J is expanded in powers of the

characteristic sizeε of a small inclusion. TheO(ε4) approximation ofJ is established for a small

inclusion of given location, shape and conductivity embedded in a 2-D region of arbitrary shape

and conductivity, and then generalized to several such inclusions. Simpler and more explicit

versions of this result are obtained for a centrally-symmetric inclusion and a circular inclusion.

Numerical tests are performed on a sample configuration, for(i) theO(ε4) expansion of potential

energy, and (ii) the identification of a hidden inclusion. For the latter problem, a simple approx-

imate global search procedure based on minimizing theO(ε4) approximation ofJ over a dense

search grid is proposed and demonstrated.

1 INTRODUCTION

The sensitivity analysis of objective functions is nowadays based on well-established mathematical

concepts, and provides very valuable computational tools for enhancing the performance and effec-

tiveness of numerical methods for e.g. optimal design or inversion of experimental data. In its usual

(but not mandatory) default acception, the term ‘sensitivity’ refers to first-order perturbation analyses

with respect small variations of some feature of the system under consideration. Well-established

methodologies for evaluating sensitivities of field variables or objective functions with respect to e.g.

model parameters [1] or geometrical shapes [2] are available.

More recently, another sensitivity concept, namely that oftopological sensitivity, appeared in [3,

4] in the context of topological optimization of mechanicalstructures. The aim of topological sensi-

tivity is to quantify the perturbation of an objective function with respect to the nucleation of a small

objectBε(a) of characteristic radiusε and given locationa, as a function ofa. If J(ε;a) denotes
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the value achieved by the objective function under consideration whenBε(a) is the only perturba-

tion to an otherwise known reference medium, then in 2-D situations with Neumann or transmission

conditions on∂Bε(a) the topological derivativeT2(a) appears through an expansion of the form

J(ε;a) = J(0) + ε2T2(a) + o(ε3)

Algorithms where “excess” material is iteratively removedaccording to the value ofT2(a) until

a satisfactory shape and topology is reached have been formulated [5]. Other investigations have

subsequently established the usefulness of the topological sensitivity as a preliminary sampling tool

for inverse scattering problems, providing estimates of location, size and number of defects which

can then (for example) be used as initial guesses in subsequent minimization-based inversion proce-

dures [6, 7, 8, 9, 10, 11].

This article is concerned with an extension of the topological sensitivity concept wherebyJ(ε;a)

is expanded further in powers ofε. Specifically, the expansion to orderO(ε4) for cost functions

involving the solution of a 2-D potential problem on a domaincontaining a small object of sizeε

embedded in a medium occupying a domain of arbitrary shape isestablished. The chosen order

O(ε4) stems from the fact that, for misfit functionsJ of least-squares format, the perturbations of the

residuals featured inJ are of orderO(ε2) under the present conditions. The expansion will be found

to have the form

J(ε;a) = J(0) + T2(a)ε2 + T3(a)ε3 + T4(a)ε4 + o(ε4) ≡ J(0) + J4(ε;a) + o(ε4) (1)

where coefficientsT2,T3,T4 depend on the assumed characteristics of the small nucleating inclusion,

namely its locationa, shape and constitutive characteristics (here the conductivity contrast). A similar

approach, limited to impenetrable obstacles (β = 0), has been recently proposed in the context of the

3-D Helmholtz equation [12].

The concept of topological sensitivity, and higher-order topological expansions such as (1), are

in fact particular instances of the broader class of asymptotic methods, where approximate solutions

to problems involving inclusions in e.g. electromagnetic or elastic media and featuring a small ge-

ometrical parameter are sought in the form of expansions with respect to that parameter. A detailed

presentation of such methods can be found in [13].In this article, we are specifically interested

in establishing computationally efficient methods for evaluating small-inclusion expansions of cost

functions (rather than field variables) in the context of 2-Dmedia edowed with a isotropic scalar con-

ductivity. For that reason, and following common practice in usual sensitivity analyses as well as

previous works on the topological derivativeT2 [7, 14, 5, 11], an adjoint solution-based approach is

chosen here as its obviates the need to evaluate higher-order sensitivities of field variables. Coeffi-

cientsT2,T3,T4 are hence found in this article to be expressed in terms of thefree and adjoint fields

(i.e. the response of the reference medium to the applied andadjoint excitations), and also (forT4)
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on the Green’s function associated with the geometry and boundary condition structure under consid-

eration. These expressions constitute the first main contribution of this article. A related study [15],

restricted to theO(ε4) expansion of the potential energy for impenetrable nucleating inclusions, pro-

posedinexactexpressions forT4 [16, 17]. The missing terms in theO(ε4) expansion of[15] are

pinpointed here on the basis of the present analysis.

The functionsT2(a),T3(a),T4(a) can be computed for sampling pointsa spanning a search

grid at a computational cost which is of the order of a small number of forward solutions in the

reference medium. This makes it possible to define a computationally fast approximate global search

procedure, where the minimization of the polynomial approximant J4(ε;a) of the misfit function is

performed for a large number of potential inclusion locationsa, whereas usual global search methods

(e.g. evolutionary algorithms [18] or parameter-space sampling methods [19]) require large numbers

of cost functions evaluations and are thus much more demanding. This fast approximate global search

methodology, and the demonstration of its usefulness through numerical experiments on a inclusion

identification problem, constitute the second main contribution of this article.

This article is organized as follows. Formulations and notation for the forward problems of inter-

est and cost functions are reviewed in Section 2. Then, general expressions for coefficientsT2,T3,T4

are established for a small inclusion of arbitrary shape andconductivity contrast buried in an arbitrary

domain (section 5), based on a methodology whose main components are an adjoint-solution frame-

work (Section 3) and an expansion of the total field on the inclusion boundary (Section 4). Simpler

formulae are next obtained for the useful special case of a centrally-symmetric inclusion (section 5.2),

leading to explicit formulae for a circular small inclusion(section 5.3). The generalization to several

small inclusions is treated in section 6. Computational issues and links to other approaches are dis-

cussed in section 7. Finally, in section 8, numerical tests are performed on theO(ε4) expansion of

potential energy, and a simple approximate global search procedure for hidden inclusion identification

based onJ4(ε;a) is next proposed and demonstrated on the same testing configuration.

2 FORWARD PROBLEM AND COST FUNCTIONS

Consider a reference configuration defined in terms of a two-dimensional domainΩ, either bounded or

unbounded, with a sufficiently regular boundaryS, and filled with a isotropic medium characterized

by conductivityk.

2.1 Forward problem

Let B⋆ denote a trial penetrable object of isotropic conductivityk⋆, bounded byΓ⋆. Denoting by

Ω⋆ = Ω \ (B⋆ ∪Γ⋆) the region surrounding the inclusion, the application of prescribed potentialuD

and fluxpD overSD andSN, respectively (whereSN andSD are complementary disjoint subsets of
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S) give rise to the potentialu⋆ in Ω⋆ andB⋆, governed by the field equations

div(k∇u⋆) = 0 (in Ω⋆), div(k⋆
∇u⋆) = 0 (in B⋆), (2)

the boundary conditions

p⋆ = pD (onSN), u⋆ = uD (onSD) (3)

(wherep⋆ = k∇u⋆ ·n denotes the flux through the external boundary, and with the unit normaln to

S directed outwards ofΩ) and the perfect-bonding transmission conditions

u⋆
m = u⋆

i , (∇u⋆)m·n = (β∇u⋆)i ·n (onΓ⋆), (4)

where subscripts ’m’ and ’i’ refer to limiting values onΓ⋆ of quantities in the matrixΩ⋆ and the

inclusionB⋆, respectively, andβ is the conductivity contrast, i.e

β = k⋆/k. (5)

In addition, thefree fieldu is defined as the solution to the boundary-value problem

div(k∇u) = 0 (in Ω), p = pD (onSN), u = uD (onSD) (6)

(with p = k∇u·n), i.e. is the potential arising inΩ for the same boundary datapD, uD in the absence

of any trial inclusion.

The following reciprocity identity is now provided for later convenience.

Lemma 1. Let (u⋆, u⋆) denote a solution to field equations (2) and transmission conditions (4), and

let w be any trial field verifyingk∆w+b = 0 in Ω (with b denoting a known source distribution) and

continuous, together with its normal fluxk∇w ·n, acrossΓ⋆. Letβ be defined by (5). The following

reciprocity identity holds true:

∫

S

[

p[w]u⋆ − p⋆w
]

dΓ +

∫

Ω⋆

bu⋆ dV +

∫

B⋆

bu⋆ dV − (1−β)

∫

B⋆

k∇u⋆ ·∇w dV = 0 (7)

Proof. Identity (7) is obtained by means of the third Green’s formula

∫

O

[

w∆u − u∆w
]

dV +

∫

∂O

[

(∇w·n)u − (∇u·n)w
]

dΓ = 0, (8)

as follows: (i) write (8) forO= Ω⋆ and multiply the resulting identity byk; (ii) write (8) for O= B⋆

and multiply the resulting identity byβk; (iii) add the two resulting identities and invoke transmission

conditions (4), together with continuity ofw and its normal flux, acrossΓ⋆, and (iv) use the identity

k

∫

Γ⋆

(∇w·n)u dΓ =

∫

B⋆

[

bu − k∇u⋆ ·∇w
]

dV,

which stems from the divergence theorem (withn denoting here theinward unit normal toΓ⋆).
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2.2 Cost functions

Generic cost functions having the format

J (B⋆) =

∫

SN

ϕN(u⋆, ξ) dΓ +

∫

SD

ϕD(p⋆, ξ) dΓ (9)

are considered, where functionsϕN andϕD areC2 in their first argument.

For instance, the potential energyE(B⋆) associated with the solution(u⋆, u⋆) to equations (2)

to (4) can be set in the format (9) with

ϕN(p⋆, ξ) = −
1

2
pD(ξ)u⋆(ξ), ϕD(p⋆, ξ) =

1

2
p⋆(ξ)uD(ξ) (10)

Alternatively, considering the problem of identifying an unknown penetrable inclusionBtrue from

supplementary data consisting of measured valuesuobs of the potential andpobs of the flux, collected

respectively onSN andSD (or subsets thereof), the misfit between observationsuobs, pobs and their

predictionsu⋆, p⋆ for a trial inclusionB⋆ may also be expressed through a cost function of format (9).

For instance, the output least-squares cost functionJLS(B⋆) corresponds to

ϕN(u⋆, ξ) =
1

2

∣

∣u⋆(ξ)−uobs(ξ)
∣

∣

2
, ϕD(p⋆, ξ) =

1

2

∣

∣p⋆(ξ)−pobs(ξ)
∣

∣

2
. (11)

Suitably modified definitions ofϕD andϕN easily allow to accommodate data available on subsets of

SD or SN.

In what follows, attention will focus on the case of trial inclusions of small sizeε and given

location, shape and conductivity contrast. The main objectives of this article are (i) to establish

an expansion of cost functions of format (9) with respect toε, whose coefficients depend on the

inclusion locationa, and (ii) to formulate a computationally fast approximate global search method

for inclusion identification exploiting such expansions for misfit functionals.

3 ADJOINT SOLUTION APPROACH FOR EXPANSION OF COST FUNCTION

Let Bε(a) = a + εB, whereB ⊂ R
2 is a fixed bounded open set with area|B| and centered at the

origin, define the region of space occupied by a penetrable inclusion of (small) sizeε > 0, centered at

a specified locationa ∈ Ω. The inclusion shape is hence specified through the choice ofnormalized

domainB (e.g. B is the unit disk for a circular small inclusion). The region surrounding the small

inclusion is thenΩε(a) = Ω \ (Bε(a)∪Γε(a)).

One is here concerned with small-inclusion approximationsof cost functions (9). Accordingly,

let uε(·;a) denote the solution to equations (2) to (4) withB⋆ = Bε(a), and defineJ(ε;a) by

J(ε;a) = J
(

Bε(a)
)

=

∫

SN

ϕN(uε, ξ) dΓ +

∫

SD

ϕD(pε, ξ) dΓ, (12)

with pε ≡ ∇uε.n. For notational convenience, explicit references toa will often be omitted in the

sequel, e.g. by writingJ(ε) or uε(ξ) instead ofJ(ε;a) or uε(ξ;a).
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3.1 Expansion of misfit function using adjoint solution

Let vε denote the perturbation caused to the potential by a small inclusion nucleating ata, i.e.:

vε = uε − u (in Ωε∪Bε). (13)

It is useful to note thatvε verifies homogeneous boundary conditions:

qε = 0 (onSN), vε = 0 (onSD) (14)

whereqε = k(∇vε.n) is the perturbation of the boundary flux.

Cost functions with quadratic dependence on(u, p) are often considered in applications (e.g.

for identification purposes). With this in mind, a polynomial approximation ofJ(ε) is sought by

exploiting an expansion of (12) to second order in(vε, qε), i.e.:

J(ε) = J(0) +

∫

SN

ϕN,u vε dΓ +

∫

SD

ϕD,p qε dΓ

+
1

2

∫

SN

ϕN,uu (vε)
2 dΓ +

1

2

∫

SD

ϕD,pp (qε)
2 dΓ + o

(

|vε|
2
L2(SN) , |qε|

2
L2(SD)

)

, (15)

having set

ϕN,u =
∂ϕN

∂uε

∣

∣

∣

uε=u
, ϕD,p =

∂ϕD

∂pε

∣

∣

∣

pε=p
, ϕN,uu =

∂2ϕN

∂u2
ε

∣

∣

∣

uε=u
, ϕD,pp =

∂2ϕD

∂p2
ε

∣

∣

∣

pε=p
(16)

In particular, the above quantities are given by

ϕD,p =
1

2
uD, ϕN,u = −

1

2
pD, ϕD,pp = 0, ϕN,uu = 0 (17)

for ϕN, ϕD defined by (10), and

ϕN,u = u−uobs, ϕD,p = p−pobs, ϕN,uu = 1, ϕD,pp = 1 (18)

for ϕN, ϕD defined by (11). Expansion (15) is exact, i.e. has a zero remainder, for the potential energy

defined by (10) and the least-squares misfit functions (11).

Lemma 2 (reformulation of cost function expansion using an adjointsolution). Let theadjoint field

û be defined as the solution of the adjoint problem

k∆û = 0 (in Ω) , p̂ = ϕN,u (onSN) , û = −ϕD,p (onSD). (19)

(with p̂ = k∇û·n). Expansion (15) then admits the alternative form

J(ε) = J(0) + (1−β)

∫

Bε

k∇uε ·∇û dV

+
1

2

∫

SN

ϕN,uu (vε)
2 dΓ +

1

2

∫

SD

ϕD,pp (qε)
2 dΓ + o(|vε|

2
L2(SN) , |qε|

2
L2(SD)), (20)

Proof. Invoking reciprocity identity (7) withw = û, b = 0 and boundary conditions (14) and (19b,c),

one obtains identity
∫

SN

ϕN,u vε dΓ +

∫

SD

ϕD,p qε dΓ = (1−β)

∫

Bε

k∇uε ·∇û dV

which, inserted into expansion (15), yields the desired reformulation (20).
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3.2 Summary of previous results on topological sensitivity

In previous studies [14, 20], the leading contribution toJ(ε) has been found, on the basis of iden-

tity (20) truncated to first order in(vε, qε) (i.e. without the last two integrals), to be given by

J(ε) = J(0) + ε2T2(a;B, β) + o(ε3) (21)

in terms of thetopological derivativeT2(a;B, β), given in the present context of 2-D potential prob-

lems by

T2(a;B, β) = ∇û(a)·A11(B, β)·∇u(a) (22)

where the second-order ‘polarization tensor’A11(B, β) has been established for any inclusion shape

B and conductivity contrastβ in [20]. For the simplest case of a circular inclusion, whereB is the

unit disk, one has the explicit expression

A11 = 2π
(1−β)

1 + β
I. (23)

(whereI is the seccond-order identity tensor). Moreover, the leading asymptotic behaviour of the

perturbed field is characterized by

vε(x) = ε2W (x) + o(ε2), qε(x) = ε2
∇Q(x) + o(ε2) (x ∈ S) (24)

(having setQ(x) = ∇W (x)·n(x)) on the external boundary, and by

vε(x) = εV1

(

(x − a)/ε
)

+ o(ε) (x ∈ Bε) (25)

insideB, where the functionsW andV1 are known and depend onB andβ (see Eqs. (57) and (48a)).

3.3 Derivation of expansion ofJ(ε): methodology and notation

To capture the leading contribution asε → 0 of the quadratic termsv2
ε andq2

ε , an expansion ofJ(ε)

must, in view of (20) and (24), be performed to orderO(ε4) at least. As (20) involves integrals over

the vanishing supportBε, the position vector̄ξ ∈Bε is scaled for this purpose according to:

ξ = a + εξ̄ (ξ ∈Bε, ξ̄ ∈B) (26)

In particular, this mapping transforms integrals overBε into integrals overB, and rescales the domain

differential element according to

dVξ = ε2 dV̄ξ̄ (ξ ∈Bε, ξ̄ ∈B) (27)

Without loss of generality,a can be chosen as the center ofBε, i.e. such that

∫

B

ξ̄ dV̄ξ̄ = 0. (28)
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In view of (27), establishing the soughtO(ε4) expansion ofJ(ε) requires aO(ε2) expansion of

∇uε in Bε. Taking the previously known behavior (25) into account, anasymptotic expression for

smallε of the total fielduε inside the inclusion is sought in the form

uε(ξ) = u(ξ) + εV1(ξ̄) + ε2V2(ξ̄) +
1

2
ε3V3(ξ̄) + o(ε3) (ξ ∈Bε, ξ̄ ∈B) (29)

in terms of unknown functionsV1, V2, V3 defined inB. The determination ofV1, V2, V3, which

constitutes the main step towards establishing an explicitexpression for the expansion ofJ(ε), is

based on expanding aboutε → 0 an integral equation formulation foruε. This task is addressed in

the next section.

4 EXPANSION OF FIELD INSIDE THE INCLUSION

4.1 Integral equation formulation of the forward problem

Let the Green’s functionG(x, ξ) associated with the domainΩ and partitionS = SN ∪ SD of the

external boundary be defined by

k∆ξG(x, ξ) + δ(ξ − x) = 0 (ξ ∈Ω)

H(x, ξ) = 0 (ξ ∈SN),

G(x, ξ) = 0 (ξ ∈SD)

(30)

(with H(x, ξ) = k∇ξG(x, ξ)·n(ξ)). On usingw(ξ) = G(x, ξ), i.e. b(ξ) = δ(ξ−x) in the reciprocity

identity (7) and inserting boundary conditions (3), one obtains the following governing integral equa-

tion for the fielduε inside the inclusionBε, which solves the forward problem (2)–(4) withB⋆ = Bε:

uε(x) −

∫

Bε

(1−β)k∇uε(ξ)·∇ξG(x, ξ) dVξ = u(x) (x∈Bε), (31)

whereu, the free field defined by (6), is here explicitly given by

u(x) =

∫

SN

G(x, ξ) pD(ξ) dΓξ −

∫

SD

H(x, ξ) uD(ξ) dΓξ (x∈Ω). (32)

Similarly, the adjoint field defined by (19) admits the explicit integral representation formula

û(x) =

∫

SN

G(x, ξ) ϕN,u(ξ) dΓξ +

∫

SD

H(x, ξ) ϕD,p(ξ) dΓξ (x∈Ω). (33)

Note that equation (31) is also valid for a non-uniform conductivity contrastβ, a feature not exploited

in this work. Moreover, the field outside the inclusion is given by the representation formula

uε(x) = (1−β)k

∫

Bε

∇uε(ξ)·∇ξG(x, ξ) dVξ + u(x) (x∈Ω\Bε), (34)

Under the assumption of a constant conductivity inside the inclusion, a governing boundary inte-

gral equation formulation that is equivalent to (31) reads

1+β

2
uε(x) − (1−β)k

∫

Γε

H(ξ,x)uε(ξ) dΓξ = u(x) (x∈Γε). (35)
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4.2 Small-inclusion expansion of the integral equation

To study the asymptotic behaviour of integral equation (31)asε → 0, it is useful to introduce further

scaled geometric quantities:

x = εx̄ , r = εr̄ , r = εr̄ (x, ξ ∈Bε; x̄, ξ̄ ∈B) (36)

in addition to definition (26) of̄ξ, and to split the Green’s function according to:

G(x, ξ) = G(x, ξ) + GC(x, ξ), (37)

whereG is the well-known fundamental solution for the 2-D full space, given by

G(x, ξ) = −
1

2kπ
Logr, ∇ξG(x, ξ) = −

1

2kπr2
r (38)

with r = ξ − x andr = |ξ − x|= |r|, and the complementary partGC is smooth atξ = x.

Lemma 3. Using the ansatz (29) for the fielduε insideBε (with functionsV1, V2, V3 to be determined

later), integral equation (31) has the followingO(ε3) expansion aboutε = 0:

ε
{

[

(I − L̄)V1

]

(x̄) −F1(x̄)
}

+ ε2
{

[

(I − L̄)V2

]

(x̄) −F2(x̄)
}

+
1

2
ε3

{

[

(I − L̄)V3

]

(x̄) −F3(x̄)
}

+ o(ε3) = 0, (39)

whereI denotes the identity, the integral operatorL̄ is defined for scalar, vector or tensor density

functionsf(ξ̄), ξ̄ ∈B by

[

L̄f
]

(x̄) = (1−β)k

∫

B

∇̄f(ξ̄)·∇̄G(x̄, ξ̄) dV̄ξ̄ (x̄∈B), (40)

(with∇̄ ≡ ∇ξ̄ denoting the gradient with respect to normalized coordinates) andF1(x̄), F2(x̄), F3(x̄)

are given by

F1(x̄) = ∇u(a)·
[

L̄ξ̄
]

(x̄) (41a)

F2(x̄) =
1

2
∇

2u(a) :
[

L̄(ξ̄⊗ ξ̄)
]

(x̄) + F (a) (41b)

F3(x̄) =
1

3
∇

3u(a) :·
[

L̄(ξ̄⊗ ξ̄⊗ ξ̄)
]

(x̄) + 2x̄·∇F (a) + 2G(a) (41c)

where∇ku(a) denotes thek-th order gradient ofu evaluated atξ = a, and having set

F (z) = (1−β)k
(

|B|∇u(a) +

∫

B

∇̄V1(ξ̄) dV̄ξ̄

)

·∇GC(z,a) (42a)

G(z) = (1−β)k
{(

∫

B

∇̄V1(ξ̄)⊗ ξ̄ dV̄ξ̄

)

:∇2GC(z,a) +
(

∫

B

∇̄V2(ξ̄) dV̄ξ̄

)

·∇GC(z,a)
}

(42b)

Proof. The proof rests on splitting the Green’s function accordingto (37) in integral equation (31)

and using the following expansion of∇uε, obtained from (29)

∇uε(ξ) = ∇u(a) + ∇̄V1(ξ̄)

+ ε
[

∇
2u(a)·ξ̄ + ∇̄V2(ξ̄)

]

+
1

2
ε2

[

∇
3u(a) :(ξ̄⊗ ξ̄) + ∇̄V3(ξ̄)

]

+ o(ε2). (43)
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First, noting that upon scaling the position vector according to (36) the singular full-space funda-

mental solution verifies

∇ξG(x, ξ) = −
1

ε

1

2kπr̄2
r̄ =

1

ε
∇G(x̄, ξ̄), (44)

one finds

(1−β)

∫

Bε

k∇uε(ξ)·∇ξG(x, ξ) dVξ = ε
(

[

L̄V1

]

+ ∇u(a)·
[

L̄ξ̄
]

)

(x̄)

+ ε2
(

[

L̄V2

]

+
1

2
∇

2u(a) :
[

L̄(ξ̄⊗ ξ̄)
]

)

(x̄)

+
ε3

2

(

[

L̄V3

]

+
1

3
∇

3u(a) :
[

L̄(ξ̄⊗ ξ̄⊗ ξ̄)
]

)

(x̄) (45)

with the help of differential element scaling (27) and expansion (43), and invoking definition (40) of

integral operator̄L.

Second, as the complementary kernelGC(x, ξ) is smooth whenx = ξ, the following Taylor

expansion holds for anȳx, ξ̄ ∈B:

∇ξGC(x, ξ) = ∇GC(a,a) + ε
[

(x̄·∇x + ξ̄ ·∇ξ)∇ξGC
]

(a,a) + o(ε). (46)

On performing a derivation which consists of (i) expanding to orderO(ε) the inner product of ex-

pansions (29) and (46), (ii) integrating the result overBε and multiplying the result by(1−β)k, (iii)

invoking scaling (27), (iv) using integral identity (28), and (v) exploiting definitions (42a,b), one finds

(1−β)

∫

Bε

k∇uε(ξ)·∇ξGC(x, ξ) dVξ = ε2F (a) + ε3
(

∇F (a) + G(a)
)

. (47)

Lemma 3 finally follows from substituting expansions (29), (45) and (47) into integral equa-

tion (31) and reordering contributions according to powersof ε.

4.3 Expansion of potential inside the inclusion

Lemma 4. TheO(ε3) expansion (29) ofuε is given by

V1(ξ̄) = U1(ξ̄)·∇u(a) (48a)

V2(ξ̄) = U2(ξ̄) :∇2u(a) + F (a) (48b)

V3(ξ̄) = U3(ξ̄) :·∇3u(a) + 2
[

ξ̄ + U1(ξ̄)
]

·∇F (a) + 2G(a) (48c)

where the vector functionU1, the second-order tensor functionU2 and the third-order tensor func-

tion U3 do not depend ona and solve the integral equations

[

(I − L̄) U1

]

(x̄) =
[

L̄ξ̄
]

(x̄) (49a)

[

(I − L̄) U2

]

(x̄) =
1

2

[

L̄(ξ̄⊗ ξ̄)
]

(x̄) (49b)

[

(I − L̄) U3

]

(x̄) =
1

3

[

L̄(ξ̄⊗ ξ̄⊗ ξ̄)
]

(x̄) (49c)
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(with L̄ defined by 40). Moreover, the scalar functionsF (x), G(x) defined by (42a,b) are given for

anyx ∈ Ω by

F (x) = ∇u(a)·A11 ·∇GC(x,a) (50a)

G(x) = ∇u(a)·A12 :∇2GC(x,a) + ∇GC(x,a)·A12 :∇2u(a), (50b)

with the constant tensorsA11,A12 (respectively of order 2 and 3) defined by

A11 = (1−β)k
(

|B| I +

∫

B

∇̄ U1(ξ̄) dV̄ξ̄

)

(51a)

A12 = (1−β)k

∫

B

∇̄ U1(ξ̄)⊗ ξ̄ dV̄ξ̄ (51b)

Proof. Definitions (41a) and (49a) immediately imply that

F1(x̄) =
[

(I−L̄)
(

U1(ξ̄)·∇u(a)
)]

(x̄)

Similarly, on using definitions (41b), (49b) and noting that1 =
[

(I −L̄)1
]

(x̄), one obtains

F2(x̄) =
[

(I −L̄)
(

U2(ξ̄) :∇2u(a) + F (a)
)]

(x̄)

Finally, one notes that definition (49a) implies thatx̄ =
[

(I−L̄)
(

ξ̄+ U1(ξ̄)
)]

(x̄). Using this identity

together with identity1 =
[

(I−L̄)1
]

(x̄) (again) and definitions (41c) and (49c), one obtains

F3(x̄) =
[

(I−L̄)
(

U3(ξ̄) :·∇3u(a) + 2
(

ξ̄+ U1(ξ̄)
)

·∇F (a) + 2G(a)
)]

(x̄)

Representations (48a–c) follow directly from the previousthree identities by virtue of the fact that

integral operatorI −L̄ is invertible.

Then, definitions (51a,b) and reformulations (50a,b) ofF (x), G(x) stem directly from substi-

tuting representations (48a,b) into (42a,b) and exploiting property (52a) of functionsU1, U2, see

Lemma 5 next.

Lemma 5. FunctionsU1, U2 defined by lemma 4 are such that

∇
2w(a) :

(

∫

B

∇̄ U2(ξ̄) dV̄ξ̄

)

=
(

∫

B

∇̄ U1(ξ̄)⊗ ξ̄ dV̄ξ̄

)

:∇2w(a) (52a)

∇
3w(a) :·

(

∫

B

∇̄ U3(ξ̄) dV̄ξ̄

)

=
(

∫

B

∇̄ U1(ξ̄)⊗ (ξ̄⊗ ξ̄) dV̄ξ̄

)

:·∇3w(a) (52b)

for any sufficiently regular functionw.

Proof. As functions U1, U2, U3 verify the weak formulation (B.2) withU0 = ξ̄, U0 = (ξ̄⊗ ξ̄)/2

andU0 = (ξ̄⊗ ξ̄⊗ ξ̄)/3, respectively (see Appendix B), the following identities hold:

A( U1a,W ) =

∫

B

k⋆W,a dV̄ξ̄ (a = 1, 2) (53a)

A( U2ab,W ), =
1

2

∫

B

k⋆(ξ̄aW,b + W,aξ̄b) dV̄ξ̄ (a, b = 1, 2) (53b)

A( U3abc,W ), =
1

3

∫

B

k⋆(W,aξ̄bξ̄c + ξ̄aW,bξ̄c + ξ̄aξ̄bW,c) dV̄ξ̄ (a, b, c = 1, 2), (53c)
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with A(·, ·) defined by (B.3). SettingW = U2jk anda = i in (53a),W = U1i and(a, b) = (j, k)

in (53b), subtracting the resulting identities and using the symmetry of bilinear forma(·, ·), one

obtains
∫

B

k⋆
U2jk,i dV̄ξ̄ =

1

2

∫

B

k⋆( U1i,kξ̄j + U1j,kξ̄i) dV̄ξ̄

The desired identity (52a) is then obtained by multiplying the above equation byw,jk(x̄) and invoking

w,jk = w,kj (Schwarz theorem). Identity (52b) is established in a similar manner by combining (53a)

with W = U3 and (53c) withW = U1.

5 TOPOLOGICAL EXPANSION OF COST FUNCTION

Building on the results established thus far, theO(ε4) expansion ofJ(ε), is now formulated. The most

general form of the proposedO(ε4) expansion, valid for a small inclusion of arbitrary shape, is given

first (Sec. 5.1). Then, this result is specialized to the sub-class of centrally-symmetric inclusions

(Sec. 5.2), which includes the important special case of circular inclusions which is amenable to

further analytical treatment (Sec. 5.3).

5.1 Small inclusion of arbitrary shape

Proposition 1. For a penetrable inclusion represented by (26), i.e. of shapeB and characteristic size

ε, embedded in the reference mediumΩ at a chosen locationa in such a way that that (28) holds, the

O(ε4) expansion of any objective functionJ(ε) of format (9) with densitiesϕN(w, ξ) andϕD(w, ξ)

twice differentiable w.r.t. their first argument is

J(ε;a) = J4(ε;a) + o(ε4) (54)

in terms of the fourth-order polynomial approximation

J4(ε;a) = J(0) + T2(a)ε2 + T3(a)ε3 + T4(a)ε4, (55)

with the coefficientsT2(a), T3(a) andT4(a) given by

T2(a) = ∇u(a)·A11 ·∇û(a), (56a)

T3(a) = ∇u(a)·A12 :∇2û(a) + ∇û(a)·A12 :∇2u(a), (56b)

T4(a) =
1

2
(1−β)I2 :∇2[∇u·∇û](a) +

1

2
∇u(a)A13 :·∇3û(a) +

1

2
∇û(a)A13 :·∇3u(a)

+ ∇F (a)·A11 ·∇û(a) + ∇
2u(a) :A22 :∇2û(a)

+
1

2

∫

SN

ϕN,uuW 2 dΓ +
1

2

∫

SD

ϕD,ppQ
2 dΓ. (56c)

In (56a–c), the functionF is defined by (50a), the functionW is given by

W (x) = ∇ξG(x,a)·A11 ·∇u(a) (57)
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andQ = ∇W ·n, the tensorI2 (geometrical inertia of the normalized inclusionB) is given by

I2 =

∫

B

(ξ̄⊗ ξ̄) dV̄ξ̄, (58)

the constant tensorsA11,A12,A13,A22 are given by (51a,b) and

A13 = (1−β)k

∫

B

∇̄ U1⊗ (ξ̄⊗ ξ̄) dV̄ξ̄, (59a)

A22 = (1−β)k

∫

B

∇̄ U2⊗ ξ̄ dV̄ξ̄ (59b)

in terms of solutionsU1, U2 to equations (49a,b).

Proof. The proof is straightforward, and consists in deriving an explicit form for expansion (20). In

particular, the expansion of the first integral of (20) exploits the results of Sec. 4.

(a) First integral of (20). Invoking expansion (43) of∇uε, representation formulae (48a–c) for

V1, V2, V3, and

∇û(a+εξ̄) = ∇û(a) + ε∇2û(a)·ξ̄ +
ε2

2
∇

3û(a) :(ξ̄⊗ ξ̄) + o(ε2)

for the adjoint field, one readily obtains

[∇uε ·∇û](a+εξ̄) = ∇u(a)·
[

I +∇̄ U1(ξ̄)
]

·∇û(a)

+ ε
{

∇(∇u·∇û)(a)·ξ̄ + ∇
2u(a) :∇̄ U2(ξ̄)·∇û(a)

+ ∇u(a)·∇̄ U1(ξ̄)·∇2û(a)·ξ̄
}

+
ε2

2

{

∇
2[∇u·∇û](a) :(ξ̄⊗ ξ̄) + ∇

3u(a) :·∇̄ U3(ξ̄)·∇û(a)

+ 2∇F (a)·
[

I +∇̄ U1(ξ̄)
]

·∇û(a) + 2∇2u(a) :∇̄ U2(ξ̄)·∇2û(a)·ξ̄

+ ∇u(a)·∇̄ U1(ξ̄)·∇3û(a) :(ξ̄⊗ ξ̄)
}

+ o(ε2) (60)

Integrating this expansion overBε, using scaled coordinates, exploiting integral identity (28) and

recalling expressions (51a,b), (58) and (59a,b) of the various constant tensors, one obtains

(1−β)

∫

Bε

k∇uε ·∇û dVξ = ∇u(a)·A11 ·∇û(a)

+ ε
{

∇û(a)·A12 :∇2u(a) + ∇u(a)·A12 :∇2û(a)
}

+
ε2

2

{

(1−β)k∇
2[∇u·∇û](a) :I2 + ∇û(a)·A13 :·∇3u(a) + ∇u(a)·A13 :·∇3û(a)

+ 2∇F (a)·A11 ·∇û(a) + 2∇2u(a) :A22 :∇2û(a)
}

(61)

(b) Second and third integrals of (20).The perturbed fieldvε at any point away from the inclusion is

given by:

vε(x) = (1−β)

∫

Bε

k∇uε(ξ)·∇ξG(x, ξ) dVξ (x∈Ω\Bε). (62)
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AsG(x, ξ) is a smooth function ofξ ∈Bε for anyx 6∈Bε, the leading contribution ofvε(x) asε → 0

results from a derivation formally identical to that of expansion (47), where (i) only the leadingO(ε2)

contribution is retained, (ii) the complementary Green’s functionGC is replaced with the complete

Green’s functionG, and (iii) the constant tensorA11 is introduced. This process leads to

vε(x) = ε2W (x) + o(ε2), qε(x) = ε2
∇Q(x) + o(ε2) (x ∈ S)

i.e. (24), with the functionW given by (57) andQ = ∇W ·n.

Remark 1. The coefficientT2(a) associated with the leadingO(ε2) contribution toJ(ε) corresponds,

as expected, to the previously known topological derivative ofJ , i.e. (22).

Remark 2. Expression (59a) ofA13 exploits identity (52b). Actual computation ofU3, defined

by (49c) is thus not necessary, all the constant tensors featured in (56a-c) being expressed in terms of

U1, U2 only.

5.2 Centrally-symmetric inclusion

WhenB has central symmetry (i.e. is such thatξ̄ ∈ B ⇔ −ξ̄ ∈ B), as many simple inclusion

shapes (e.g. disk, ellipse, rectangle) do, the constant tensorA12 defined by (51b) vanishes, as shown

in Appendix C. Consequently:

Proposition 2. When the penetrable inclusion of Proposition 1 has central symmetry, expansion (54)

holds with coefficientsT2,T4 still given by (56a,c) and

T3(a) = 0, (63)

5.3 Circular inclusion

The special case of acircular inclusionBε (whereB is the unit disk and|B|= π) is now considered.

Of course, as the disk has central symmetry, simplification (63) holds, but this special case permits

further analytical treatment. The constant tensorI2 defined by (58) is easily found to be given by

I2 =
π

4
I (64)

Moreover, integral equations (49a,b) are solvable in closed form (see Appendix B), to obtain

U1 =
1−β

1+β
ξ̄, U2 =

1−β

2(1+β)
ξ̄⊗ ξ̄ +

1−β

4β

( 1

1+β
‖ξ̄‖2 − 1

)

I (ξ̄ ∈B). (65)

Explicit formulae for the constant tensorsA11,A22,A31 featured in (56a,c) then readily follow:

Lemma 6. When the penetrable inclusion of Proposition 1 is circular,with B being the unit disk, the

constant tensorsA11,A22,A31 are given by

A11 = 2kπ
1−β

1+β
I , A22 =

kπ

4

(1−β)2

1+β

(

I4 +
1

2β
I⊗I

)

, A13 =
kπ

4

(1−β)2

1+β
I ⊗I, (66)

whereI4 is the symmetric fourth-order identity tensor, i.e.Iijkℓ = (δikδjℓ + δiℓδjk)/2.
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5.3.1 Expansion of potential inside a circular inclusion. Additionally, U3(ξ̄) (which is featured

in expansion (29) of the potential, but is not needed for setting up cost function expansions) is also

solvable in closed form (see Appendix B), to obtain

U3(ξ̄) =
1−β

3(1+β)

[

ξ̄⊗ ξ̄⊗ ξ̄ +
1

4β
(‖ξ̄‖2 − 1)K(ξ̄)

]

(ξ̄ ∈B), (67)

whereKijk(ξ̄) = δjkξ̄i +δkiξ̄j +δij ξ̄k.

The expansion (29), (48a–c) of the potential inside a circular inclusion takes, by virtue of (65),

(66) and (67), the following more explicit form:

uε(ξ) = u(ξ) +
1−β

1+β

{

εξ̄ ·∇u(a) +
ε2

2

[

ξ̄ ·∇2u(a)·ξ̄ + 4kπ∇u(a)·∇GC(a,a)
]

+
ε3

6

[

(ξ̄⊗ ξ̄⊗ ξ̄) :·∇3u(a) +
24kπ

1+β
ξ̄ ·∇x∇ξGC(a,a)·∇u(a)

]

}

+ o(ε4) (68)

5.3.2 Topological expansion of cost function. On substituting these values into (56a,c) and re-

calling result (63), theO(ε4) expansion ofJ(ε) is hence given a more explicit form:

Proposition 3. When the penetrable inclusion of Proposition 1 is circular,with B being the unit disk,

coefficientsT2,T3,T4 of expansion (54) are given by

T2(a) = 2kπ
1−β

1+β
∇u(a)·∇û(a) (69a)

T3(a) = 0 (69b)

T4(a) = (2π)2k
(1−β

1+β

)2
∇u(a)·∇x∇ξGC(a,a)·∇û(a) +

kπ

2

1−β

1+β
∇

2u(a) :∇2û(a)

+
1

2

∫

SN

ϕN,uuW 2 dΓ +
1

2

∫

SD

ϕD,ppQ
2 dΓ (69c)

Remark 3. For the case of potential energy (10), the adjoint solution is simplyû = −u/2 by virtue

of (10) and (19), and further simplification arise by virtue of (17). As a result, theO(ε4) expansion

of potential energy (for a circular small inclusion) is given through

T2(a) = −kπ
1−β

1+β
‖∇u(a)‖2, (70a)

T4(a) = −
kπ

4

1−β

1+β

(

‖∇2u(a)‖2 + 8π
1−β

1+β
∇u(a)·∇x∇ξGC(a,a)·∇u(a)

)

(70b)

Remark 4. TheO(ε4) expansion of potential energyE(Bε) for the case of an impenetrable inclusion

(i.e. β = 0) is also considered in [15], where the proposed value forT4 is

T4(a) = −
kπ

4

∥

∥∇
2u(a)

∥

∥

2
(71)

and clearly differs from (70b) withβ = 0. That (71) does not yield the correctO(ε4) contribution to

the potential energy can in particular be checked on simple exact solutions forE(Bε) [16] such as

those given in Appendix A. Moreover, the expansion ofuε proposed in [15] reads

uε(ξ) = u(ξ) + εξ̄ ·∇u(a) +
ε2

2
(ξ̄⊗ ξ̄) :∇2u(a) + o(ε2) (72)
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(using the present notations), wherein (i) theO(ε2) contribution differs from that of (68) withβ = 0

and (ii) theO(ε3) contribution is lacking. Both (i) and (ii) then contribute to (71) being inexact.

6 EXTENSION TO SEVERAL SMALL INCLUSIONS

Expressions (56a–c) ofT2(a),T3(a),T4(a) are predicated on the assumption of a single inclusion

characterized by its shapeB, sizeε, locationa, and conductivity contrastβ. However, this result can

be extended to the case ofK > 1 inclusionsB(m)
ε defined according to

B(m)
ε (a(m)) = a(m) + εB(m), β(m) = k⋆(m)/k (1≤m≤K) (73)

wherea(m) and B(m) are the centre and (normalized) shape of them-th inclusion, and the size

parameterε is the same for allK inclusions. To help present this generalization in a compact way, the

following notational convention will be used: a superscript ‘(m)’ attached to any previously defined

symbol (e.g. U
(m)
1 , A

(m)
11 ) will refer to quantities associated with the single-inclusion analysis of

Secs. 4 and 5, withBε replaced byB(m)
ε .

Proposition 4. For a set ofK penetrable inclusions of form (73) embedded in the reference mediumΩ

at prescribed locationsa(1), . . . ,a(K), letJ(ε;a(1), . . . ,a(K)) be defined by (12), withΩε ≡Ω\
(

B̄
(1)
ε ∪

. . .∪ B̄
(K)
ε

)

and vε ≡ vε(ξ;a(1), . . . ,a(K)) denote the field perturbation induced by theK objects.

DensitiesϕN(u, ξ), ϕD(p, ξ) are assumed to be twice differentiable w.r.t. their first argument. The

O(ε4) expansion ofJ(ε) is

J(ε;a(1), . . . ,a(K)) = J(0) +

K
∑

m=1

T
(m)
2 (a(m))ε2 + T

(m)
3 (a(m))ε3

+ T̂
(m)
4 (a(1), . . . ,a(K))ε4 + o(ε4) (74)

with T
(m)
2 , T

(m)
3 given by (56a,b) with shapeB = B(m) and contrastβ = β(m), andT̂ (m)

4 given by

T̂
(m)
4 (a(1), . . . ,a(K)) = T

(m)
4 (a(m)) +

∑

n 6=m

∇F (n)(a(m))·Am
11 ·∇û(a(m))

+
∑

n 6=m

{1

2

∫

SN

ϕN,uu W (n)W (m) dΓ +
1

2

∫

SD

ϕD,pp Q(n)Q(m) dΓ
}

(75)

whereF (n) andW (n) are defined by (50a) and (57) witha = a(n), B = B(n) andβ = β(n).

Proof. TheO(ε4) expansion ofJ(ε) is sought on the basis of

J(ε) = J(0) +
K

∑

m=1

(1−β(m))

∫

B
(m)
ε

m∇uε ·∇û dV

+
1

2

∫

SD

ϕD,pp (qε)
2 dΓ +

1

2

∫

SN

ϕN,uu (vε)
2 dΓ + o(|vε|

2
L2(SN) , |qε|

2
L2(SD)). (76)

(a) First integral of (76).To evaluate the first integral of (76), an expansion ofuε in each inclusion,

of the form

uε(ξ) = u(ξ) + εV̂
(m)
1 (ξ̄) + ε2V̂

(m)
2 (ξ̄) + ε3V̂

(m)
3 (ξ̄) + o(ε3) (ξ ∈B(m)

ε , ξ̄ ∈B
(m)) (77)
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is again postulated. It is expected that(V̂
(m)
1 , V̂

(m)
2 , V̂

(m)
3 ) 6= (V

(m)
1 , V

(m)
2 , V

(m)
3 ) because of cou-

pling effects between inclusions. The governing integral equation forvε is (31) with all integrals over

Γε changed to sums of integrals over theΓ
(m)
ε , i.e.

uε(x) − (1−β(m))k

∫

B
(m)
ε

∇uε(ξ)·∇ξG(x, ξ) dVξ

−
∑

n 6=m

(1−β(n))k

∫

B
(n)
ε

∇uε(ξ)·∇ξG(x, ξ) dVξ = u(x) (x∈B(m)
ε , 1≤m≤K). (78)

The(V̂
(m)
1 , V̂

(m)
2 , V̂

(m)
3 ) are to be found by inserting (77) into the first integral of (78) and expanding

the resulting equations in powers ofε. A comparison with (31) indicates that the first line in (78)

constitutes the contribution to the governing linear operator arising due to inclusionB(m)
ε in isolation.

The expansion inε of that contribution therefore coincides with that established in section 4 for the

single-inclusion case. Besides, the sum of integrals in thesecond line of (78), which synthesizes the

influence of scatterersB(n)
ε (n 6= m) to vε on B

(m)
ε , can readily be shown by means of a calculation

similar to that leading to (47) to have the expansion

∑

n 6=m

(1−β(n))k

∫

B
(n)
ε

∇uε(ξ)·∇ξG(x, ξ) dVξ

=
∑

n 6=m

{

ε2F (n)(a(m)) + ε3
(

∇F (n)(a(m)) + G(n)(a(m))
)

}

+ o(ε3) (x∈B(m)
ε ) (79)

where the scalar functionsF (n)(x), G(n)(x) are defined for anyx 6= a(n) by

F (n)(x) = ∇u(a(n))·A
(n)
11 ·∇GC(x,a(n)) (80a)

G(n)(x) = ∇u(a(n))·A
(n)
12 :∇2GC(x,a(n)) + ∇GC(x,a(n))·A

(n)
12 :∇2u(a(n)), (80b)

Since contributions (79) are of orderO(ε2), theO(ε) contributions to equation (78) are not affected

by the scatterersB(n)
ε (n 6= m), and one therefore has

V̂
(n)
1 (ξ̄) = V

(n)
1 (ξ̄) (ξ̄ ∈B

(n)) (81)

Moreover, the form assumed by the supplementary contributions (79) is such that results of section 3.3

still apply provided every occurrence ofF (a) andG(a) is replaced bŷF (m)(a(m)) andĜ(m)(a(m)),

respectively, where

F̂ (m)(a(m)) = F (m)(a(m)) +
∑

n 6=m

F (n)(a(m)),

Ĝ(m)(a(m)) = G(m)(a(m)) +
∑

n 6=m

G(n)(a(m)).
(82)

The supplementary terms (contributions ofB
(n)
ε , n 6= m) are the only manifestations of interac-

tions between inclusions arising in this analysis. The auxiliary unknownsV̂ (m)
2 , V̂

(m)
3 are then given
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by (48b,c) with replacements (82), i.e. by

V̂
(m)
2 (ξ̄) = V

(m)
2 (ξ̄) +

∑

n 6=m

F (n)(a(m)), (83a)

V̂
(m)
3 (ξ̄) = V

(m)
3 (ξ̄) + 2

∑

n 6=m

[

ξ̄ + U
(n)
1 (ξ̄)

]

·∇F (n)(a(m)) + 2G(n)(a(m)) (83b)

(b) Second and third integrals of (76).On noting that the integral representation (62) is a sum of

integrals over each inclusion and revisiting the analysis of section 5, the leadingO(ε2) contribution

to vε is simply the corresponding sum of contributions (24), i.e.:

vε(ξ) = ε2
K

∑

m=1

W (m)(ξ) + o(ε2) , qε(ξ) = ε2
K

∑

m=1

Q(m)(ξ) + o(ε2) (ξ ∈S) (84)

whereW (m) is defined by (57). The leading contribution of the last two integrals of (76), of order

O(ε4), then stems directly from estimates (84).

(c) Proof. Proposition 4 then follows from collecting results (76), (81), (82), (83a,b) and (84) and

revisiting the analysis of Secs. 4 and 5.

7 DISCUSSION

7.1 Computational issues

The developments of sections 3 to 6 are based on the Green’s functionG defined by (30), and lead to

almost explicit formulae for theO(ε4) expansion ofJ(ε) (their only non-explicit components being

the auxiliary solutionsU1, U2, which must be computed numerically except for simple normalized

inclusionB shape such as the circular shape discussed in section 5.3).

In practice, this explicit character is retained only for geometriesΩ and boundary conditions

settingsSN, SD such that the corresponding Green’s function is known analytically. Such cases are

limited to geometrically simple configurations. For instance, for the half-planeΩ = {ξ | ξ2 ≤ 0}

bounded byS = {ξ | ξ2 = 0}, it is well-known that

GC(x, ξ) = ∓
1

2π
Logr̃, with r̃ = ‖ξ − x̃‖ , x̃ = (x1,−x2) (85)

where the ‘-’ and ‘+’ sign correspond to the casesSN = S, SD = ∅ (Neumann) andSD = S, SN =

∅ (Dirichlet). Another configuration with a known (and relatively simple) Green’s function is the

circular disk, see Eq. (A.1).

For configurations where the Green’s function is not available, the free and adjoint fields, defined
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by (6) and (19), may be computed by solving the boundary integral equations [21, 22]

[

L(u, p)
]

(x) =
[

F(uD, pD)
]

(x) (x∈S) (86)
[

L(û, p̂)
]

(x) =
[

F(−ϕD,p, ϕN,u)
]

(x) (x∈S) (87)

with the integral operatorL(f, g) and right-hand side functionalF(fD, gD) defined by

[

K(f, g)
]

(x) =
1

2
f(x) +

∫

SN

H(x, ξ)f(ξ) dΓξ −

∫

SD

G(x, ξ)g(ξ) dΓξ (x∈S), (88a)

[

F(fD, gD)
]

(x) = −

∫

SD

H(x, ξ)fD(ξ) dΓξ +

∫

SN

G(x, ξ)gD(ξ) dΓξ (x∈S), (88b)

and subsequently invoking integral representation formulae. Moreover, the pair(W,Q) associated

with the leadingO(ε2) contribution of(vε, qε) on S, defined by (57), and the complementary kernel

pairGC(z, ξ), defined by (37) and featured inT4, are respectively governed by integral equations

[

L(W,Q)
]

(x) = −∇u(a)·A11 ·∇G(x,a) (x∈S) (89)
[

L
(

GC(z, ·), HC(z, ·)
) ]

(x) = −
[

F
(

G(z, ·), H(z, ·)
) ]

(x) (x∈S,z ∈Ω) (90)

whereHC(z, ξ) = k∇ξGC(z, ξ)·n(ξ).

Alternatively, finite element methods (FEMs) may also be used for setting up expansions of the

form (54). CoefficientT2 is similar to an energy density, and as such may be computed using the FEM

in its standard form. On the other hand, coefficientT4 entails computing second-order gradients of

the free and adjoint fields, which normally requires specially-designed procedures and raises accuracy

issues (while integral representations of second-order gradients do not).

7.2 Direct vs. adjoint approaches for topological sensitivity

Topological sensitivity has formal similarities with the more traditional areas of parameter sensitiv-

ity [1] or shape sensitivity [2]. Like first-order parameteror shape sensitivity formulae, the topolog-

ical derivativeT2 associated with the leadingO(ε2) contribution toJ(ε) is expressed as a bilinear

combination of the free and adjoint fields. Moreover, setting up theO(ε4) expansion ofJ(ε), and

particularly the highest-order coefficientT4, requires the ‘direct topological field sensitivities’W,Q,

in addition to the free and adjoint fields. This is reminiscent of the fact that second-order parameter or

shape sensitivity fomulae can be cast as bilinear combinations of the free and adjoint fields and their

first-order sensitivities. One nevertheless has to keep in mind that topological and shape sensitivities

are related but distinct concepts, as emphasized in [23].

Here, it would have been possible to establish theO(ε4) expansion ofJ(ε) on the basis of (15)

rather than (20), without recourse to the adjoint solution (19). This alternative ‘direct’ approach

requiresO(ε4) expansions ofvε on SN andqε on SD, i.e. the actual computation of higher-order

direct topological field sensitivitiesW2,W3 in addition toW = W1 defined in (24). The latter can
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be obtained by expanding integral representation (34) to orderO(ε4). General explicit formulae for

such high-order expansions of the field quantities are given, to arbitrary order and for various physical

contexts, by Ammari and Kang [13] in terms of the Green’s function (30) and its derivatives.

8 NUMERICAL EXAMPLES

Numerical experiments on higher-order topological sensitivity have been performed on the following

configuration (Fig. 1), previously used in [15]. The reference domainΩ is defined byΩ =]0, 1[×]0, 1[.

The boundary conditions are as follows: a potentialuD = 0 is applied onS(1)
D andS

(2)
D , and a flux

pD
1 = 1 on S

(1)
N andpD

2 = 2 on S
(2)
N . The remaining partS \ (S

(1)
D ∪S

(2)
D ∪S

(1)
N ∪S

(2)
N ) of the bound-

ary is insulated (pD = 0). Numerical experiments on theO(ε4) expansion of potential energy (9),

(10), including comparisons with results using the defective O(ε4) term of [15], are first reported in

Sec. 8.1. Then, the usefulness of theO(ε4) expansion of least-squares output misfit function (9), (11)

for computationally-fast identification of buried inclusions is demonstrated in Sec. 8.2

Solutionsu and(u⋆, u⋆), corresponding to reference domain and perturbed configurations with

one penetrable inclusion of finite size, are computed using astandard boundary element method

(BEM), with piecewise-linear and piecewise-constant interpolations, respectively, for potentials and

fluxes on boundaries and interfaces.As the Green’s function for the domain is not known in closed

form, the complementary partGC of the Green’s function is numerically evaluated by solvinga BEM-

discretized version of integral equation (90) withz taken in turn as each sampling pointa ∈ G. As

the integral operatorL in (90) does not depend onz, this only entails computing a right-hand side

and performing a backsubstitution for eacha ∈ G, and hence defines a computationally reasonable

task even for a dense search gridG.

SD

(1)

SD
(2)

p  =2D

SN

(1)

p  =1D

SN

(2)

1a

2a

3a

0.2

0.2

0.2

Ω

u  =0D

Du  =0

0.2

Figure 1: Numerical examples: geometry and boundary conditions for reference configuration.
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 Exact                                                   
 O(ε2)
 O(ε4)

Figure 2: Small-inclusion expansion of potential energy: circular hole (β = 0) located ata1 =

(1/2, 1/2).

8.1 Small-inclusion expansion of potential energy

In this section, the cost function is the potential energyE(B⋆), which for this example is given by

E(B⋆) =
1

2

∫

S
(1)
N

u⋆ dΓ +

∫

S
(2)
N

u⋆ dΓ

First, the case of an impenetrable circular inclusion (β = 0) located ata1 = (1/2, 1/2) is considered.

The correct value ofE(Bε) for 0 < ε≤ 0.16 is compared on Fig. 2 to theO(ε2) andO(ε4) expansions

obtained using (55) and (69a–c) withβ = 0. TheO(ε4) expansion is seen to approximateE(Bε) very

0 0.05 0.1
ε

-0.23

-0.225

-0.22

-0.215

-0.21

E
(Ω

ε
)

 Exact                                                   
 O(ε4

) [Rocha de Faria et al.]

 O(ε4
) [Present]

Figure 3: Small-inclusion expansion of potential energy: circular hole (β = 0) located ata2 =

(0.15, 0.2).
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Figure 4: Small-inclusion expansion of potential energy: distribution of‖∇u‖2 overΩ.

well for the considered range of inclusion sizes, while as expected theO(ε2) expansion performs

well over a narrower inclusion size range (note that for the largest valueε = 0.16 the inclusion is

relatively large as its diameter is nearly one-third of the overall domain linear size). This example

(with the same inclusion location) was also considered in [15], where theO(ε4) expansion com-

puted on the basis of (71), which is missing a term proportional to∇u(a)·∇x∇ξGC(a,a)·∇u(a),

was found to perform similarly well. In contrast, a comparison of the results obtained for the in-

clusion locationa2 = (0.15, 0.2) using either the present expression (70b) ofT4 or (71) reveals a

noticeably larger error when using the latter (see Fig. 3).The higher discrepancy in the latter case

0 0.04 0.08 0.12 0.16 0.2
ε

-0.222

-0.22

-0.218

-0.216

-0.214

E
(Ω

ε
)

 Exact                                                   
 O(ε2)
 O(ε4)

Figure 5: Small-inclusion expansion of potential energy: circular penetrable inclusion (β = 0.6)

located ata3 = (0.75, 0.65).
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Figure 6: Small-inclusion expansion of potential energy: circular penetrable inclusion (β = 5) lo-

cated ata2 = (0.15, 0.2).

stems from the combined effect on the value taken by∇u(a) ·∇x∇ξGC(a,a) ·∇u(a) of (i) the

complementary Green’s function and its gradients taking larger values closer to the boundary (here

‖∇x∇ξGC(a1,a1)‖ ≈ .543 but ‖∇x∇ξGC(a2,a2)‖ ≈ 3.95) and (ii) ‖∇u(a1)‖ happening to be

significantly smaller than‖∇u(a2)‖ (see Fig. 4).

Next, the case of a penetrable circular inclusion (β = 0.6) located ata3 = (0.75, 0.65) is consid-

ered. The correct value ofE(Bε) for 0 < ε ≤ 0.16 is compared on Fig. 5 to the presentO(ε2) and

O(ε4) expansions based on a small circular inclusion withβ = 0.6. Finally, the same comparison is

performed on Fig. 6 for the case of a penetrable circular inclusion (β = 5) located ata2 = (0.15, 0.2),

for inclusion sizes such that0 < ε < 0.12. In both cases, the presentO(ε4) expansion is seen to

provide a very good approximation ofE(Bε). Note that the largest sizeε = 0.12 considered in the

latter case corresponds to a relatively large inclusion which is very close to the external boundary.

8.2 Computationally-fast identification of hidden inclusion

Now, the inverse problem consisting of identifying a buriedinclusion (with geometrical supportBtrue

and conductivity contrastβtrue) from measurements on the boundary is considered, with the same ex-

ample geometry and boundary conditions as before. It is in addition assumed that the overdetermined

boundary data used for inclusion identification consists ofa known valueuobs of potentialu over the

complete Neumann surfaceSN. The output least-squares misfit function is thus

JLS(B⋆) =
1

2

∫

SN

∣

∣u⋆(ξ)−uobs(ξ)
∣

∣

2
dΓ,
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i.e. corresponds toϕN defined by (11) andϕD = 0. Of course, the datauobs could be used for

inclusion identification purposes in many other ways. The purpose of this example is to demonstrate

the usefulness of aO(ε4) expansion ofJLS for fast, non-iterative identification of a hidden inclusion.

8.2.1 Approximate global search procedure. Define a fine search gridG, i.e. a (dense) discrete

set of sampling pointsa spanning (part of) the interior ofΩ. To minimize w.r.t. ε an expansion of

the form (54) ofJLS at a given sampling point is a simple and computationally very light task that

can be easily performed for alla∈G, thereby defining an approximate global search procedure over

the spatial region thus sampled. The best estimate of the unknown inclusionBtrue yielded by this

procedure is defined by the locationa = xest and sizeε = Rest achieving the lowest value ofJ4(ε;a)

overG, i.e. given by

xest = arg min
a∈G

Jmin(a), Rest = R(xest), (91)

with functionsJmin(a) andR(a) defined through a partial minimization ofJ4(ε;a) w.r.t. ε, i.e.:

Jmin(a) = min
ε

J4(ε;a), R(a) = arg min
ε

J4(ε;a). (92)

The estimated locationxest and sizeRest can then be used as either an stand-alone estimate of the

sought inclusion or as an initial guess for a subsequent refined inversion algorithm. The constitutive

characteristics of the inclusion are assumed (i.e. not treated as unknowns in the search). The influence

of such assumption on the accuracy of estimatesxest, Rest is examined in the last part of this section.

The definition (92) of functionJmin(a) is valid only at sampling pointsa whereT2(a) ≤ 0 and

T4(a) > 0 (assuming the trial inclusion to be centrally-symmetric),asJ4(ε;a) (i) has no lower bound

if T4(a) < 0, or (ii) is minimum atε = 0 if T2(a)≥ 0 andT4(a) > 0. These conditions were found to

be met at alla∈G for all of the following examples.

8.2.2 Numerical results for inclusion identification. The above-described approximate global

search procedure is here applied to the identification, fromsimulated data, of an inclusion centered

at xtrue = (0.41, 0.595). This inclusion location (remote from the boundary, and in particular from

the region where fluxes are applied) was chosen so as to test the proposed approximate global search

procedure on a case where the boundary data is rather insensitive to details of the inclusion shape.

Three inclusion shapes are considered: a circular inclusion with radiusRtrue = 0.06 (inclusion 1),

an elliptical inclusion with semiaxes(Atrue, Btrue) = (0.06, 0.015) and principal axes rotated byπ/6

(inclusion 2) and2π/3 (inclusion 3). For each inclusion, three possibilities of conductivity contrast

βtrue
a = 0, βtrue

b = 0.6, βtrue
c = 3.5 are considered, and synthetic datauobs is computed for each

case (using again a BEM model with 100 elements onS and 100 onΓ⋆). This defines overall nine

configurations of unknown inclusions, labelled 1a to 3c. A search gridG of 51×51 regularly spaced
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sampling points covering the square region0.1 ≤ x1, x2 ≤ 0.9 is defined (the grid spacing is hence

∆x1 = ∆x2 = 0.016).

Identification using noise-free synthetic data.A first set of results was obtained by assuming knowl-

edge of the correct valueβtrue of conductivity contrast of the inclusion. Results obtained in terms of

xest andRest for all nine configurations 1a to 3c for noise-free syntheticdata are given in Table 1.

For comparison purposes, the ‘true’ radiusRtrue is defined as the radius of the disk having the same

area asBtrue, i.e. Rtrue = 0.06 for inclusion 1 andRtrue = 0.03 for inclusions 2,3. Additionally, the

functionJmin(a), shown together with the outline ofBtrue on Figs. 7, 8, 9, is seen in all cases to attain

values close to its global minimum only in the vicinity of theactual inclusion.

Identification using noisy synthetic data.The effect of imperfect data is now tested, for inclusion 3,

by defining a perturbed versionuobs
σ of uobs according to

uobs
σ = uobs+ σχ‖u−uobs‖L2(SN)

whereχ is a uniform random variable with zero mean and unit standarddeviation, andσ is here set

to 0.2. Results obtained in terms ofxest andRest and of the functionJmin(a), respectively shown

in Table 2 and Fig. 10, are very similar to the corresponding ones for noise-free data. The proposed

approximate global search method thus appears to be only moderately sensitive to the adverse effect

of measurement noise.

Influence of the conductivity contrast.Finally, the approximate global search procedure based on

J4(ε;a) has been performed on configurations 1a, 1b and 1c for values of β spanning the interval

inclusion 1 βtrue
a = 0 βtrue

b = 0.6 βtrue
c = 5

xest (0.404, 0.596) (0.404, 0.596) (0.420, 0.596)

Rest 6.15e-02 6.06e-02 5.89e-02

inclusion 2 βtrue
a = 0 βtrue

b = 0.6 βtrue
c = 5

xest (0.404, 0.580) (0.404, 0.596) (0.420, 0.596)

Rest 2.42e-02 2.82e-02 3.63e-02

inclusion 3 βtrue
a = 0 βtrue

b = 0.6 βtrue
c = 5

xest (0.404, 0.596) (0.420, 0.596) (0.404, 0.596)

Rest 4.80e-02 3.22e-02 2.61e-02

Table 1: Identification of buried circular or elliptical inclusion:estimated locationxest and sizeRest

(noise-free synthetic data); reference values areRtrue = 0.06 (inclusion 1),Rtrue = 0.03 (inclusions

2,3) andxtrue = (0.41, 0.595).
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inclusion 3 βtrue
a = 0 βtrue

b = 0.6 βtrue
c = 5

xest (0.404, 0.596) (0.404, 0.612) (0.404, 0.596)

Rest 4.78e-02 3.28e-02 2.62e-02

Table 2: Identification of inclusion 3 (elliptical): estimated locationxestand sizeRest, (noisy synthetic

data, with 20% noise onuobs−u); reference values areRtrue = 0.03 andxtrue = (0.41, 0.595).

0 ≤ β ≤ 5 to examine the effect of incorrect assumed values ofβ on the method. The estimated

location xest as given in Table 1 was obtained for allβ in the following intervals:0 ≤ β ≤ 0.5

(inclusion 1a),0 ≤ β ≤ 0.7 (inclusion 1b) and1.5 ≤ β ≤ 5 (inclusion 1c); in addition,β = 0.8, 0.9

yieldedxest = (0.420, 0.596) for inclusion 1b. In other words, the inclusion is acceptably located

for large ranges of trial values ofβ containing the correct valueβtrue. The estimated sizeRest was

found to depend on the assumed value ofβ. Indeed, expressions (56a–c) ofT2,T4 suggest that the

expansion is primarily sensitive to the value of combination A11ε
2, whereA11 is the polarization

tensor (51a); note in particular thatW andQ depend linearly onA11, see (57). For the case of a

circular trial inclusion, expansionJ4(ε;a) can indeed be put in the form

J4(ε;a) = aC(ε, β) + bC2(ε, β) + cC(ε, β)ε2, C(ε, β) =
1−β

1+β
ε2 (93)
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Figure 7: Identification of inclusion 1 (circular): distribution ofJmin over search gridG, and outline

of true inclusion.
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Figure 8: Identification of inclusion 2 (elliptical): distribution of Jmin over search gridG, and outline

of true inclusion.
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Figure 9: Identification of inclusion 3 (elliptical): distribution of Jmin over search gridG, and outline

of true inclusion.
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Figure 10: Identification of inclusion 3 (elliptical): distribution of Jmin over search gridG, and out-

line of true inclusion (noisy data, with 20% noise onuobs−u).

whereC(ε, β)I = A11ε
2, see (66). Figure 11 shows thatC(Rest(β), β) is, for this example, largely

insensitive to the assumed value ofβ. This is consistent with other asymptotic approaches to inclusion

identification which show that the main identifiable featureof small buried inclusions is their polar-

ization tensor [24]. Moreover, an elementary calculation allows to show (again assuming a circular

trial inclusion) thatJmin(a) evaluated at a fixed sampling pointa is either increasing or decreasing

with β, i.e. is minimum w.r.t.β for eitherβ = 0 (impenetrable inclusion) orβ =+∞.

Extending the approximate global search procedure proposed in this section to the identification

of two (or more) inclusions is not straightforward, as one would have to either (i) consider allpairsof

sampling points(a′,a′′)∈G×G (entailing a computing time proportional to thesquareof the search

grid size), or (ii) define an alternating iterative method where one inclusion is sought at a time.

9 CONCLUSIONS

In this article, extending previous work on topological sensitivity, a methodology for expanding to

orderO(ε4) a generic cost function under the nucleation of a small inclusion of characteristic sizeε

has been developed, in the context of 2-D media characterized by a scalar conductivity coefficient.

General formulae have been provided, where an adjoint solution is used to simplify the procedure

through avoiding evaluation of higher-order topological sensitivities of field variables. Our approach

28



0 1 2 3 4 5

β
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

C

inclusion 1 (βtrue
 = 0)

inclusion 1 (βtrue
 = 0.6)

inclusion 1 (βtrue
 = 5)

Figure 11: Identification of hidden circular inclusion:C
(

Rest(β), β
)

againstβ for inclusions 1a, 1b

and 1c (noise-free data).

was in particular shown to lead to useful computational strategies for computationally fast inclusion

identification problems, in the form of a non-iterative fastapproximate global search algorithm. The

methodology used here is generic, and is therefore expectedto yield similar expansions for other

cases, e.g. penetrable elastic inclusions under static or dynamic conditions, which will be addressed

in forthcoming investigations.

Appendix A EXACT SOLUTIONS

Let Ω = {(r, θ)
∣

∣ r < b} (where(r, θ) are polar coordinates) denote the disk of radiusb centered at the

origin.

Green’s functions for Dirichlet and Neumann problems. Define Green’s functionsG(x, ξ) by

G(x, ξ) = G(x, ξ) + GC(x, ξ), GC(x, ξ) = ∓
1

2π
Log

( 1

R

b

‖x‖

)

, (A.1)

where the ‘-’ and ‘+’ sign correspond to the casesSN = S, SD = ∅ (G = GN, Neumann) andSD =

S, SN = ∅ (G = GD, Dirichlet), and with the definitions

r =
∥

∥ ξ − x
∥

∥, R =
∥

∥ ξ − (b2/‖x‖2)x
∥

∥

The respective boundary conditions satisfied onS = {(r, θ)
∣

∣ r = b} by GD andGN are:

GD(x, ξ) = 0, HN(x, ξ) = −
1

2πb
(ξ ∈S) (A.2)

On evaluating analytically∇x∇ξGC and settingx = ξ = a for an arbitrary sampling point inΩ, one

finds

∇x∇ξG
D
C(a,a) = −∇x∇ξG

N
C(a,a) = −

1

2π

b2

(b2−‖a‖2)2
I (A.3)
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Potential and its small-inclusion expansion. Consider a circular inclusionBε located at the disk

center, i.e. choosea = 0 and setBε = {(r, θ)
∣

∣ r < ε}. The solutionsu(a,b,c,d)
ε of the Laplace

transmission problem defined by (2), (4) withB⋆ = Bε and respective boundary conditions

u(a)
ε = u0 cos θ (onS), k∇u(c)

ε ·n = (ku0/b) cos θ (onS),

u(b)
ε = u0 cos 2θ (onS), k∇u(d)

ε ·n = 2(ku0/b) cos 2θ (onS)
(A.4)

are respectively given by

u(a)
ε = u0

(1 + η)

1 + ηε2/b2

r

b
cos θ, u(c)

ε = u0
(1 + η)

1 − ηε2/b2

r

b
cos θ,

u(b)
ε = u0

(1 + η)

1 + ηε4/b4

r2

b2
cos 2θ, u(d)

ε = u0
(1 + η)

1 − ηε4/b4

r2

b2
cos 2θ

(A.5)

inside the inclusion, and by

u(a)
ε = u0

1 + ηε2/r2

1 + ηε2/b2

r

b
cos θ, u(c)

ε = u0
1 + ηε2/r2

1 − ηε2/b2

r

b
cos θ,

u(b)
ε = u0

1 + ηε4/r4

1 + ηε4/b4

r2

b2
cos 2θ, u(d)

ε = u0
1 + ηε4/r4

1 − ηε4/b4

r2

b2
cos 2θ

(A.6)

in the surrounding medium, having put

η =
1−β

1 + β

The respective reference solutionsu when there is no inclusion (defined up to an arbitrary additive

constant for cases (c) and (d)) are characterized by

u(a,c)(r, θ) =
u0r

b
cos θ,

∇u(a,c)(a) =
u0

b
ex,

∇
2u(a,c)(a) = 0,

u(b,d)(r, θ) =
u0r

2

b2
cos 2θ,

∇u(b,d)(a) = 0,

∇
2u(b,d)(a) =

2u0

b2
(ex⊗ex − ey ⊗ey),

(A.7)

whereex,ey are unit vectors such thatξ = r(cos θex + sin θey).

Potential energy and its small-inclusion expansion. The potential energies for the respective

problems are, together with theirO(ε4) expansions, easily obtained from solutions (A.6) as

E(a)(Bε) =
kπu2

0

2

1−ηε2/b2

1+ηε2/b2
=

kπu2
0

2

(

1 − 2η
ε2

b2
+ 2η2 ε4

b4

)

+ o(ε4) (A.8a)

E(b)(Bε) = kπu2
0

1−ηε4/b4

1+ηε4/b4
= kπu2

0

(

1 − 2η
ε4

b4

)

+ o(ε4) (A.8b)

E(c)(Bε) = −
kπu2

0

2

1+ηε2/b2

1−ηε2/b2
= −

kπu2
0

2

(

1 + 2η
ε2

b2
+ 2η2 ε4

b4

)

+ o(ε4) (A.8c)

E(d)(Bε) = −kπu2
0

1+ηε4/b4

1−ηε4/b4
= −kπu2

0

(

1 + 2η
ε4

b4

)

+ o(ε4) (A.8d)

An evaluation of expressions (70a,b) of coefficientsT2,T4 using (A.3) fora = 0 together with for-

mulae (A.7) yieldsO(ε4) expansions ofE(a,b,c,d)(Bε) that are identical with (A.8a–d). These special
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cases thus corroborate Proposition 3. Likewise, it is easy to check that the alternative formula (71)

from [15] does not yield the correct value of theO(ε4) contribution to the expansion ofE(Bε) for

cases (a,c) where the omitted contribution of∇u(a)·∇x∇ξGC(a,a)·∇u(a) is nonzero.

Appendix B DETERMINATION OF U1, U2 AND ASSOCIATED CONSTANT TENSORS

The vector and tensor functionsU1, U2, U3 introduced in Sec. 4.3 can be interpreted as solutions to

transmission problems in infinite media containing a normalized penetrable inclusion, of the form











k∆U = 0 (in R
2 \B),

k⋆∆(U −U0) = 0 (in B),























k(∇U)m·n = k⋆
∇(U −U0)i ·n (on∂B),

Um = Ui (on∂B),

U = O(‖ξ̄‖−1) (‖ξ̄‖ → ∞),

(B.1)

whereU0, analogous to a prescribed initial strain in elasticity, isgiven onB. To establish this

interpretation, one first establishes the weak formulation

A(U,W ) =

∫

B

βk∇U0 ·∇W dV, (B.2)

with the bilinear formA(·, ·) defined for trial functionsW continuous across∂B by

A(U,W ) =

∫

R2\B
k∇U ·∇W dV +

∫

B

βk∇Ũ ·∇W dV (B.3)

and withβ = k⋆/k, by means of the following steps: (i) multiply the field equations in (B.1) by a trial

functionW (assumed to be continuous across∂B and to suitably decay at infinity), (ii) integrate the

resulting identities by parts, (iii) add them and (iv) invoke the transmission conditions in (B.1).

Next, settingW = G(x̄, ·) with x̄∈B, one finds the identity

∫

R2\B
k∇U ·∇G(x̄, ·) dV +

∫

B

k∇Ũ ·∇G(x̄, ·) dV = U(x̄) (x̄∈B)

by (i) integrating by parts via the divergence theorem, (ii)exploiting the field equationk∆G(x̄, ·)+

δ(· − x̄) verified by the full-space Green’s function and (iii) invoking the continuity betweenU and

Ũ on ∂B. On settingW = G(x̄, ·) and substituting the above identity into (B.2), one therefore finds

thatŨ is governed by the integral equation

U(x̄) − (1−β)k

∫

B

∇Ũ(ξ̄)·∇G(x̄, ξ̄) dV̄ξ̄ = β

∫

B

∇U0(ξ̄)·∇G(x̄, ξ̄) dV̄ξ̄ (x̄∈B). (B.4)

The governing integral equations (49a–c) forU1, U2, U3 are then seen to be of the form (B.4) with

U0(ξ̄) =
1−β

β
ξ̄, U0(ξ̄) =

1−β

2β
ξ̄⊗ ξ̄, U0(ξ̄) =

1−β

3β
ξ̄⊗ ξ̄⊗ ξ̄, (B.5)

respectively (using tensor notation).
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Determination of U1, U2, U3 for circular inclusions. One approach for determining auxiliary

solutions U1, U2, U3 consists in using separation of variables in polar coordinates directly in the

set (B.1) of field equations and transmission conditions, with U0 given by (B.5). Expressions (65a,b)

and (67) are then found after some straightforward manipulation.

Alternatively, elementary analytical integration manipulations yield formulae

[

L̄ξ̄
]

(x̄) =
1−β

2
x̄, (B.6a)

[

L̄(ξ̄⊗ ξ̄)
]

(x̄) =
1−β

2

[

x̄⊗ x̄ +
1

2
(‖x̄‖ − 2)I

]

, (B.6b)

[

L̄(ξ̄⊗ ξ̄⊗ ξ̄)
]

(x̄) =
1−β

2

[

x̄⊗ x̄⊗ x̄ +
1

4
(‖x̄‖ − 1)K(x̄)

]

(B.6c)

(with K(x̄) defined as in (67)) which then allow direct verification of thefact that expressions (65a,b)

and (67) satisfy equations (49a-c).

Appendix C THE CASE OF A CENTRALLY-SYMMETRIC INCLUSION

WhenB has central symmetry (i.e. if̄ξ ∈B ⇔ −ξ̄ ∈B), the constant tensorA12 defined by (51b)

vanishes. Denoting byσ : ξ̄ → σξ̄ := −ξ̄ the central-symmetry linear mapping, letB = B̄′ ∪ B̄′′,

with B′′ = σB′ andB′ ∩ B′′ = ∅. The mappingσ is in particular such that

dV (σξ̄) = dV (ξ̄) (C.1)

Lemma 7. Solution U2 is symmetric:U2(σξ̄) = U2(ξ̄).

Remark 5. By virtue of Lemma 7, one has̄∇ U2(σξ̄) = −∇̄ U2(ξ̄) and

A12 =

∫

B

∇̄ U2(ξ̄) dV̄ξ̄ =

∫

B′

[∇̄ U2(ξ̄) + ∇̄ U2(σξ̄)] dV̄ξ̄ = 0

Proof. Let Ueven
2 and Uodd

2 , the even and odd parts ofU2, be defined by:

U
even
2 (ξ̄) =

1

2

(

U2(ξ̄) + U2(σξ̄)
)

, U
odd
2 (ξ̄) =

1

2

(

U2(ξ̄) − U2(σξ̄)
)

(C.2)

These definitions imply that

U
even
2 (σξ̄) = U

even
2 (ξ̄) , U

odd
2 (σξ̄) = −U

odd
2 (ξ̄) (C.3)

∇̄ U
even
2 (σξ̄) = −∇̄ U

even
2 (ξ̄) , ∇̄ U

odd
2 (σξ̄) = ∇̄ U

odd
2 (ξ̄) (C.4)

Now, on inserting the decompositionU2 = Ueven
2 + Uodd

2 in integral equation (49b), writing the

resulting equations for a pair of symmetrical collocation points x̄ and σx̄ (x̄ ∈ B′), using prop-

erty (C.4), and noting that the distance function and the fundamental solutionG(x̄, ξ̄) defined by (38)

satisfy

‖σx̄ − ξ̄‖ = ‖x̄ − σξ̄‖ , ∇̄G(σx̄, ξ̄) = −∇̄G(x̄, σξ̄)
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the following pair of integral equations is arrived at:

[

(I −L̄even
B′ ) U

even
2

]

(x̄) −
[

L̄odd
B′ U

odd
2

]

(x̄) =
1

2

[

L̄even
B′ (ξ̄⊗ ξ̄)

]

(x̄)

[

(I −L̄even
B′ ) U

even
2

]

(x̄) +
[

L̄odd
B′ U

odd
2

]

(x̄) =
1

2

[

L̄even
B′ (ξ̄⊗ ξ̄)

]

(x̄)

(x̄∈B
′) (C.5)

with the definitions

[

L̄even
B′ f

]

(x̄) =
[

L̄B′f
]

(x̄) +
[

L̄B′f
]

(σx̄)
[

L̄odd
B′ f

]

(x̄) =
[

L̄B′f
]

(x̄) −
[

L̄B′f
]

(σx̄)

On taking the difference of equations (C.5), one obtains

[

L̄odd
S ′ U

odd
2

]

(x̄) = 0

Hence,Uodd
2 (ξ̄) = 0, i.e. U2 has the desired symmetry.

REFERENCES

[1] K LEIBER, M. E. A . Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Compu-

tations. J. Wiley and Sons, New York (1997).

[2] SOKOLOWSKI, J., ZOLESIO, J. P.Introduction to shape optimization. Shape sensitivity analysis, vol. 16

of Springer series in Computational Mathematics. Springer-Verlag (1992).

[3] ESCHENAUER, H. A., KOBELEV, V. V., SCHUMACHER, A. Bubble method for topology and shape

optimization of structures.Structural Optimization, 8:42–51 (1994).

[4] SCHUMACHER, A. Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochposition-

ierungskriterien. Ph.D. thesis, Univ. of Siegen, Germany (1995).

[5] GARREAU, S., GUILLAUME , P., MASMOUDI, M. The topological asymptotic for PDE systems: the

elasticity case.SIAM J. Contr. Opt., 39:1756–1778 (2001).

[6] GUZINA , B. B., BONNET, M. Topological derivative for the inverse scattering of elastic waves.Quart.

J. Mech. Appl. Math., 57:161–179 (2004).

[7] BONNET, M., GUZINA , B. B. Sounding of finite solid bodies by way of topological derivative. Int. J.

Num. Meth. in Eng., 61:2344–2373 (2004).

[8] GUZINA , B. B., CHIKICHEV, I. From imaging to material identification: a generalized concept of

topological sensitivity.J. Mech. Phys. Solids, 55:245–279 (2007).

[9] M ALCOLM , A., GUZINA , B. On the topological sensitivity of transient acoustic fields. Wave Motion,

45:821–834 (2008).

[10] FEIJÓO, G. R. A new method in inverse scattering based on the topological derivative.Inverse Problems,

20:1819–1840 (2004).

[11] MASMOUDI, M., POMMIER, J., SAMET, B. The topological asymptotic expansion for the Maxwell

equations and some applications.Inverse Problems, 21:547–564 (2005).

[12] BONNET, M. Inverse acoustic scattering by small-obstacle expansion of misfit function. Inverse Prob-

lems, 24:035022 (2008).

33



[13] AMMARI , H., KANG, H. Reconstruction of small inhomogeneities from boundary measurements. Lec-

ture Notes in Mathematics 1846. Springer-Verlag (2004).

[14] AMSTUTZ, S. Sensitivity analysis with respect to a local perturbation of the material property.Asymptotic

Analysis, 49:87–108 (2006).

[15] ROCHA DE FARIA , J., NOVOTNY, A. A., FEIJÓO, R. A., TAROCO, E., PADRA , C. Second order

topological sensitivity analysis.Int. J. Solids Struct., 44:4958–4977 (2007).

[16] BONNET, M. Discussion of “Second order topological sensitivity analysis” by J. Rocha de Faria et al.

Int. J. Solids Struct., 45:705–707 (2008).

[17] ROCHA DE FARIA , J., NOVOTNY, A. A., FEIJÓO, R. A., TAROCO, E., PADRA , C. Response to the

discussion of “Second order topological sensitivity analysis” by M. Bonnet.Int. J. Solids Struct., 45:708–

711 (2008).

[18] M ICHALEWICZ , Z., FOGEL, D. B. How to solve it: modern heuristics. Springer-Verlag (2004).

[19] TARANTOLA , A. Inverse problem theory and methods for model parameter estimation. SIAM (2005).

[20] CEDIO-FENGYA, D. J., MOSKOW, S., VOGELIUS, M. Identification of conductivity imperfections of

small diameter by boundary measurements. Continuous dependence and computational reconstruction.

Inverse Problems, 14:553–595 (1998).

[21] BONNET, M. Boundary Integral Equations Methods for Solids and Fluids. John Wiley and Sons (1999).

[22] CHEN, G., ZHOU, J. Boundary element methods. Academic Press (1992).

[23] CÉA, J., GARREAU, S., GUILLAUME , P., MASMOUDI, M. The shape and topological optimization

connection.Comp. Meth. Appl. Mech. Engng., 188:703–726 (2001).

[24] AMMARI , H., KANG, H. Generalized polarization tensors, inverse conductivity problems, and dilute

composite materials: a review.Contemp. Math., 408:1–67 (2006).

34


