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Abstract

This article concerns an extension of the topological @gitre concept for 2D potential prob-
lems involving penetrable inclusions, whereby a cost fiancy/ is expanded in powers of the
characteristic size of a small inclusion. Th&(e*) approximation of/ is established for a small
inclusion of given location, shape and conductivity emlsetich a 2-D region of arbitrary shape
and conductivity, and then generalized to several suclusimhs. Simpler and more explicit
versions of this result are obtained for a centrally-synmimétclusion and a circular inclusion.
Numerical tests are performed on a sample configuratiori)fdre O(<*) expansion of potential
energy, and (ii) the identification of a hidden inclusionr Eee latter problem, a simple approx-
imate global search procedure based on minimizing2he!) approximation of/ over a dense

search grid is proposed and demonstrated.

1 INTRODUCTION

The sensitivity analysis of objective functions is howasldgsed on well-established mathematical
concepts, and provides very valuable computational tawlemhancing the performance and effec-
tiveness of numerical methods for e.g. optimal design cerigion of experimental data. In its usual
(but not mandatory) default acception, the term ‘sensjtivefers to first-order perturbation analyses
with respect small variations of some feature of the systadeu consideration. Well-established
methodologies for evaluating sensitivities of field valégbor objective functions with respect to e.g.
model parameter§][1] or geometrical shapés [2] are availabl
More recently, another sensitivity concept, namely thabpblogical sensitivity, appeared iff [3,

A] in the context of topological optimization of mechanistiuctures. The aim of topological sensi-
tivity is to quantify the perturbation of an objective fuinet with respect to the nucleation of a small

object B.(a) of characteristic radius and given locatioru, as a function ofx. If J(¢;a) denotes



the value achieved by the objective function under conatter whenB.(a) is the only perturba-
tion to an otherwise known reference medium, then in 2-Dasitns with Neumann or transmission

conditions o) B (a) the topological derivativds(a) appears through an expansion of the form
J(ga) = J(0) + *Tz(a) + o(e?)

Algorithms where “excess” material is iteratively removaccording to the value dfz(a) until
a satisfactory shape and topology is reached have been liged3]. Other investigations have
subsequently established the usefulness of the topolaggaoaitivity as a preliminary sampling tool
for inverse scattering problems, providing estimates oélimn, size and number of defects which
can then (for example) be used as initial guesses in subsemueimization-based inversion proce-
dures [B[J7[I8[]9 14, 11].

This article is concerned with an extension of the topolalgsensitivity concept whereby(s; a)
is expanded further in powers ef Specifically, the expansion to ordéx(e*) for cost functions
involving the solution of a 2-D potential problem on a domaontaining a small object of size
embedded in a medium occupying a domain of arbitrary shagstablished. The chosen order
O(e*) stems from the fact that, for misfit function'sof least-squares format, the perturbations of the
residuals featured id are of orderO(£?) under the present conditions. The expansion will be found

to have the form
J(e;a) = J(0) + Ta(a)e? + T3(a)e® + Ty(a)e! + o(c?) = J(0) 4+ Ju(e;a) + o(eh) (1)

where coefficientds, 73, 74 depend on the assumed characteristics of the small nugjgatiusion,
namely its locatior, shape and constitutive characteristics (here the condyaontrast). A similar
approach, limited to impenetrable obstacl@s=0), has been recently proposed in the context of the
3-D Helmholtz equatior [12].

The concept of topological sensitivity, and higher-ordgsdlogical expansions such g3 (1), are
in fact particular instances of the broader class of asytigptieethods, where approximate solutions
to problems involving inclusions in e.g. electromagnetieastic media and featuring a small ge-
ometrical parameter are sought in the form of expansions sgdgpect to that parameter. A detailed
presentation of such methods can be found[if [18].this article, we are specifically interested
in establishing computationally efficient methods for eating small-inclusion expansions of cost
functions (rather than field variables) in the context of 2aBdia edowed with a isotropic scalar con-
ductivity. For that reason, and following common practineusual sensitivity analyses as well as
previous works on the topological derivatiZe [{, £4,[5.[1lL], an adjoint solution-based approach is
chosen here as its obviates the need to evaluate higharsedsitivities of field variables. Coeffi-
cients7,, 73, 7, are hence found in this article to be expressed in terms df¢leeand adjoint fields

(i.e. the response of the reference medium to the appliechdjuiht excitations), and also (faf)
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on the Green'’s function associated with the geometry anddemy condition structure under consid-
eration. These expressions constitute the first main bt of this article. A related study J15],
restricted to the&)(c*) expansion of the potential energy for impenetrable nuiciganclusions, pro-
posedinexactexpressions fofZ; [[§, [IJ]. The missing terms in th&(s*) expansion of[3] are
pinpointed here on the basis of the present analysis.

The functionsZz(a), 75(a), 74(a) can be computed for sampling poinésspanning a search
grid at a computational cost which is of the order of a smathbar of forward solutions in the
reference medium. This makes it possible to define a compnédly fast approximate global search
procedure, where the minimization of the polynomial appr@nt .J,(s; a) of the misfit function is
performed for a large number of potential inclusion logasgia, whereas usual global search methods
(e.g. evolutionary algorithmg [[L8] or parameter-spacepimg methods[[19]) require large numbers
of cost functions evaluations and are thus much more dem@niihis fast approximate global search
methodology, and the demonstration of its usefulness firowmerical experiments on a inclusion
identification problem, constitute the second main coutidmn of this article.

This article is organized as follows. Formulations and tiotefor the forward problems of inter-
est and cost functions are reviewed in Secfjon 2. Then, geaerpressions for coefficiens, 73, 74
are established for a small inclusion of arbitrary shapecamdluctivity contrast buried in an arbitrary
domain (sectioff] 5), based on a methodology whose main coenggare an adjoint-solution frame-
work (Section]3) and an expansion of the total field on theusioh boundary (Sectidq 4). Simpler
formulae are next obtained for the useful special case afitaally-symmetric inclusion (sectidn .2),
leading to explicit formulae for a circular small inclusi¢ection[5]3). The generalization to several
small inclusions is treated in sectiph 6. Computationaléssand links to other approaches are dis-
cussed in sectiof] 7. Finally, in sectifjn 8, numerical tesgsparformed on th€(c*) expansion of
potential energy, and a simple approximate global seamtepiure for hidden inclusion identification

based onJ,(¢; a) is next proposed and demonstrated on the same testing a@ioyu

2 FORWARD PROBLEM AND COST FUNCTIONS

Consider areference configuration defined in terms of a twaedsional domaif, either bounded or
unbounded, with a sufficiently regular boundatyand filled with a isotropic medium characterized

by conductivityk.

2.1 Forward problem

Let B* denote a trial penetrable object of isotropic conductivity bounded byi™*. Denoting by
O* = Q\ (B*UI™) the region surrounding the inclusion, the application @fsgribed potentiak®

and fluxpP over Sp and Sy, respectively (whereéy and.Sp are complementary disjoint subsets of



S) give rise to the potential* in 2* and B*, governed by the field equations
div(kVu*) =0 (in %), div(k*Vu*) =0 (in B¥), 2

the boundary conditions

p* = pP (on Sy), u* = uP (onSp) (3)

(wherep* = kVu*-n denotes the flux through the external boundary, and with tiitenermaln to

S directed outwards d) and the perfect-bonding transmission conditions
um=u’, (Vu)mn=(Vu)in (onl”*), 4

where subscripts 'm’ and i’ refer to limiting values dn of quantities in the matriX2* and the

inclusion B*, respectively, and is the conductivity contrast, i.e
B = k*/k. (5)
In addition, thefree fieldu is defined as the solution to the boundary-value problem
div(kVu) =0 (in Q), p=p° (onSy), u=uP (onSp) (6)

(with p = kVu-n), i.e. is the potential arising ift for the same boundary dat&, «P in the absence
of any trial inclusion.

The following reciprocity identity is now provided for lateonvenience.

Lemma 1. Let (u*, u*) denote a solution to field equatior$ (2) and transmissiorditimms (4), and
let w be any trial field verifyingtAw +b =0 in  (with b denoting a known source distribution) and
continuous, together with its normal flid¥ w-n, acrossI'*. Let 3 be defined by[]5). The following

reciprocity identity holds true:

/ [plwju* — p*w] dI’ + / bu* dV + / bu* dV — (l—ﬁ)/ EVuW - VwdV =0 (7)
S * * *
Proof. Identity () is obtained by means of the third Green’s foranul

/ [wAu — uAw]| dV —i—/ [(Vw-n)u— (Vu-n)w| dI' =0, (8)
o a0
as follows: (i) write [B) forO = Q* and multiply the resulting identity b; (ii) write (B) for © = B*
and multiply the resulting identity bgk; (iii) add the two resulting identities and invoke transsiis

conditions [}), together with continuity of and its normal flux, acrogs*, and (iv) use the identity
k/ (Vw-n)u dl’ :/ [bu — kVu*-Vw] dV,

which stems from the divergence theorem (witldenoting here thanward unit normal tol'*). [



2.2 Costfunctions

Generic cost functions having the format

7(B") = /S on(ut, &) T + / oy, €) dr ©)

Sp

are considered, where functiops andyp areC? in their first argument.
For instance, the potential energy5*) associated with the solutiofu*, «*) to equations[{2)

to ) can be set in the formd (9) with

€)= PO (), wolr" ) = 5" (E°(E) (10

Alternatively, considering the problem of identifying ankmown penetrable inclusioB'™® from
supplementary data consisting of measured vald&%of the potential ang°Ps of the flux, collected
respectively onSy and Sp (or subsets thereof), the misfit between observatidii§ p°S and their
predictionsu*, p* for a trial inclusionB* may also be expressed through a cost function of forphat (9).

For instance, the output least-squares cost funcfigsi B*) corresponds to

on(,€) = St (&)~ polv',€) = ol (E)~p )| D)

Suitably modified definitions app andyy easily allow to accommodate data available on subsets of
Sp or Sn.

In what follows, attention will focus on the case of trial imsions of small size and given
location, shape and conductivity contrast. The main objestof this article are (i) to establish
an expansion of cost functions of form§} (9) with respect, tavhose coefficients depend on the
inclusion locationa, and (ii) to formulate a computationally fast approximakebal search method

for inclusion identification exploiting such expansions finisfit functionals.

3 ADJOINT SOLUTION APPROACH FOR EXPANSION OF COST FUNCTION

Let B.(a) = a + %, whereZ C R? is a fixed bounded open set with ared| and centered at the
origin, define the region of space occupied by a penetrablasion of (small) size > 0, centered at
a specified locatiom € €. The inclusion shape is hence specified through the choicerofialized
domainZ (e.g. £ is the unit disk for a circular small inclusion). The regiam®unding the small
inclusion is ther2.(a) = \ (B:(a) UT'-(a)).

One is here concerned with small-inclusion approximatiohsost functions [{9). Accordingly,
let u.(-; @) denote the solution to equation$ (2) b (4) with = B.(a), and define/(c; a) by

Hesa) = T (Bula) = [

on(ue,€) T+ / oo(p-, €) dT, (12)
SN

Sb
with p. = Vu..n. For notational convenience, explicit references twill often be omitted in the

sequel, e.g. by writing/(¢) or u. (&) instead of/(s; a) oru:(§; a).
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3.1 Expansion of misfit function using adjoint solution

Let v. denote the perturbation caused to the potential by a sndlision nucleating at, i.e.:
Ve = Ue — U (in Q.UB.). (13)
It is useful to note that. verifies homogeneous boundary conditions:
g: =0 (onSy),  v-=0 (onSp) (14)

whereq. = k(Vwv..n) is the perturbation of the boundary flux.
Cost functions with quadratic dependence (anp) are often considered in applications (e.g.
for identification purposes). With this in mind, a polynoiépproximation of.J(¢) is sought by

exploiting an expansion of (JL2) to second ordefdn, ¢.), i.e.:

J(f‘:):J(O)‘F/ ®©N,u Ve dF+/ ¥YD,p qe dr
SN SD

1 1
+ 5/3 PN (v2)? d + 5/5 %0 .pp (4)? A + o( ’%’%2(5,\,) ) ‘%’%%SD) ). (15)
N

D

having set
_ On _ 9¢p N _ Pyp (16)
PNu 8’&5 ugzu’ ¥D.p 8]?5 pgzp’ PN uu 8’&? ugzu’ ¥D.pp 8]?? Pe=p
In particular, the above quantities are given by
1 D 1 D
$D,p = 5“ y  PNu = _517 ,  ¥YDpp = 0, ON,uu = 0 (17)
for ¢n, ¢p defined by [I0), and
onu=u—u" op,=p—1" Onw=1 @pmp=1 (18)

for on, ¢p defined by[(T1). Expansiof (15) is exact, i.e. has a zero retesifor the potential energy
defined by [(10) and the least-squares misfit functipris (11).

Lemma 2 (reformulation of cost function expansion using an adjsiitition) Let theadjoint field

4 be defined as the solution of the adjoint problem
EAw=0 (inQ), p=¢nu (ONSN), G =—¢p, (ONSp). (19)

(with p = kVi-n). Expansion[(1]5) then admits the alternative form

J(z) = J(0) + (1—B) / FVu. Vi dV

1

1
+ _/ N (ve)? dT + —/ D pp (¢2)° dT + 0(|Us|i2(sN) ; |q£|i2(sD)), (20)
2 Jsy 2 Jsp

Proof. Invoking reciprocity identity[(7) witho = @, b= 0 and boundary condition$ ({14) ar[d](19b,c),
one obtains identity

/ ONu Ve dF+/ ©D.p e dF:(l—ﬁ)/ kVu.-VudV
SN SD

S

which, inserted into expansiop [15), yields the desiredrrefilation [2D). O



3.2 Summary of previous results on topological sensitivity

In previous studies[[14, P0], the leading contribution/i@) has been found, on the basis of iden-
tity (Q) truncated to first order ifv., ¢.) (i.e. without the last two integrals), to be given by

J(e) = J(0) + 2T (a; B, B) + o(e?) (21)

in terms of thetopological derivativeZz(a; 4, [3), given in the present context of 2-D potential prob-
lems by

To(a; B, 3) = Vi(a)- A1 (B, 5) Vu(a) (22)

where the second-order ‘polarization tensdr; (4, 3) has been established for any inclusion shape
% and conductivity contrast in [Rq]. For the simplest case of a circular inclusion, whetés the

unit disk, one has the explicit expression

., (1-5)
Ap = 2n T I. (23)

(wherel is the seccond-order identity tensor). Moreover, the leadisymptotic behaviour of the

perturbed field is characterized by
ve(x) =W () +o(e?),  ¢:(x) =?VQ(z) +o(?)  (z€S) (24)
(having setQ(z) = VI (z)-n(x)) on the external boundary, and by
v(@) = eVi((z — a)/e) +o(e) (€ B.) (25)

inside#, where the function$l” andV; are known and depend a4 andg (see Eqs[(37) and (48a)).

3.3 Derivation of expansion of/(¢): methodology and notation

To capture the leading contribution as— 0 of the quadratic terms? andg?, an expansion of ()
must, in view of [2D) and[(24), be performed to ord&*) at least. As[(30) involves integrals over

the vanishing suppotB., the position vectog € B, is scaled for this purpose according to:
E=a+ef (€D, £ch) (26)

In particular, this mapping transforms integrals ofgerinto integrals over, and rescales the domain

differential element according to
dve=e*dV; (£€B., £€P) (27)
Without loss of generalityg can be chosen as the center®)f, i.e. such that
/@ £dv:=o0. (28)
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In view of (27), establishing the sougtt(c*) expansion of/(¢) requires aD(s?) expansion of
Vu. in B.. Taking the previously known behavidr J25) into accountaagmptotic expression for

smalle of the total fieldu. inside the inclusion is sought in the form
_ 1 _ _
u(€) = u() +Vi(€) +Va(€) + 5 Va(€) +o(*)  (€€BE€B) (29

in terms of unknown functiond/;, V5, V3 defined in#. The determination o¥/;, 15, V3, which
constitutes the main step towards establishing an ex@igitession for the expansion di¢), is
based on expanding abaut— 0 an integral equation formulation far.. This task is addressed in

the next section.

4 EXPANSION OF FIELD INSIDE THE INCLUSION
4.1 Integral equation formulation of the forward problem

Let the Green'’s functioj(x, &) associated with the domain and partitionS = Sy U Sp of the
external boundary be defined by
kAG(x, €) +6(€ —x) =0 (£€9)
H(z,&) =0 (£€5N), (30)
G(x,8) =0 (£€5p)

(with H(x, &) =kVG(x,£)n(£)). Onusingw(§) =G(x,£), i.e.b(§) = §(&£ —=x) in the reciprocity
identity (7) and inserting boundary conditiorj (3), oneadit the following governing integral equa-
tion for the fieldu,. inside the inclusion3., which solves the forward problerf] (2)}-(4) witt = B.:

w(e) [ (1= PhVu() Vedl@.§) Vi —u(x)  (we B, (D)
whereu, the free field defined by](6), is here explicitly given by
u(@) = | @ pPQ)dle— | H@&u ) dle (@), (32)

Similarly, the adjoint field defined by (19) admits the exjpliotegral representation formula
() = " G(x,€) pnu(§) dle + . H(@,§) ppp(§) Ay (x€Q). (33)
Note that equatior{ (31) is also valid for a non-uniform cactility contrast3, a feature not exploited
in this work. Maoreover, the field outside the inclusion isagivby the representation formula
us(x) = (1-p)k : Vu(§) VeG(x,§) dVe +u(x)  (z€Q\B:), (34)
Under the assumption of a constant conductivity insidenblision, a governing boundary inte-

gral equation formulation that is equivalent fo](31) reads

@)~ 1=k [ HE @) dre —u@) (@l 35)



4.2 Small-inclusion expansion of the integral equation

To study the asymptotic behaviour of integral equatfoh €&k) — 0, it is useful to introduce further

scaled geometric quantities:
rT=ck, r=¢cr, r=c¢rT (x, £ €B.; ,€ € B) (36)

in addition to definition[(36) o, and to split the Green’s function according to:

whereG is the well-known fundamental solution for the 2-D full spagiven by
1
G(x,€) = —ﬁLogr VeG(x,§) = —2k777"2r (38)

with » =& —  andr = |€ — x| = |r|, and the complementary pa¥ is smooth ag = x.

Lemma 3. Using the ansat4 (29) for the field inside B. (with functionsV;, V4, V3 to be determined
later), integral equation[(31) has the followir@(<?) expansion about = 0:

- owl@ - F@} +2{ [T - 0w @) - F@))

whereZ denotes the identity, the integral operat6ris defined for scalar, vector or tensor density

functionsf(€), € € # by

12f)(@) = (1 Bk / Vi) VG & d; (zeB), (40)

(WithV = V ¢ denoting the gradient with respect to normalized coordispand?; (z), F2(z), F3(z)

are given by
Fi(x) = Vu(a) [L€] (@) (41a)
F(@) = 5V7u(a): [LEE) (@) + Fla) (41b)
Fy(@) = 5 Vula): [L(E2EE)] (@) + 22 VF(a) +26(a) (41c)

whereV*u(a) denotes thé-th order gradient ofu evaluated ag = a, and having set
F(z) = (1- k(12| Vu(a / VVi(E) dV;) - VCe(z.a) (42a)
G() = (1= 0{ (| VVi(€)9€ V) V2 Celz.a) + (| 14(€) o) VGe(z,a)} (420)
% %

Proof. The proof rests on splitting the Green’s function accordim@3T) in integral equation (81)

and using the following expansion 8., obtained from[(29)

Vue(§) = Vu(a) + VVi(§)

+e[Viu(a)-€+ VVh(€)] + %[ Vu(a): (E© &) + VV5(E)] +o(e?). (43)



First, noting that upon scaling the position vector acemydd (3) the singular full-space funda-
mental solution verifies
1 1 1

gty 4G CI (44)

one finds

3

+ S ([2V) + 3 VPu(a): [LE2E0)] ) (@) @5

with the help of differential element scaling [27) and exgan (48), and invoking definitior] (#0) of
integral operatoL.
Second, as the complementary kertgl(x, &) is smooth whene = &, the following Taylor

expansion holds for any, £ € %:
V:Ge(x,€) = VGe(a,a) +[(x-V, + & V) VeGel(a, a) + o(e). (46)

On performing a derivation which consists of (i) expandiogotderO(¢e) the inner product of ex-
pansions[(39) and (#6), (ii) integrating the result ofgerand multiplying the result byl — 3)k, (iii)
invoking scaling[(97), (iv) using integral identity {28)yd(v) exploiting definitions[(42a,b), one finds

(1-0) [ K906 VeGela.€) dVe = Fla) + (VF(@) + Gla)).  @D)

Lemma[3B finally follows from substituting expansiors](2#}3X and [4]7) into integral equa-
tion (31) and reordering contributions according to povedrs. O

4.3 Expansion of potential inside the inclusion

Lemma 4. TheO(£?) expansion[(9) of. is given by

Vi(€) = U1 (€)-Vu(a) (48a)
Va(§) = Ua(€): Vu(a) + F(a) (48b)
V3(€) = Us(€): VPu(a) + 2[€ + U, (€)]- VF(a) + 2G(a) (48¢)

where the vector functio®d, the second-order tensor functidd, and the third-order tensor func-

tion U3 do not depend on and solve the integral equations

(7~ D] (@) = [£8) @) (492)
(T~ D)) (@) = 5[L(E=8) (@) (49b)
(T - Dth)(@) = 5 [LEeEE)] (@) (490)



(with £ defined by 40). Moreover, the scalar functiohiér), G(x) defined by[(42a,b) are given for
anyx € Q) by

F(x) = Vu(a)- Ay -VGe(w, a) (50a)
G(z) = Vu(a)-A2: V3Ge(x,a) + VGe(z,a)- A : Vu(a), (50b)
with the constant tensotd, ;, .4, (respectively of order 2 and 3) defined by
Ay = (1—ﬁ)k<|,%’| I +/ VU (&) dV) (51a)
A = (1— / VU (€) 9 E dV; (51b)
Proof. Definitions [41h) and[(4Pa) immediately imply that
Fi@) = |(Z-L) (1h(©)-Vu(a)) | @)
Similarly, on using definitions[ (41Lb)[_(49b) and noting that [(Z — £)1](z), one obtains
Fo(@) = [(T-£) (Us(8): VPu(a) + F(a) ) | ()

Finally, one notes that definitiofi (49a) implies thiat= [(Z—L)(€+ U1 (€))] (). Using this identity
together with identityt = [(Z — £)1] (z) (again) and definitiond (4}Lc) and (#9c), one obtains

Fo(@) = [(T— L) (Us(8): VPu(a) + 2(€+ Ui(€))- VF(a) + 2G(a) ) | @)

Representationg (48a—c) follow directly from the previtue identities by virtue of the fact that
integral operatof — £ is invertible.

Then, definitions[(5]a,b) and reformulatiofis {50a,b)¢f), G(x) stem directly from substi-
tuting representationg (48a,b) info (42a,b) and explpitnoperty [53a) of functiong;, U, see
Lemma[b next. O

Lemma 5. Functionsi4;, U, defined by lemm@ 4 are such that

V2u( /vuz 3) dV5 /VU1 )€ dvg) :Vw(a) (52a)
Vi / V(&) dV;) = ALIGHEE 4V ) : ¥ u(a) (52b)
for any sufficiently regular functiomn.

Proof. As functionsi, Uz, U3 verify the weak formulation[(B]2) witl/® = ¢, U° = (¢ ® €) /2
andU" = (£ @ £ ® £)/3, respectively (seE Appendiy B), the following identitiesidh

A(Ura, W) = / W, dV; (a=1,2) (53a)
B

AU, W), = % / K (W) + W) dV (a,b=1,2) (53b)
B

1 S _
AU W), = /ﬁ KWl + EWolo + EEW.) Vs (abe=12),  (530)
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with A(-,-) defined by [BB). Setting’ = Us;;, anda =i in (E34),W = U;; and(a,b) = (j, k)
in (63B), subtracting the resulting identities and using symmetry of bilinear formu(-,-), one
obtains
1 _ o
/ K* Uz, dVg = 5/ k(Ui k€ + U k&i) dVe
% %

The desired identity (5Pa) is then obtained by multiplying &bove equation hy ;;(z) and invoking
w k= w k; (Schwarz theorem). Identity (52b) is established in a sintanner by combining (53a)
with TW = U and (53c) withV’ = ;. 0

5 TOPOLOGICAL EXPANSION OF COST FUNCTION

Building on the results established thus far,dhe*) expansion of/ (<), is now formulated. The most
general form of the proposed(s*) expansion, valid for a small inclusion of arbitrary shasegiven

first (Sec[5]l). Then, this result is specialized to the clabs of centrally-symmetric inclusions
(Sec.[5.R), which includes the important special case @ltdr inclusions which is amenable to

further analytical treatment (Sdc.]5.3).

5.1 Small inclusion of arbitrary shape

Proposition 1. For a penetrable inclusion represented py|(26), i.e. of sh#@mand characteristic size
¢, embedded in the reference medi{irat a chosen locatiom in such a way that thaﬂ}lS) holds, the
O(g*) expansion of any objective functiokic) of format [9) with densitiegy(w, &) and ¢p(w, §)

twice differentiable w.r.t. their first argument is
J(g;a) = Jy(g;a) + 0(84) (54)
in terms of the fourth-order polynomial approximation
Ja(e;a) = J(0) + Tao(a)e? + Tz(a)e® + Ta(a)e?, (55)

with the coefficientd;(a), 73(a) and 74(a) given by

Ty(a) = Vu(a)- Ay -Vi(a), (56a)
Ts(a) = Vu(a)-A: Vi(a) + Vi(a) A : Vu(a), (56b)
1

Ti(a) = 5(1- B)I>: V3 Vu-Vil(a) + %Vu(a)AlgsV?’zl(a) + %V&(a)AlgsV?’u(a)
+ VF(a)- Ay -Vi(a) + VZu(a): Az : Vii(a)

1 1
+ 3 / SON,uuvv2 ar + - / (PD,prQ dr. (56C)
2 /sy 5

2 Js
In (663-c), the functiort” is defined by[(50a), the functidi is given by
W(x) = VeG(x,a)-A11-Vu(a) (57)
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and@ = VIV -n, the tensolZ, (geometrical inertia of the normalized inclusio#) is given by

7.~ [ €opar (58)

the constant tensord; 1, A2, A;3, Aso are given by[(51a,b) and
A= (1=0)k | Ve €8 v (50a)
Ay = (1— / VU, & dVe (59D)

in terms of solutiond4;, U, to equations[(49a,b).

Proof. The proof is straightforward, and consists in deriving apliek form for expansion[(40). In

particular, the expansion of the first integral pf] (20) exslthe results of Se€] 4.

(a) First integral of (2P). Invoking expansion[(43) oV u., representation formulad (48a—c) for
Vi, V2, V3, and

— — 2 —
Vi(a+c€) = Vi(a) +<V7i(a) & + 5 V¥ila): €98) + o)
for the adjoint field, one readily obtains

[Vu.-Vi)(a+c€) = Vu(a) [T+ VU (§)] - Vi(a)
+ s{V(vu-va)(a)-é + V2u(a): V U(€) Vi(a)
+ Vu(a)- VUi()- V()£ }
+ %{v%w-vm( ):(E€) + V3u(a): VUs(E)-Vi(a)
+2VF(a) [I+VU; ()] Vi(a) +2Vu(a): VU(E) VZi(a)-€
+ Vu(a) VUi (€) V¥i(a): (€€) | + o) (60)

Integrating this expansion ovés., using scaled coordinates, exploiting integral ident2@)(and

recalling expressiong (51a,b},|(58) ahd {59a,b) of theouartonstant tensors, one obtains

(1 —5)/ kVu.- Vi dVe = Vu(a)- A - Via)

+ a{va(a) ‘A Vu(a) + Vu(a)-Agy: V2ﬁ(a)}

82

+ 5{(1 — BkV3[Vu-Vi)(a): Iy + Vi(a)-Aiz: Vu(a) + Vu(a)-Ai3: V3i(a)

2V F(a) A -Vi(a) + 2V%u(a): As VQiL(a)} (61)

(b) Second and third integrals df {20Jhe perturbed field. at any point away from the inclusion is
given by:
vl@) = (1-5) [ KVule) VeGla ) Ve (@R\B.) (62)
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AsG(z, &) is a smooth function of € B. for anyx ¢ B., the leading contribution af.(x) ase — 0
results from a derivation formally identical to that of ergéon {47), where (i) only the leadin@(<?)
contribution is retained, (ii) the complementary Greensdtion G¢ is replaced with the complete
Green’s functiorg, and (iii) the constant tensod; is introduced. This process leads to

ve(x) = 2W () + o(e?), g=(x) = 2V Q(x) + o(c?) (xel)
i.e. @%), with the functiod? given by [5F) and) = VIV -n. O

Remark 1. The coefficienfs(a) associated with the leading(s?) contribution to.J(¢) corresponds,

as expected, to the previously known topological derieabi/, i.e. (22).

Remark 2. Expression[(59a) 0f4,3 exploits identity [53b). Actual computation ®f3, defined
by (49¢) is thus not necessary, all the constant tensorsteain (56p-c) being expressed in terms of

U1, Us only.

5.2 Centrally-symmetric inclusion

When % has central symmetry (i.e. is such tat 4 < —£€ € %), as many simple inclusion

shapes (e.g. disk, ellipse, rectangle) do, the constasotety, defined by [51b) vanishes, as shown
in Appendix ¢. Consequently:

Proposition 2. When the penetrable inclusion of Proposit[pn 1 has cenyaimmetry, expansion (54)
holds with coefficient§s, 7, still given by [56p,c) and

T3(a) =0, (63)

5.3 Circular inclusion

The special case of@rcular inclusion B, (whereZ is the unit disk and| = ) is now considered.
Of course, as the disk has central symmetry, simplificafg) bolds, but this special case permits
further analytical treatment. The constant terEedefined by [(38) is easily found to be given by
=11 (64)
4

Moreover, integral equation§ (49a,b) are solvable in ddsem (sed Appendix|B), to obtain

1-08 - 1-08 1-8/ 1 5 _
— 7 — - — —1)I ERB). 65

56 ®=s5i1g 5 (gler -1 Eea). @

Explicit formulae for the constant tensa# 1, As., A3, featured in[[(56a,c) then readily follow:

U, ERE+

Lemma 6. When the penetrable inclusion of Proposit[$n 1 is circuleith 2 being the unit disk, the

constant tensorsA, 1, As, A3z are given by

P et _ km (1-p)? 1 _
All—?lmmI, AQQ_I 155 <I4+%I®I>7 A13—I 155

whereZ, is the symmetric fourth-order identity tensor, i, = (d;r0;¢ + 6i¢djr)/2.

b (1—5)°

I®I, (66)
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5.3.1 Expansion of potential inside a circular inclusion. Additionally, 43(€) (which is featured
in expansion[(29) of the potential, but is not needed foiirsgtip cost function expansions) is also
solvable in closed form (s¢e Appendik B), to obtain

_ l—ﬂ

wherekCji.(§) = 0jri + 0rilj + 01
The expansion[(29)[ (48a—c) of the potential inside a darciriclusion takes, by virtue of (55),

eotot+ SEP-0R®)] €. (67)

(68) and [€]7), the following more explicit form:

+ = [6:-V2u(a)-€ + 47V u(a) VOc(a,a)

(€)= u(E) + hg{es Vula) +

+ £ [E0E0d):viua) + 2

= 55 V.V:Gc(a,a) Vu(a )]}+0(64) (68)

5.3.2 Topological expansion of cost function. On substituting these values info (66a,c) and re-

calling result [6B), the)(*) expansion of/ (<) is hence given a more explicit form:

Proposition 3. When the penetrable inclusion of Proposit[¢n 1 is circuteth % being the unit disk,
coefficientsTs, 73, 7, of expansion[($4) are given by

T(a )—2k7r—gVu( ) Vi(a) (69a)
Tifa) = 0 (69b)
Ti(a) = (27) k(h?) Vu(a)-V,VeGe(a, a)-Via )ﬂ%ﬂﬁv? (@): V2i(a)

+ % A (PN,uuWQ dr + % /S QOD7pr2 dr (69C)

Remark 3. For the case of potential energly {10), the adjoint soluti®simplyd = —u/2 by virtue
of @) and [2p), and further simplification arise by virtue(@7). As a result, th&(s*) expansion

of potential energy (for a circular small inclusion) is givéhrough

Tz(a)z—fml—HV (a)]? (70a)
ﬂ(a):—]%%(HVQu(a)HQ + 87 —ZVU( )-V1V5Gc(a,a)-Vu(a)) (70b)

Remark 4. TheO(s*) expansion of potential energ}(B.) for the case of an impenetrable inclusion

(i.e. = 0) is also considered in[15], where the proposed valueZpis
km
Ti(a) = ——[|V*u(a)||" (71)

and clearly differs from[(7Qb) witj¥ = 0. That (7].) does not yield the corre€x(=*) contribution to

the potential energy can in particular be checked on simgheesolutions fo€ (B.) [[L§] such as

those given ih Appendij A. Moreover, the expansion. gfroposed in [1p] reads
2
u(€) = u(€) + - Vu(a) + (€ ©8):Vu(a) + o) (72)
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(using the present notations), wherein (i) #é<?) contribution differs from that of ($8) with = 0
and (i) theO(£3) contribution is lacking. Both (i) and (ii) then contribute {71) being inexact.

6 EXTENSION TO SEVERAL SMALL INCLUSIONS

Expressions[(5ba—c) dfz(a), 73(a), 71(a) are predicated on the assumption of a single inclusion
characterized by its shap®, sizee, locationa, and conductivity contragt. However, this result can

be extended to the case Bf> 1 incIusionsBém) defined according to
B (a™) = a™ e g0 — M (1<m<K) (73)

wherea(™ and %™ are the centre and (normalized) shape of ifih inclusion, and the size
parametet is the same for alK” inclusions. To help present this generalization in a cornpay, the
following notational convention will be used: a supersttipn)’ attached to any previously defined
symbol (e.qg. u“”), A&T)) will refer to quantities associated with the single-irgiin analysis of
Secs[ anfl 5, with. replaced byB{™

Proposition 4. For a set of’ penetrable inclusions of forr (73) embedded in the referemediunt)
at prescribed locations(") . .., a(%), let.J(e; a") . .., a(%)) be defined by[(12), with, = Q\(Bél)u

..UBs(K)) andv, = v.(€;a). .., a%)) denote the field perturbation induced by tReobjects.
Densitiespn(u, &), ¢p(p, &) are assumed to be twice differentiable w.r.t. their firstiargent. The
O(g*) expansion off (¢) is

K
J(e;aW,...,a®) = J(0) + Y T (@™)e? + T (a)e?

m=1

+ ’j’im)(a(l), et po(et) (74)
with 7™, 7™ given by [58a,b) with shap@ = 2™ and contrasts = 3™, and 7™ given by

7™ @V, .. a®)) = 1™ (™) + Z VF™(a™). A" T i(a™)
n#Em

+ 35 [ omm W ar+ 2 [ go,,@nQm dar} (79
SN SD

n#m

whereF ™) and W are defined by[(G0a) anfl {57) with=a ), Z = 2™ and g = 3™

Proof. TheO(e*) expansion of/ () is sought on the basis of

K
(0) + 2(1—5<m>)/ mVue Vi dV
m=1

Bgm

1 1
+ _/ ¥D.pp (ge)? d’ + _/ PN, uu (ve)? dI" + 0(‘U5’%2(SN) ’ ’%‘%Q(SD))- (76)
2 Jsp 2 Jsy

(a) First integral of {7p). To evaluate the first integral of (76), an expansion.ofn each inclusion,

of the form
ue(€) = u(€) + V" (€) + 2 (€) + 2V (€) +o(e?) (€€ B, Ecz™) (77)

16



is again postulated. It is expected tiiat™, V™ V™) 2 (v v™ v{™) because of cou-
pling effects between inclusions. The governing integgalation forv, is 81) with all integrals over

I'. changed to sums of integrals over e, i.e.

ue(@) = (1= "k [ Vu.(€)-VeG(,€) dVe

Bl™
=D (="

n#m

| VUl VeG(@ ) de =u(@)  (we BMM, 1<m<K). (78)
The (V"™ V™ V{™) are to be found by inserting {77) into the first integral[of)(@8d expanding
the resulting equations in powers af A comparison with [[1) indicates that the first line [n](78)
constitutes the contribution to the governing linear ofmerarising due to incIusiorBe(m) in isolation.
The expansion ir of that contribution therefore coincides with that eststidid in sectiof] 4 for the
single-inclusion case. Besides, the sum of integrals irséw®nd line of[(78), which synthesizes the
influence of scattererBs(”) (n #m) to v. on B§m>, can readily be shown by means of a calculation

similar to that leading t (47) to have the expansion

S (- ")k /B V€ Ve(e.€) v

n#m

= 3 {2FM @) + & (VFO @™) + ¢ @)} 1ol (weBM) (79)

n#m

where the scalar function8™ (z), G(™ (x) are defined for any # a™ by

F(z) = Vu(@™)- A . VGe(z,a™) (80a)
G (z) = Vu(a™)- AW :V2Ge(x,a™) + VGe(z, a™)- A : V2u(a™), (80b)

Since contributions] (79) are of ordéX(<?), the O(¢) contributions to equatior] (78) are not affected

by the scattererﬁgn) (n#m), and one therefore has
e =vieE  (Eea™) (81)

Moreover, the form assumed by the supplementary contoibsf79) is such that results of sect[or] 3.3
still apply provided every occurrence 8fa) andG(a) is replaced by (™ (a(™) andG(™ (a(™),
respectively, where

B (@) = B0 () 4§ F)(g0m),

n#m

@(m)(a(m)) — G(m)(a(m)) 4+ Z G(")(a(m)).

n#m

(82)

The supplementary terms (contributionsﬁﬁ’l), n # m) are the only manifestations of interac-

tions between inclusions arising in this analysis. Thelmryiunknowns%(m), 173(’”) are then given
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by @8b,c) with replacement§ {82), i.e. by

V(&) = v @) + Y FM(alm), (83a)
n#m
@) =i @) +2 Y [€+ Ul (©)]-VEM (™) + 260 (a™)  (83D)
n#Em

(b) Second and third integrals df {76YOn noting that the integral representatin] (62) is a sum of
integrals over each inclusion and revisiting the analyiseation[p, the leading(s2) contribution

to v, is simply the corresponding sum of contributiofd (24); i.e.
K K
(&)=Y WM +o(E?), @)= Q&) +o(?) (€S  (84)
m=1 m=1

whereW (™) is defined by[(§7). The leading contribution of the last twegnals of [7), of order
O(g*), then stems directly from estimatgs](84).

(c) Proof. Proposition[}4 then follows from collecting resulfs](7@)1Y8@2), [83h,b) and (B4) and
revisiting the analysis of Seds. 4 afjd 5. O

7 DISCUSSION
7.1 Computational issues

The developments of sectiofls 3[jo 6 are based on the Greextding defined by[(30), and lead to
almost explicit formulae for th©(c*) expansion of/(¢) (their only non-explicit components being
the auxiliary solutions41, U+, which must be computed numerically except for simple ndized
inclusion % shape such as the circular shape discussed in s¢cfjon 5.3).

In practice, this explicit character is retained only foogetries2 and boundary conditions
settingsSn, Sp such that the corresponding Green’s function is known dically. Such cases are
limited to geometrically simple configurations. For instanfor the half-plang? = {£]& < 0}

bounded byS = {&| &2 =0}, it is well-known that
1 o - ~
Ge(z, &) = F5-Logr,  with 7= 1€ —2|, &= (21,—22) (85)

where the ‘-’ and ‘+' sign correspond to the cas#s= S, Sp = () (Neumann) andp = S, Sy =
() (Dirichlet). Another configuration with a known (and relagly simple) Green’s function is the
circular disk, see Eq[ (Al 1).

For configurations where the Green'’s function is not avélathe free and adjoint fields, defined
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by (@) and [IP), may be computed by solving the boundary rategguations[[31], 22]

[L(u, p)](x) = [F(u®,p°)] (x) (zes) (86)
[L(6,p)] () = [F(—¢Dp, oNu)] () (xeS) (87)

with the integral operatof( f, g) and right-hand side functiona (P, ¢°) defined by
K(f.0)@ =5/@+ [ H@of©de - [ co@de  (@es). (@)

[F(f°.g7)] (=) = — : H(z,€)f°(€) dl¢ + : Gz, €)g°(€) dl'¢ (xeS), (88b)

and subsequently invoking integral representation foagulMoreover, the paifiV, Q) associated
with the leadingO(s?) contribution of(v., ¢.) on S, defined by[(57), and the complementary kernel
pair Gc(z, £), defined by[(37) and featured 1, are respectively governed by integral equations

[LW,Q)](z) = —Vu(a)-A11-VG(z,a) (xes) (89)
[E(Gc(z,-), Hc(z,))](sc) = —[F(G(z,-), H(z,))](sc) (xeS,z€Q) (90)

whereHc(z,£) =kV¢Gc(z,€) n(§).

Alternatively, finite element methods (FEMs) may also beduse setting up expansions of the
form (54). CoefficientZs is similar to an energy density, and as such may be compuieg the FEM
in its standard form. On the other hand, coefficigptentails computing second-order gradients of
the free and adjoint fields, which normally requires spgcidésigned procedures and raises accuracy

issues (while integral representations of second-ordsdignts do not).

7.2 Direct vs. adjoint approaches for topological sensitity

Topological sensitivity has formal similarities with theone traditional areas of parameter sensitiv-
ity [ or shape sensitivity[]2]. Like first-order parametarshape sensitivity formulae, the topolog-
ical derivative7; associated with the leadin@(s?) contribution to.J(¢) is expressed as a bilinear
combination of the free and adjoint fields. Moreover, sgttip theO(s*) expansion of/(¢), and
particularly the highest-order coefficieft, requires the ‘direct topological field sensitivitidd’, (),
in addition to the free and adjoint fields. This is reminidagfrthe fact that second-order parameter or
shape sensitivity fomulae can be cast as bilinear combimaf the free and adjoint fields and their
first-order sensitivities. One nevertheless has to keepirid that topological and shape sensitivities
are related but distinct concepts, as emphasizddjn [23].

Here, it would have been possible to establishdtie?) expansion of/(¢) on the basis of[(15)
rather than[(30), without recourse to the adjoint solutf@®)( This alternative ‘direct’ approach
requiresO(c*) expansions of. on Sy andg. on Sp, i.e. the actual computation of higher-order

direct topological field sensitivitie®/,, W3 in addition toW = W defined in [24). The latter can
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be obtained by expanding integral representatioh (34)derap(s*). General explicit formulae for
such high-order expansions of the field quantities are giearbitrary order and for various physical

contexts, by Ammari and Kand [[13] in terms of the Green’s fiomc(39) and its derivatives.

8 NUMERICAL EXAMPLES

Numerical experiments on higher-order topological seritsithave been performed on the following
configuration (Fig[]1), previously used {n]15]. The referemlomair(2 is defined by =0, 1[x]0, 1[.
The boundary conditions are as follows: a potentfal= 0 is applied onSl(jl) and 5532), and a flux
pP =10nS{ andph =2 on S'. The remaining pars\ (SY’ U S USY U SY) of the bound-
ary is insulated ° = 0). Numerical experiments on th@(s*) expansion of potential energy (9),
(£9), including comparisons with results using the defeatd (<*) term of [I}], are first reported in
Sec[8]L. Then, the usefulness of the*) expansion of least-squares output misfit functign (9Y, (11)
for computationally-fast identification of buried inclosis is demonstrated in S¢c.]8.2

Solutionsu and (u*, u*), corresponding to reference domain and perturbed confignsawith
one penetrable inclusion of finite size, are computed usistpadard boundary element method
(BEM), with piecewise-linear and piecewise-constantriméations, respectively, for potentials and
fluxes on boundaries and interfacess the Green’s function for the domain is not known in closed
form, the complementary pafic of the Green’s function is numerically evaluated by sohérngEM-
discretized version of integral equatidn](90) withaken in turn as each sampling poine G. As
the integral operatot in (B0) does not depend o this only entails computing a right-hand side
and performing a backsubstitution for eagcke G, and hence defines a computationally reasonable

task even for a dense search gé@d

uP=0
0.2 Sg) 0 ZL pD\:ZS(NZ)
Q
.
<&
pD::LT O a2
. 2)_0.2

L 7 S(D o

S\

Figure 1: Numerical examples: geometry and boundary conditionsdfarence configuration.
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Figure 2: Small-inclusion expansion of potential energy: circulaold (3 = 0) located ata; =
(1/2,1/2).
8.1 Small-inclusion expansion of potential energy

In this section, the cost function is the potential enef@§8*), which for this example is given by

1
E(B*) == w*dl + w*dl’
2 Jgw 5@
N N

First, the case of an impenetrable circular inclusi@r=0) located ata; = (1/2, 1/2) is considered.
The correct value of (B.) for 0 < ¢ < 0.16 is compared on Fid] 2 to th@(s?) andO(s*) expansions

obtained using[(35) anfl (§9a—c) with= 0. TheO(s*) expansion is seen to approximates. ) very

-0.2

-0.215

-0.22

E(Q,)

-0.225

| [— Exact
023100 0(84) [Rocha de Faria et al.]

L= 0(84) [Present]

S I S N B
0 0.05 0.1

Figure 3: Small-inclusion expansion of potential energy: circulaslédn (3 = 0) located atas =
(0.15, 0.2).
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9

Figure 4: Small-inclusion expansion of potential energy: distribatof || Vu||? over(.

f .

0.3 0.4 0.5 0.6

well for the considered range of inclusion sizes, while gseeted theO(<2?) expansion performs
well over a narrower inclusion size range (note that for #rgdst value = 0.16 the inclusion is
relatively large as its diameter is nearly one-third of tlverall domain linear size). This example
(with the same inclusion location) was also considered B, [vhere theO(s*) expansion com-
puted on the basis of (71), which is missing a term propoalienVu(a) -V, V:Gc(a,a) - Vu(a),
was found to perform similarly well. In contrast, a companof the results obtained for the in-
clusion locationay; = (0.15, 0.2) using either the present expressipn [70bYpfr (71) reveals a

noticeably larger error when using the latter (see Big.T3)e higher discrepancy in the latter case

-0.21

-0.216

/\w -
C -0.218 .
N—r
L
0.22- — Exact o -
2.
FOO O(E)
B} n 0(84)
N T S S T N S S SO AN S T SR SRR SR
0.22% 0.04 0.08 0.12 0.16 0.2

Figure 5: Small-inclusion expansion of potential energy: circulangtrable inclusion = 0.6)
located atasz = (0.75, 0.65).
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€

Figure 6: Small-inclusion expansion of potential energy: circul@ngtrable inclusion/f = 5) lo-

cated atas = (0.15, 0.2).

stems from the combined effect on the value takerMy(a)-V,VGc(a,a)- Vu(a) of (i) the
complementary Green’s function and its gradients takingelavalues closer to the boundary (here
V2V eGelar,ar)| = 543 but |V, VGc(asz, az)|| = 3.95) and (i) | Vu(a;)|| happening to be
significantly smaller thafi Vu(as)|| (see Fig[R).

Next, the case of a penetrable circular inclusiér=(0.6) located ats = (0.75, 0.65) is consid-
ered. The correct value ¢f(B.) for 0 < e < 0.16 is compared on Fid]5 to the presents?) and
O(e*) expansions based on a small circular inclusion with 0.6. Finally, the same comparison is
performed on Fid]6 for the case of a penetrable circulaugich (3 = 5) located ata, = (0.15, 0.2),
for inclusion sizes such thaét < ¢ < 0.12. In both cases, the presedts*) expansion is seen to
provide a very good approximation 6{ B.). Note that the largest size= 0.12 considered in the

latter case corresponds to a relatively large inclusiorcivig very close to the external boundary.

8.2 Computationally-fast identification of hidden inclusion

Now, the inverse problem consisting of identifying a burieclusion (with geometrical suppoR"Ue
and conductivity contrast) from measurements on the boundary is considered, withetine £x-
ample geometry and boundary conditions as before. It isditiad assumed that the overdetermined
boundary data used for inclusion identification consista kifiown value.°Ps of potentialu over the
complete Neumann surfac®. The output least-squares misfit function is thus

s = 5 [ €)oo,
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i.e. corresponds tey defined by [I1) andp = 0. Of course, the data®®s could be used for
inclusion identification purposes in many other ways. Thgpse of this example is to demonstrate

the usefulness of @(c*) expansion of7, s for fast, non-iterative identification of a hidden inclusio

8.2.1 Approximate global search procedure. Define a fine search gri@, i.e. a (dense) discrete
set of sampling pointa spanning (part of) the interior d2. To minimize w.r.t. ¢ an expansion of
the form (5%) of 7. s at a given sampling point is a simple and computationally Vight task that
can be easily performed for ail € G, thereby defining an approximate global search procedwe ov
the spatial region thus sampled. The best estimate of theowrk inclusion 3" € yielded by this
procedure is defined by the locatian= x®'and sizes = R®S'achieving the lowest value of;(c; a)
overG, i.e. given by

est

x®' = arg min J™"(a), R®'= R(x*®, (91)
acG

with functionsJ™"(a) and R(a) defined through a partial minimization d§(s; @) w.r.t. ¢, i.e.:

JMN(@) = min Ji(g;a), R(a) = arg min Jy(g; a). (92)

£

The estimated locatior®s and sizeR®s can then be used as either an stand-alone estimate of the

sought inclusion or as an initial guess for a subsequentagiim/ersion algorithm. The constitutive

characteristics of the inclusion are assumed (i.e. notetdess unknowns in the search). The influence

of such assumption on the accuracy of estimaf®§ R®Stis examined in the last part of this section.
The definition [9R) of function/™"(a) is valid only at sampling pointa where7;(a) < 0 and

74(a) > 0 (assuming the trial inclusion to be centrally-symmetré&s.J4(¢; a) (i) has no lower bound

if 74(a) <0, or (i) is minimum ate = 0 if 73(a) > 0 and74(a) > 0. These conditions were found to

be met at alla € G for all of the following examples.

8.2.2 Numerical results for inclusion identification. The above-described approximate global
search procedure is here applied to the identification, orulated data, of an inclusion centered
at '™ = (0.41, 0.595). This inclusion location (remote from the boundary, and irtipalar from
the region where fluxes are applied) was chosen so as to ¢égstdhosed approximate global search
procedure on a case where the boundary data is rather itigensidetails of the inclusion shape.
Three inclusion shapes are considered: a circular inglusith radius R = 0.06 (inclusion 1),
an elliptical inclusion with semiaxgsA™®, B™€) = (0.06, 0.015) and principal axes rotated by/6
(inclusion 2) and27 /3 (inclusion 3). For each inclusion, three possibilities ohductivity contrast
puve = 0, pive = 0.6, g™ = 3.5 are considered, and synthetic dat®® is computed for each
case (using again a BEM model with 100 elementsScend 100 on™). This defines overall nine

configurations of unknown inclusions, labelled 1a to 3c. areh gridG of 51 x 51 regularly spaced
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sampling points covering the square regibh < z1,x2 < 0.9 is defined (the grid spacing is hence

Awl = AI‘Q = 0.016).

Identification using noise-free synthetic dataA first set of results was obtained by assuming knowl-
edge of the correct valug™ e of conductivity contrast of the inclusion. Results obtaire terms of
x®Stand R®S for all nine configurations 1a to 3c for noise-free synthelita are given in Tablg 1.
For comparison purposes, the ‘true’ radi@€"® is defined as the radius of the disk having the same
area asB'™e, i.e. R"™®€ = 0.06 for inclusion 1 andR™® = 0.03 for inclusions 2,3. Additionally, the
function.J™"(a), shown together with the outline &'"“® on Figs[¥[BB[]9, is seen in all cases to attain

values close to its global minimum only in the vicinity of thetual inclusion.

Identification using noisy synthetic dataThe effect of imperfect data is now tested, for inclusion 3,

by defining a perturbed versia”s of u°*S according to

obs — uobs

b
Ug + ox|lu—u° SHL?(SN)

wherey is a uniform random variable with zero mean and unit standakdation, and is here set
to 0.2. Results obtained in terms #fStand R®'and of the function/™"(a), respectively shown
in Table[? and Fig[ 30, are very similar to the correspondingsdfor noise-free data. The proposed
approximate global search method thus appears to be onlgnatetly sensitive to the adverse effect

of measurement noise.

Influence of the conductivity contrastFinally, the approximate global search procedure based on

Jy4(g;a) has been performed on configurations 1a, 1b and 1c for valugsspanning the interval

inclusion 1| gi¢=0 Bive=0.6 puve =5
2t | (0.404,0.596) (0.404,0.596) (0.420,0.596)
Rest 6.15e-02 6.06e-02 5.89e-02
inclusion 2|  give=0 Bite=0.6 puve=s5
2°' | (0.404,0.580) (0.404,0.596) (0.420,0.596)
Rest 2.42e-02 2.82e-02 3.63e-02
inclusion 3|  B¢=0 1€ =0.6 pre=5
2t | (0.404,0.596) (0.420,0.596) (0.404,0.596)
Rest 4.80e-02 3.22e-02 2.61e-02

Table 1: Identification of buried circular or elliptical inclusionestimated locatior:®*s'and sizeR®s!
(noise-free synthetic data); reference values B¢ = 0.06 (inclusion 1),R"™® = 0.03 (inclusions
2,3) andz'™e = (0.41, 0.595).
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inclusion 3|  pve=( Bite=0.6 puve=s5
2t | (0.404,0.596) (0.404,0.612) (0.404,0.596)
Rest 4.78e-02 3.28e-02 2.62e-02

Table 2: Identification of inclusion 3 (elliptical): estimated loidan 2®tand sizeR®s! (noisy synthetic

data, with 20% noise on°**— v); reference values ar&"™¢ = 0.03 and "¢ = (0.41, 0.595).

0 < B < 5 to examine the effect of incorrect assumed valueg oh the method. The estimated
location z® as given in Tabl¢]1 was obtained for alin the following intervals:0 < 3 < 0.5
(inclusion 1a),0 < G < 0.7 (inclusion 1b) and.5 < g < 5 (inclusion 1c); in addition3 = 0.8, 0.9
yielded z®t = (0.420, 0.596) for inclusion 1b. In other words, the inclusion is acceptabkated
for large ranges of trial values @f containing the correct valug™®. The estimated siz&°®S' was
found to depend on the assumed valugsofindeed, expression§ (36a—c)Bf, 7, suggest that the
expansion is primarily sensitive to the value of combinatid; <2, where.A; is the polarization
tensor [5Ja); note in particular thHt and Q depend linearly ond,;, see [§7). For the case of a

circular trial inclusion, expansiof (¢; @) can indeed be put in the form

J4(6; a’) = CLC(&, B) + bcz(g, B) + CC(&, B)62’ C(&, B) =

€ (93)

05 0.6 07

true _
crue =3.5
Figure 7: Identification of inclusion 1 (circular): distribution of ™" over search gridG, and outline

of true inclusion.
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whereC'(e, 8)I = A%, see [6p). FigurE 11 shows that R*s{3), 3) is, for this example, largely
insensitive to the assumed value®fThis is consistent with other asymptotic approaches tiogian
identification which show that the main identifiable featafesmall buried inclusions is their polar-
ization tensor[[44]. Moreover, an elementary calculatithoves to show (again assuming a circular
trial inclusion) that/™"(a) evaluated at a fixed sampling poiatis either increasing or decreasing
with 3, i.e. is minimum w.r.t,3 for either = 0 (impenetrable inclusion) g =-+cc.

Extending the approximate global search procedure propiosthis section to the identification
of two (or more) inclusions is not straightforward, as onaugldhave to either (i) consider gkirs of
sampling pointga’, a”) € G x G (entailing a computing time proportional to teguareof the search

grid size), or (ii) define an alternating iterative methodenghone inclusion is sought at a time.

9 CONCLUSIONS

In this article, extending previous work on topological siévity, a methodology for expanding to
orderO(s*) a generic cost function under the nucleation of a small siolu of characteristic size

has been developed, in the context of 2-D media charaatkebyea scalar conductivity coefficient.
General formulae have been provided, where an adjointisolig used to simplify the procedure

through avoiding evaluation of higher-order topologicahstivities of field variables. Our approach
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Figure 11: Identification of hidden circular inclusion (R*{(;3), 8) againstg for inclusions 1a, 1b

and 1c (noise-free data).

was in particular shown to lead to useful computationattegias for computationally fast inclusion
identification problems, in the form of a non-iterative fapproximate global search algorithm. The
methodology used here is generic, and is therefore expeotgild similar expansions for other
cases, e.g. penetrable elastic inclusions under statigramaic conditions, which will be addressed

in forthcoming investigations.

Appendix A EXACT SOLUTIONS

LetQ = {(r,) | r <b} (where(r,0) are polar coordinates) denote the disk of radiusntered at the

origin.

Green’s functions for Dirichlet and Neumann problems. Define Green'’s function§(x, &) by

0(.6) = G(.6) + Ge(.6).  Golw.§) =Fg-loa(zrr).  (AD

where the ‘-’ and ‘+' sign correspond to the cas#s= S, Sp = 0 (G = G\, Neumann) andp =

S, Sy =0 (G =GP, Dirichlet), and with the definitions

r=|[¢-=z|, R=|&- 0 |z|Hz||

The respective boundary conditions satisfiedsea {(r,6) | r = b} by G° andgN are:

GP(z,&) =0, HV(z, &) = (€€8) (A.2)

 27b
On evaluating analyticall’ . V G'c and settinge = £ = a for an arbitrary sampling point if?, one
finds

1 b?

V.V:GR = -V,V:GN S
13 C(a> a’) 13 C(a’> a’) 2o (bg - HaHQ)Q

(A.3)
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Potential and its small-inclusion expansion. Consider a circular inclusiol. located at the disk

center, i.e. choose = 0 and setB. = {(r,0)|r < €}. The solutionsu{™*? of the Laplace

transmission problem defined Hy () (4) witt = B. and respective boundary conditions

ul = ugcosd  (onS), kVul.n = (kug/b) cos 6 (onS), (A4)
A4
ul® = ugcos20 (ons), EVul®.n = 2(kug/b) cos 20 (on S)
are respectively given by
OIS O ol/) B G e /) B
u, ug T 02 /2 b cos 0, u, U T 022 b s6, s
2 2 :
®_, A+n) @ _, 1+
Uy u01+n€4/b4 = cos 26, Uy uol—ns4/b4 72 cos 26
inside the inclusion, and by
1+ne2/r2r 1+ne2/r2r
(@) — g "= 17 T g (€) — g "= 17 T g
Uy ug 022 b cos 0, Uy U =022 b cos b, "6
4.4 .2 4.4 .2 :
() — i/ 20, ul® = L+ ne Jr T cos 26

I U T e T U0 T A

in the surrounding medium, having put
_1-p
144

The respective reference solutiomsvhen there is no inclusion (defined up to an arbitrary adelitiv

Ui

constant for cases (c) and (d)) are characterized by

2

u(®©) (r,0) = % cos 6, u(td) (r,0) = uzg cos 20,
Vu(a,c)(a) _ %e% Vu(b’d)(a) -0, (A.7)
o 2u0
V2u( , )(a) _ 07 V2u(b7d)(a) = b—2(em®ex — ey®ey),

wheree,, e, are unit vectors such thgt=r(cos fe, + sin fe,).

Potential energy and its small-inclusion expansion. The potential energies for the respective

problems are, together with their(s*) expansions, easily obtained from solutiohs JA.6) as

kmu2 1—ne? /b? kmu? g2 et
(@)= 0-—" = 0(1—-2n—= +2n>— 4 A.
£4(Be) 2 1+ne2 /b2 2 < My + 20 b4) +o(e’) (A.82)
1—net /b g4
krud 1+ne? /b2 kru? g2 et
(c) - _ 0 _ 0 e 2€ 4
£)(B.) R To(14 g 4ot ) +oleh) (A8
1+net /b4 et

An evaluation of expression§ (T0a,b) of coefficiefiis7; using [A.3) fora = 0 together with for-
mulae [AY) yieldsO(s*) expansions of (¢4 (B,) that are identical with[(A-§a—d). These special
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cases thus corroborate Propositfpn 3. Likewise, it is easheck that the alternative formulp]71)
from [L3] does not yield the correct value of tliEs*) contribution to the expansion &f(B.) for

cases (a,c) where the omitted contributiorNoéi(a) -V, VGc(a, a)-Vu(a) is nonzero.

Appendix B DETERMINATION OF U, s AND ASSOCIATED CONSTANT TENSORS

The vector and tensor functiorig;, U, Us introduced in Sed. 4.3 can be interpreted as solutions to
transmission problems in infinite media containing a noizedl penetrable inclusion, of the form
E(VU)mn =k*V({U-U";-n (0ndA),

EAU =0 (in R*\ ),
Un = Ui (on04A),

U=0(gl™) (€]l — o0),
(B.1)

EAU-U% =0 (in4%),

where U, analogous to a prescribed initial strain in elasticitygigen on%. To establish this

interpretation, one first establishes the weak formulation
AU W) = / BEVUC. VW dV, (B.2)
2

with the bilinear formA(-, -) defined for trial functions?’ continuous acros8% by

AU, W) = /

EVU-VW dV + / BEVU-VW dV (B.3)
RAZ 7
and with3 = k* /k, by means of the following steps: (i) multiply the field edaas in (B.]) by a trial
function W (assumed to be continuous acrds® and to suitably decay at infinity), (ii) integrate the
resulting identities by parts, (iii) add them and (iv) ineothe transmission conditions jn (B.1).
Next, settingl” = G(z, -) with & € %, one finds the identity
/ EVU-VG(,) dV + / KVO.VG(, ) dV = UE)  (3€5)
R2\% 7
by (i) integrating by parts via the divergence theorem,giiploiting the field equatiohAG(z, -) +
d(- — x) verified by the full-space Green’s function and (iii) invogithe continuity betweefi and
U ond4. On settinglV = G(z, -) and substituting the above identity info (B.2), one therefinds

thatU is governed by the integral equation

U(z) (l—ﬁ)k/%VU(E)-VG(:c,E) dv; = ﬁL/j VUE) VG(#.6) dV:  (zcB). (BA)
The governing integral equatior[s (#9a—c) @y, U, Us are then seen to be of the forfn (B.4) with
- e V- rEeE  UO-rEeies (@9

respectively (using tensor notation).

U°(e)
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Determination of U1, Uy, Us for circular inclusions. One approach for determining auxiliary
solutions U+, U,, Uz consists in using separation of variables in polar cootdmairectly in the
set [B.]) of field equations and transmission conditionsh) @i given by [B.5). Expression§ (65a,b)
and [6}) are then found after some straightforward manijoula

Alternatively, elementary analytical integration margiions yield formulae

28] (2) = %53, (B.6a)
LE08)]@) =S [sez+(a]-21], (8.60)
LEeEod)@) =" |zozaa+ (] - DK@)| (B.6¢)

(with 1C(z) defined as in[(§7)) which then allow direct verification of fhet that expression§ (65a,b)
and [6¥) satisfy equation§ (49a-c).

Appendix C THE CASE OF A CENTRALLY-SYMMETRIC INCLUSION

WhenZ has central symmetry (i.e. ff € # < —€& € %), the constant tensod,, defined by |[(51b)
vanishes. Denoting by : £ — o€ = —£ the central-symmetry linear mapping, {&t= %' U %",

with " = 0%’ and %’ N %" = (). The mappingr is in particular such that

dv(o&) = dV(é) (€.1)
Lemma 7. SolutionU, is symmetric:Us (&) = Uz (§).

Remark 5. By virtue of LemmpB7, one h&8 U (c€) = —V U, () and

Ay — L VU(E) Ve = [ [VUE) + VUs(o€)] AV = 0

ﬂ/

Proof. Let U$"®"and 14399, the even and odd parts &1, be defined by:

(U(&) — U(0€)) (C.2)

DO | —

US'NE) = 5 (Ua(E) + Us(0€)),  USYE) =

DO | —

These definitions imply that

US"og) = US™NE), U(€) = —U3™e) (C.3)
VUsog) = -V USE), VU og) = vuse) (C.4)

Now, on inserting the decompositiolls = US"®"+ US% in integral equation[(49b), writing the
resulting equations for a pair of symmetrical collocatiarings  and oz (z € %4’), using prop-

erty (C-3), and noting that the distance function and thel&mmental solutioiZ(z, &) defined by [3B)

satisfy

loz —¢| =z —o€ll,  VG(oz,§) = -VG(z,08)
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the following pair of integral equations is arrived at:

[( even) ueven] j;) [ odduodd] 56 % [ *%;an(é ® E)] (56) (7 %,) (C 5)
T c .
(7~ L5 US™ () + [£5Us™) (@) = 5 [L51E 8] (@)

with the definitions

(L57f) @) = [La []@) + [Lop [](02)  [L57f](@) = [Lon [](@) = [Lonf] (o)

On taking the difference of equatiorfs (IC.5), one obtains

[ odduodd]
Hence,US%(€) = 0, i.e. Us has the desired symmetry. O
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