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Introduction

In 1939, T. Carleman introduced some energy estimates with exponential weights to prove a uniqueness result for some elliptic partial differential equations (PDE) with smooth coefficients in dimension two [START_REF] Carleman | Sur une problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF]. This type of estimate, now referred to as Carleman estimates, were generalized and systematized by L. Hörmander and others for a large class of differential operators in arbitrary dimensions (see [START_REF] Hörmander | Linear Partial Differential Operators[END_REF]chapter 8] and [Hör85a, Sections 28.1-2]; see also [START_REF] Zuily | Uniqueness and Non Uniqueness in the Cauchy Problem[END_REF]).

In more recent years, the field of applications of Carleman estimates has gone beyond the original domain they had been introduced for, i.e., a quantitative result for unique continuation. They are also used in the study of inverse problems and control theory for PDEs. Here, we shall mainly survey the application to control theory in the case of parabolic equations, for which Carleman estimates have now become an essential technique.

In control of PDEs, for evolution equations, one aims to drive the solution in a prescribed state, starting from a certain initial condition. One acts on the equation through a source term, a so-called distributed control, or through a boundary condition, a so-called boundary control. To achieve general results one wishes for the control to only act in part of the domain or its boundary and one wishes to have as much latitude as possible in the choice of the control region: location, size.

As already mentioned, we focus our interest on the heat equation here. In a smooth and bounded 1 domain Ω in R n , for a time interval (0, T ) with T > 0, and for a distributed control we consider

             ∂ t y -∆y = 1 ω v in Q = (0, T ) × Ω, y = 0 on Σ = (0, T ) × ∂Ω, y(0) = y 0 in Ω.
(1.1)

Here ω ⋐ Ω is an interior control region. The null controllability of this equation, that is the existence, for any y 0 ∈ L 2 (Ω), of a control v ∈ L 2 (Q), with v L 2 (Q) ≤ C y 0 L 2 (Q) , such that y(T ) = 0, was first proven in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], by means of Carleman estimates for the elliptic operator -∂ 2 s -∆ x in a domain Z = (0, S 0 ) × Ω with S 0 > 0. A second approach, introduced in [START_REF] Fursikov | Controllability of evolution equations[END_REF], also led to the null controllability of the heat equation. It is based on global Carleman estimates for the parabolic operator ∂ t -∆. These estimates are said to be global for they apply to functions that are defined in the whole domain (0, T ) × Ω and that solely satisfy boundary condition, e.g., homogeneous Dirichlet boundary conditions on (0, T ) × ∂Ω.

We shall first survey the approach of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], proving and using local elliptic Carleman estimates. We prove such estimates with techniques from semi-classical microlocal analysis. The estimates we prove are local in the sense that they apply to functions whose support is localized in a closed region strictly included in Ω. With these estimates at hand, we derive interpolation inequalities for functions in Z = (0, S 0 ) × Ω, that satisfy some boundary conditions, and we derive a spectral inequality for finite linear combinations of eigenfunctions of the Laplace operator in Ω with homogeneous Dirichlet boundary conditions. This yields an iterative construction of the control function v working in increasingly larger finite dimensional subspaces.

The method introduced in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] was further extended to address thermoelasticity [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF], thermoelastic plates [START_REF] Benabdallah | Null controllability of a thermoelastic plate[END_REF], semigroups generated by fractional orders of elliptic operators [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF]. It has also been used to prove null controllability results in the case of non smooth coefficients [START_REF] Benabdallah | On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]. Local Carleman estimates have also been central in the study of other types of PDEs for instance to prove unique continuation results [START_REF] Saut | Unique continuation for some evolution equations[END_REF][START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF][START_REF] Fabre | Prolongement unique des solutions de l'equation de Stokes[END_REF][START_REF] Tataru | Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem[END_REF][START_REF] Tataru | Carleman estimates and unique continuation for the Schroedinger equation[END_REF] and to prove stabilization results [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF] to cite a few. Here, we shall consider self-adjoint elliptic operators, in particular the Laplace operator. The method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] can also be extended to some non selfadjoint case, e.g. non symmetric systems [START_REF] Léautaud | Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems[END_REF].

In a second part we survey the approach of [START_REF] Fursikov | Controllability of evolution equations[END_REF], that is by means of global parabolic Carleman estimates. These estimates are characterized by an observation term. Such an estimate readily yields a so-called observability inequality for the parabolic operator, which is equivalent to the null controllability of the linear system (1.1). The proof of parabolic Carleman estimates we provide is new and different from that given in [START_REF] Fursikov | Controllability of evolution equations[END_REF]. In [START_REF] Fursikov | Controllability of evolution equations[END_REF] the estimate is derived through numerous integrations by parts and the identification of positive "dominant" terms. As in the elliptic case of the first part, we base our analysis on semi-classical microlocal analysis. In particular, the estimate is obtained through a time-uniform semi-classical Gårding inequality. In the case of parabolic operators, we first prove local estimates and we also show how such estimates can be patched together to finally yield a global estimate with an observation term in the form of that proved by [START_REF] Fursikov | Controllability of evolution equations[END_REF].

The approach of [START_REF] Fursikov | Controllability of evolution equations[END_REF] has been successful, allowing to also treat the controllability of more general parabolic equations. Time dependent terms can be introduced in the parabolic equation. Moreover, one may consider the controllability of some semi-linear parabolic equations. For these questions we refer to [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF]. In fact, global Carleman estimates yield a precise knowledge of the "cost" of the control function in the linear case [START_REF] Fernández-Cara | The cost of approximate controllability for heat equations: the linear case[END_REF] which allows to carry out a fix point argument after linearization of the semi-linear equation. The results on semi-linear equations have been extended to the case of non smooth coefficients [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF][START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF]Le 07,[START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. The use of global parabolic Carleman estimates has also allowed to address the controllability of non linear equations such as the Navier-Stokes equations [START_REF] Yu | Remarks on the exact controllability of Navier-Stokes equations[END_REF][START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], the Boussinesq system [START_REF] Fernández-Cara | Some controllability results for the N-dimensional Navier-Stokes and Boussinesq systems with N -1 scalar controls[END_REF], fluid structure systems [START_REF] Yu | Exact controllability of a fluid-rigid body system[END_REF][START_REF] Boulakia | Local null controllability of a two-dimensional fluid-structure interaction problem[END_REF], weakly coupled parabolic systems [de 00, ABDK05, ABD06, GBPG06] to cite a few. A review of the application of global parabolic Carleman estimates can be found in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and application to controllability[END_REF].

A local Carleman estimates takes the following form. For an elliptic operator P and for a well-chosen weight function ϕ = ϕ(x), there exists C > 0 and h 1 > 0 such that h e ϕ/h u 2 0 + h 3 e ϕ/h ∇ x u 2 0 ≤ Ch 4 e ϕ/h Pu 2 0 , (1.2) for u smooth with compact support and 0 < h ≤ h 1 .

In this type of estimate we can take the parameter h as small as needed, which is often done in applications to inverse problems or control theory. For this reason, it appeared sensible to us to present results regarding the optimality of the powers of the parameter h in such Carleman estimates. For example, in the case of parabolic estimates this question is crucial for the application to the controllability of semilinear parabolic equations (see e.g. [START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF]). To make precise such optimality result we present its connection to the local phase-space geometry. We show that the presences of h in front of the first term and h 3 in front of the second term in (1.2) are connected to the characteristic set of the conjugated operator P ϕ = h 2 e ϕ/h Pe -ϕ/h . Away from this characteristic set, a better estimate can be achieved.

If ω is an open subset of Ω, from elliptic Carleman estimates we obtain a spectral inequality of the form

u 2 L 2 (Ω) ≤ Ce C √ µ u 2 L 2 (ω)
, for some C > 0 and for u a linear combination of eigenfunctions of -∆ associated to eigenvalues less than µ > 0. An optimality result for such an inequality is also presented as well as some unique continuation property for series of eigenfunctions of -∆. This spectral inequality is also at the center of the construction of the control function of (1.1) and the estimation of its "cost" for particular frequency ranges.

An important point in the derivation of a Carleman estimate consist in the choice of the weight function ϕ. A necessary condition can be derived. This condition concerns the sub-ellipticity of the symbol of the conjugated operator P ϕ . With the approach we use, the sufficiency of this condition is obtained. We also consider stronger sufficient conditions: the method introduced by [START_REF] Fursikov | Controllability of evolution equations[END_REF] to derive Carleman estimates is analyzed in this framework.

This article originates in part from a lecture given by G. Lebeau at the Faculté des Sciences in Tunis in February 2005 and from M. Bellassoued's handwritten notes taken on this occasion [START_REF] Lebeau | Cours sur les inégalités de Carleman. Mastère "Equations aux Dérivées Partielles et Applications[END_REF].

1.1. Outline. We start by briefly introducing semi-classical pseudodifferential operators (ψDO) in Section 2. The Gårding inequality will be one of the important tools we introduce. It will allow us to quickly derive a local Carleman estimate for an elliptic operator in Section 3. In that section, we present the subellipticity condition that the weight function has to fulfill. We also show the optimality of the powers of the semi-classical parameter h in the Carleman estimates. We apply Carleman estimates to elliptic equations and inequalities and prove unique continuation results in Section 4. In Section 5, we prove the interpolation and spectral inequalities. The latter inequality concerns finite linear combinations of eigenfunctions of the elliptic operator. We show the optimality of the constant e C √ µ in this inequality where µ is the largest eigenvalue considered in the sum. We also prove a unique continuation property for some series of such eigenfunctions. In Section 6, these results are applied to construct a control function for the parabolic equation (1.1). Section 7 is devoted to parabolic Carleman estimates. We first prove them locally in space with a uniform-in-time Gårding inequality. We then patch them together to obtain a global estimate. We provide a second proof of the null controllability of parabolic equations with this approach.

For a clearer exposition, some of the results given in the main sections are proven in the appendices. 

:= (1 + |ξ| 2 ) 1 2 . If α is a multi-index, i.e., α = (α 1 , . . . , α n ) ∈ N n , we introduce ξ α = ξ α 1 1 • • • ξ α n n , if ξ ∈ R n , ∂ α = ∂ α 1 x 1 • • • ∂ α n x n , D α = D α 1 x 1 • • • D α n x n , and |α| = α 1 + • • • + α n , where D = h i ∂.
In R n , we denote by ∇ the gradient (∂ x 1 , . . . , ∂ x n ) t and by ∆ the Laplace operator ∂ 2

x 1 +• • •+∂ 2
x n . If needed the variables along which differentiations are performed will be made clear by writing ∇ x or ∆ x for instance. We shall also write ϕ

′ = ∇ x ϕ.
For an open set Ω in R n , we denote by

C ∞ c (Ω) the set of functions of class C ∞ whose support is a compact subset of Ω. For a compact set K in R n , we denote by C ∞ c (K) the set of functions in C ∞ c (R n ) whose support is in K. The Schwartz space S (R n ) is the set of functions of class C ∞ that decrease rapidly at infinity. Its dual, S ′ (R n ), is the set of tempered distributions. The Fourier transform of a function u ∈ S (R n ) is defined by û(ξ) = ∫ e -i x,ξ u(x) dx, with an extension by duality to S ′ (R n ).
Let Ω be an open subset of R n . The space L 2 (Ω) of square integrable functions is equipped with the hermitian inner product (u, v) L 2 = ∫ Ω u(x)v(x) dx and the associated norm

u L 2 = u 0 = (u, u) 1/2 L 2 . In R n , classical Sobolev spaces are defined by H s (R n ) = {u ∈ S ′ (R n ); ξ s û ∈ L 2 (R n )} for all s ∈ R. In Ω, for s ∈ N, H s (Ω) is defined by H s (Ω) = {u ∈ D ′ (Ω); ∂ α u ∈ L 2 (R n ), ∀α ∈ N n , |α| ≤ s}.
For two functions f and g with variables x, ξ in R n × R n , we defined their so-called Poisson bracket

{ f, g} = j (∂ ξ j f ∂ x j g -∂ x j f ∂ ξ j g).
For two operators A, B their commutator will be denoted [A, B] = AB -BA.

In these notes, C will always denote a generic positive constant whose value can be different in each line. If we want to keep track of the value of a constant we shall use other letters. We shall sometimes write C λ for a generic constant that depends on a parameter λ.

Preliminaries: semi-classical (pseudo-)differential operators

Semi-classical theory originates from quantum physics. The scaling parameter h we introduce is consistent with Plank's constant in physics. It will be assumed small: h ∈ (0, h 0 ), 0 < h 0 << 1. We set D = h i ∂. The semi-classical limit corresponds to h → 0.

If p(x, ξ) is a polynomial in ξ of order less than or equal to m, x, ξ ∈ R n , p(x, ξ) = |α|≤m a α (x)ξ α , we set

p(x, D)u = |α|≤m a α (x)D α u.
Here, α is a multi-index. We observe that

D α u = h |α| (2π) n ∫ R n e i x,ξ ξ α û(ξ) dξ, for u ∈ S (R n )
, where û is the classical Fourier transform of u. We thus have

p(x, D)u(x) = |α|≤m h |α| (2π) n ∫ e i x,ξ a α (x)ξ α û(ξ) dξ = (2πh) -n ∫ e i x,ξ /h |α|≤m a α (x)ξ α û(ξ/h) dξ,
or, formally, p(x, D)u(x) = (2πh) -n ∫∫ e i x-y,ξ /h p(x, ξ) u(y) dy dξ. More generally we introduce the following symbol classes.

Definition 2.1. Let a(x, ξ, h) ∈ C ∞ (R n × R n ),
with h as a parameter in (0, h 0 ), be such that for all multiindices α, β we have

|∂ α x ∂ β ξ a(x, ξ, h)| ≤ C α,β ξ m-|β| , x ∈ R n , ξ ∈ R n , h ∈ (0, h 0 ). We write a ∈ S m .
For a ∈ S m we call principal symbol the equivalence class of a in S m /(hS m-1 ).

Lemma 2.2. Let m ∈ R and a j ∈ S m-j with j ∈ N. Then there exists a ∈ S m such that

∀N ∈ N, a - N j=0 h j a j ∈ h N+1 S m-N-1 .
We then write a ∼ j h j a j . The symbol a is unique up to O(h ∞ )S -∞ , in the sense that the difference of two such symbols is in O(h N )S -M for all N, M ∈ N.

We identify a 0 with the principal symbol of a. In general, for the symbols of the form a ∼ j h j a j that we shall consider here the symbols a j will not depend on the scaling parameter h.

With these symbol classes we can define pseudodifferential operators (ψDOs).

Definition 2.3. If a ∈ S m , we set a(x, D, h)u(x) = Op(a)u(x) := (2πh) -n ∫∫ e i x-y,ξ /h a(x, ξ, h) u(y) dy dξ

= (2πh) -n ∫ e i x,ξ /h a(x, ξ, h) û(ξ/h) dξ.
We denote by Ψ m the set of these ψDOs. For A ∈ Ψ m , σ(A) will be its principal symbol.

We have Op(a) : S (R n ) → S (R n ) continuously and Op(a) can be uniquely extended to S ′ (R n ). Then Op(a) :

S ′ (R n ) → S ′ (R n ) continuously.
Example 2.4. Consider the differential operator defined by A = -h 2 ∆+V(x)+h 2 1≤ j≤n b j (x)∂ j . Its symbol and principal symbol are a(x, ξ, h) = |ξ| 2 + V(x) + ih 1≤ j≤n b j (x)ξ j and σ(A) = |ξ| 2 + V(x) respectively.

We now introduce Sobolev spaces and Sobolev norms which are adapted to the scaling parameter h. The natural norm on L 2 (R n ) is written as

u 2 0 := ( ∫ |u(x)| 2 dx) 1 2 . Let s ∈ R; we then set u s := Λ s u 0 , with Λ s := Op( ξ s ) and H s (R n ) := {u ∈ S ′ (R n ); u s < ∞}.
The space H s (R n ) is algebraically equal to the classical Sobolev space H s (R n ). For a fixed value of h, the norm . s is equivalent to the classical Sobolev norm that we write . H s . However, these norms are not uniformly equivalent as h goes to 0. In fact we only have

u s ≤ C u H s , if s ≥ 0, and u H s ≤ C u s , if s ≤ 0. For s ∈ N the norm . s is equivalent to the norm N s (u) := |α|≤s D α u 2 0 = |α|≤s h 2|α| ∂ α u 2 0 .
The spaces H s and H -s are in duality, i.e. H -s = (H s ) ′ in the sense of distributional duality with L 2 = H 0 as a pivot space. We can prove the following continuity result.

Theorem 2.5. If a(x, ξ, h) ∈ S m and s ∈ R, we then have Op(a) : H s → H s-m continuously, uniformly in h.

The following Gårding inequality is the important result we shall be interested in here.

Theorem 2.6 (Gårding inequality). Let K be a compact set of R n . If a(x, ξ, h) ∈ S m , with principal part a m , if there exists C > 0 such that

Re a m (x, ξ, h) ≥ C ξ m , x ∈ K, ξ ∈ R n , h ∈ (0, h 0 ), then for 0 < C ′ < C and h 1 > 0 sufficiently small we have Re(Op(a)u, u) ≥ C ′ u 2 m/2 , u ∈ C ∞ c (K), 0 < h ≤ h 1 .
The positivity of the principal symbol of a thus implies a certain positivity for the operator Op(a). The value of h 1 depends on C, C ′ and a finite number of constants C α,β associated to the symbol a(x, ξ, h) (see Definition 2.1). A proof of the Gårding inequality is provided in Appendix A.

Remark 2.7. We note here that the positivity condition on the principal symbol is imposed for all ξ in R n , as opposed to the assumptions made for the usual Gårding inequality, i.e., non semi-classical, that only ask for such a positivity for |ξ| large (see e.g. [Tay81, Chapter 2]). The semi-classical result is however stronger in the sense that it yields a true positivity for the operator.

We shall compose ψDOs in the sequel. Such compositions yield a calculus at the level of operator symbols. 

c(x, ξ, h) = (a ♯ b)(x, ξ, h) ∼ α h |α| i |α| α! ∂ α ξ a(x, ξ, h) ∂ α x b(x, ξ, h), where α! = α 1 ! • • • α n !
The first term in the expansion, the principal symbol, is ab; the second term is

h i j ∂ ξ j a(x, ξ, h) ∂ x j b(x, ξ, h). It follows that the principal symbol of the commutator [Op(a), Op(b)] is σ([Op(a), Op(b)]) = h i {a, b} ∈ hS m+m ′ -1 .
Finally, the symbol of the adjoint operator can be obtained as follows.

Theorem 2.9. Let a ∈ S m . Then Op(a) * = Op(b) for a certain b ∈ S m that admits the following asymptotic expansion

b(x, ξ, h) ∼ α h |α| i |α| α! ∂ α ξ ∂ α x a(x, ξ, h).
The principal symbol of b is simply a.

For references on usual ψDOs the reader can consult [Tay81, Hör85b, AG91, GS94, Shu01]. For references on semi-classical ψDOs the reader can consult [Rob87, DS99, Mar02].

Local Carleman estimates for elliptic operators

We shall prove a local Carleman estimates for a second-order elliptic operator. To simplify notation we consider the Laplace operator P = -∆ but the method we expose extends to more general second-order elliptic operators with a principal part of the form i, j ∂ j (a i j (x)∂ i ) with a i j ∈ C ∞ (R n , R), 1 ≤ i, j ≤ n and i, j a i j (x)ξ i ξ j ≥ C|ξ|2 , with C > 0, for all x, ξ ∈ R n . In particular, we note that Carleman estimates are insensitive 2 to changes in the operator by zero-or first-order terms.

Let ϕ(x) be a real-valued function. We define the following conjugated operator P ϕ = h 2 e ϕ/h Pe -ϕ/h to be considered as a semi-classical differential operator. We have P ϕ = -h 2 ∆ -|ϕ ′ | 2 + 2 ϕ ′ , h∇ + h∆ϕ. Its full symbol is given by |ξ| 2 -|ϕ ′ | 2 + 2i ϕ ′ , ξ + h∆ϕ. Its principal symbol is given by

p ϕ = σ(P ϕ ) = |ξ| 2 -|ϕ ′ | 2 + 2i ϕ ′ , ξ = j (ξ j + iϕ ′ x j ) 2 ,
i.e., we have "replaced" ξ j by ξ j + iϕ ′ x j . In fact we note that the symbol of e ϕ/h D j e -ϕ/h is ξ j + iϕ ′ x j . We define the following symmetric operators Q 2 = (P ϕ + P * ϕ )/2, Q 1 = (P ϕ -P * ϕ )/(2i), with respective principal symbols q 2 = |ξ| 2 -|ϕ ′ | 2 , q 1 = 2 ξ, ϕ ′ . We have p ϕ = q 2 + iq 1 and

P ϕ = Q 2 + iQ 1 .
We choose ϕ that satisfies the following assumption.

Assumption 3.1 (L. Hörmander [START_REF] Hörmander | Linear Partial Differential Operators[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]). Let V be a bounded open set in R n . We say that the

weight function ϕ ∈ C ∞ (R n , R) satisfies the sub-ellipticity assumption in V if |ϕ ′ | > 0 in V and ∀(x, ξ) ∈ V × R n , p ϕ (x, ξ) = 0 ⇒ {q 2 , q 1 }(x, ξ) ≥ C > 0.
Remark 3.2. We note that p ϕ (x, ξ) = 0 is equivalent to |ξ| = |ϕ ′ | and ξ, ϕ ′ = 0. In particular, the characteristic set

Z = {(x, ξ) ∈ V × R n ; p ϕ (x, ξ) = 0} is compact as illustrated in Figure 1.
Assumption 3.1 can be fulfilled as stated in the following lemma whose proof can be found in Appendix A. Lemma 3.3 (L. Hörmander [START_REF] Hörmander | Linear Partial Differential Operators[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]). Let V be a bounded open set in R n and ψ ∈ C ∞ (R n , R) be such that |ψ ′ | > 0 in V. Then ϕ = e λψ fulfills Assumption 3.1 in V for λ > 0 sufficiently large.

p ϕ = 0 ϕ ′ (x) 0 Figure 1. Form of the characteristic set Z at the vertical of each point x ∈ V.
The proof of the Carleman estimate will make use of the Gårding inequality. In preparation, we have the following result proven in Appendix A that follows from Assumption 3.1. Lemma 3.4. Let µ > 0 and ρ = µ(q 2 2 + q 2 1 ) + {q 2 , q 1 }. Then, for all (x, ξ) ∈ V × R n , we have ρ(x, ξ) ≥ C ξ 4 , with C > 0, for µ sufficiently large.

We may now prove the following Carleman estimate. Theorem 3.5. Let V be a bounded open set in R n and let ϕ satisfy Assumption 3.1 in V; then, there exist

0 < h 1 < h 0 and C > 0 such that h e ϕ/h u 2 0 + h 3 e ϕ/h ∇ x u 2 0 ≤ Ch 4 e ϕ/h Pu 2 0 , (3.1) for u ∈ C ∞ c (V) and 0 < h < h 1 . Proof. We set v = e ϕ/h u. Then, Pu = f is equivalent to P ϕ v = g = h 2 e ϕ/h f or rather Q 2 v + iQ 1 v = g. Observing that (Q j w 1 , w 2 ) = (w 1 , Q j w 2 ) for w 1 , w 2 ∈ C ∞ c (R n ) we then obtain (3.2) g 2 0 = Q 1 v 2 0 + Q 2 v 2 0 + 2 Re(Q 2 v, iQ 1 v) = Q 2 1 + Q 2 2 + i[Q 2 , Q 1 ] v, v .
We choose µ > 0 as given in Lemma 3.4. Then, for h such that hµ ≤ 1 we have

h µ(Q 2 1 + Q 2 2 ) + i h [Q 2 , Q 1 ] principal symbol = µ(q 2 1 +q 2 2 )+{q 2 ,q 1 } v, v ≤ g 2 0 .
The Gårding inequality and Lemma 3.4 then yield

(3.3) h v 2 2 ≤ C g 2 0 .
We content3 ourselves with the norm in H 1 here and we obtain h e ϕ/h u

2 0 + h 3 ∇ x (e ϕ/h u) 2 0 ≤ Ch 4 e ϕ/h f 2 0 . We write ∇ x (e ϕ/h u) = h -1 e ϕ/h (∇ x ϕ)u + e ϕ/h ∇ x u, which yields h 3 e ϕ/h ∇ x u 2 0 ≤ Ch e ϕ/h u 2 0 + Ch 3 ∇ x (e ϕ/h u) 2 0 , since |∇ x ϕ| ≤ C. This concludes the proof.
Remark 3.6. With a density argument the result of Theorem 3.5 can be extended to functions u ∈ H 2 0 (V). However, here, we do not treat the case of functions in Remark 3.7. In the proof of Theorem 3.5 we have used Assumption 3.1. We give complementary roles to the square terms in (3.2), Q 1 u 2 0 and Q 2 u 2 0 , and to the action of the commutator i(

H 1 0 (V) ∩ H 2 (V).
[Q 2 , Q 1 ]u, u).
As the square terms approach zero, the commutator term comes into effect and yields positivity. A. Fursikov and O. Yu. Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF] have introduced a modification of the proof that allows to only consider a term equivalent to the commutator term without using the two square terms. This approach is presented below.

The following proposition yields a more precise result than the previous Carleman estimate and illustrates the loss of a half derivative in the neighborhood of the characteristic set Z . Proposition 3.8. Let s ∈ R and V be a bounded open set in R n and let ϕ satisfy Assumption 3.1 in V. Let χ 1 , χ 2 ∈ S 0 with compact supports in x. Assume that χ 1 vanishes in a neighborhood of Z and that χ 2 vanishes outside a compact neighborhood of Z . Then there exist C > 0 and 0 < h 2 < h 0 such that

Op( χ 1 )v 2 ≤ C P ϕ v 0 + h v 1 , and h 1 2 Op( χ 2 )v s ≤ C P ϕ v 0 + h v 1 , (3.4) for v ∈ C ∞ c (V) and 0 < h < h 2 .
This proposition is proven in Appendix A.5. We take χ 1 and χ 2 that satisfy the assumptions made in Proposition 3.8 and such that χ

1 + χ 2 = 1 in a neighborhood of V × R n . For v ∈ C ∞ c (V) we have Op(1 -χ 1 -χ 2 )v r ≤ C N,r,r ′ h N v r ′ for all N ∈ N and r, r ′ ∈ R. We thus obtain h 1 2 v 2 ≤ h 1 2 ( Op(1 -χ 1 -χ 2 )v 2 + Op( χ 1 )v 2 + Op( χ 2 )v 2 ) ≤ C P ϕ v 0 + h v 1 .
Choosing h sufficiently small we obtain

h 1 2 v 2 ≤ C ′ P ϕ v 0 , (3.5)
which brings us back to the last step in the proof of Theorem 3.5. Also note that (3.5) allows us to remove the second term in the r.h.s. in each inequalities in (3.4) and we thus obtain

Op( χ 1 )v 2 ≤ C P ϕ v 0 , and h 1 2 Op( χ 2 )v s ≤ C P ϕ v 0 . (3.6)
We have seen that the sub-ellipticity condition in Assumption 3.1 is sufficient to obtain a Carleman estimate in Theorem 3.5. In fact we can prove that this condition is necessary. We also note that the powers of the factors h in the l.h.s. of the estimate in Theorem 3.5 as well as in the second inequality in (3.6) are optimal: for instance, we may not have h 2α in front of the first term in inequality (3.1) with α < 1 2 . These two points are summarized in the following proposition.

Proposition 3.9. Let V be a bounded open set in R n , ϕ(x) ∈ C ∞ (R n , R), 0 < h 1 < h 0 and C > 0 such that for a certain α ≤ 1 2 we have h α e ϕ/h u 0 ≤ Ch 2 e ϕ/h Pu 0 , (3.7) for all u ∈ C ∞ c (V) and 0 < h < h 1 . Then α = 1 2 and the weight function ϕ satisfies Assumption 3.1 in V.
The reader is referred to Appendix A.6 for a proof.

3.1. The method of A. Fursikov and O. Yu. Imanuvilov. Following the approach introduced by A. Fursikov and O. Yu. Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF], we provide an alternative proof of Theorem 3.5 in the elliptic case. We use the notation of the proof of Theorem 3.5, and write

g + µh∆ϕv 2 0 = Q 2 v 2 0 + Q1 v 2 0 + (i[Q 2 , Q 1 ]v, v) + 2 Re(Q 2 v, µh∆ϕv), 0 < µ < 2. where Q1 = Q 1 -iµh∆ϕ and we obtain g + µh∆ϕv 2 0 = Q 2 v 2 0 + Q1 v 2 0 + h Re(Rv, v)
, where ρ = σ(R) = ({q 2 , q 1 } + 2µq 2 ∆ϕ). We have the following lemma, which proof can be found in Section A.4. Lemma 3.10. If ϕ = e λψ , then for λ > 0 sufficiently large, there exists C λ > 0 such that

ρ = {q 2 , q 1 } + 2µq 2 ∆ϕ ≥ C λ ξ 2 , x ∈ V, ξ ∈ R n .
With the Gårding inequality we then conclude that Re(Rv, v) ≥ C ′ v 2 1 , for 0 < C ′ < C λ and h taken sufficiently small. The Carleman estimate follows without using the square terms Q 2 v 2 0 and Q1 v 2 0 . In fact we write g + µh∆ϕv 2 0 ≤ 2 g 2 0 + 2µ 2 h 2 ∆ϕv 2 0 , and the second term in the r.h.s. can be "absorbed" by h v 2 1 for h sufficiently small. Remark 3.11. The method of A. Fursikov and O. Yu. Imanuvilov, at the symbol level, is a matter of adding a term of the form 2µq 2 ∆ϕ to the commutator symbol

i h [Q 2 , Q 1 ].
As the sign of q 2 ∆ϕ is not fixed, a precise choice of the value of µ is crucial.

In the proof of Lemma 3.3 in Section A.2 we in fact obtained the following condition on the weight function

(3.8) ∀(x, ξ) ∈ V × R n , q 2 (x, ξ) = 0 ⇒ {q 2 , q 1 }(x, ξ) ≥ C > 0.
which is stronger that the condition in Assumption 3.1, which reads

∀(x, ξ) ∈ V × R n , p ϕ (x, ξ) = 0 ⇒ {q 2 , q 1 }(x, ξ) ≥ C > 0.
Finally the condition of A. Fursikov and O. Yu. Imanuvilov, i.e., {q 2 , q 1 } + 2µq 2 ∆ϕ ≥ C ξ 2 is itself stronger than (3.8). The different conditions we impose on the weight function ϕ are sufficient to derive a Carleman estimate. We recall that the weaker condition, that of Assumption 3.1, is in fact necessary (see Proposition 3.9 and its proof in Section A.6). Condition (3.8) turns out to be useful in some situations, in particular to prove Carleman estimates for parabolic operators, such as ∂ t -∆, as it is done in Section 7.1.

Unique continuation

Let Ω be a bounded open set in R n . In a neighborhood V of a point x 0 ∈ Ω, we take a function f such that ∇ f 0 in V. Let p(x, ξ) be a second-order polynomial in ξ that satisfies p(x, ξ) ≥ C|ξ| 2 with C > 0. We define the differential operator P = p(x, ∂/i).

We consider u ∈ H 2 (V) solution of Pu = g(u), where g is such that |g(y)| ≤ C|y|, y ∈ R. We assume that u = 0 in {x ∈ V; f (x) ≥ f (x 0 )}. We aim to show that the function u vanishes in a neighborhood of x 0 .

We pick a function ψ whose gradient does not vanish near V and that satisfies ∇ f (x 0 ), ∇ψ(x 0 ) > 0 and is such that fψ reaches a strict local minimum at x 0 as one moves along the level set {x ∈ V; ψ(x) = ψ(x 0 )}. For instance, we may choose ψ(x) = f (x) -c|xx 0 | 2 . We then set ϕ = e λψ according to Lemma 3.3. In the neighborhood V (or possibly in a smaller neighborhood of x 0 ) the geometrical situation we have just described is illustrated in Figure 3.

We call W the region {x ∈

V; f (x) ≥ f (x 0 )} (region beneath { f (x) = f (x 0 )} in Figure 3). We choose V ′ and V ′′ neighborhoods of x 0 such that V ′′ ⋐ V ′ ⋐ V and we pick a function χ ∈ C ∞ c (V ′ ) such that χ = 1 in V ′′ . We set v = χu and then v ∈ H 2 0 (V).
Observe that the Carleman estimate of Theorem 3.5 applies to v by Remark 3.6. We have where the commutator is a first-order differential operator. We thus obtain

Pv = P( χu) = χ Pu + [P, χ]u, V ′ ∇ f ∇ϕ V ′′ ϕ(x) = ϕ(x 0 ) W f (x) = f (x 0 ) x 0 B 0 ϕ(x) = ϕ(x 0 ) -ε V S
h e ϕ/h χu 2 0 + h 3 e ϕ/h ∇ x ( χu) 2 0 ≤ C h 4 e ϕ/h χg(u) 2 0 + h 4 e ϕ/h [P, χ]u 2 0 ≤ C ′ h 4 e ϕ/h χu 2 0 + h 4 e ϕ/h [P, χ]u 2 0 , 0 < h < h 1 .
Choosing h sufficiently small, say h < h 2 , we may ignore the first term in the r.h.s. of the previous estimate.

We then write

h e ϕ/h u 2 L 2 (V ′′ ) + h 3 e ϕ/h ∇ x u 2 L 2 (V ′′ ) ≤ h e ϕ/h χu 2 0 + h 3 e ϕ/h ∇ x ( χu) 2 0 ≤ Ch 4 e ϕ/h [P, χ]u 2 L 2 (S ) , 0 < h < h 2 , where S := V ′ \ (V ′′ ∪ W)
, since the support of [P, χ]u is confined in the region where χ varies and u does not vanish (see the striped region in Figure 3).

For all ε ∈ R, we set V ε = {x ∈ V; ϕ(x) ≤ ϕ(x 0 ) -ε}. There exists ε > 0 such that S ⋐ V ε . We then choose a ball B 0 with center x 0 such that B 0 ⊂ V ′′ \ V ε and obtain

e inf B 0 ϕ/h u H 1 (B 0 ) ≤ Ce sup S ϕ/h u H 1 (S ) , 0 < h < h 2 .
Since inf B 0 ϕ > sup S ϕ, letting h go to zero, we obtain u = 0 in B 0 . We have thus proven the following local unique-continuation result.

Proposition 4.1. Let g be such that |g(y)| ≤ C|y|, x 0 ∈ Ω and u ∈ H 2 loc (Ω) satisfying Pu = g(u) and u = 0 in {x; f (x) ≥ f (x 0 )}, in a neighborhood V of x 0 . The function f is defined in V and such that |∇ f | 0 in a neighborhood of x 0 . Then u vanishes in a neighborhood of x 0 .

With a connectedness argument we then prove the following theorem.

Theorem 4.2 (A. Calderón theorem). Let g be such that

|g(y)| ≤ C|y|. Let Ω be an connected open set in R n and let ω ⋐ Ω, with ω ∅. If u ∈ H 2 (Ω) satisfies Pu = g(u) in Ω and u(x) = 0 in ω, then u vanishes in Ω.
Proof. The support of u is a closed set. Since F = supp(u) cannot be equal to Ω, let us show that F is open. It will then follow that F = ∅. Assume that fr(F) = F \ F • is not empty and chose x 1 ∈ fr(F). We set A := Ω \ F. We recall that we denote by B(x, r) the Euclidean open ball with center x and radius r.

There exists R > 0 such that B(x 1 , R) ⋐ Ω and x 0 ∈ B(x 1 , R/4) such that x 0 ∈ A. Since A is open, there exists 0 < r 1 < R/2 such that B(x 0 , r 1 ) ⊂ A. For r 2 = R/2 we have thus obtained r 1 < r 2 such that B(x 0 , r 1 ) ⊂ A, B(x 0 , r 2 ) ⋐ Ω, and x 1 ∈ B(x 0 , r 2 ).
We set B t = B(x 0 , (1t)r 1 + tr 2 ) for 0 ≤ t ≤ 1. The previous proposition shows that is u vanishes in B t , with 0 ≤ t ≤ 1, then there exists ε > 0 such that u vanishes in B t+ε . Since u vanishes in B 0 , we thus find that u vanishes in B 1 , and in particular in a neighborhood of x 0 that thus cannot be in fr(F). Hence F is open.

Interpolation and spectral inequalities

Let Ω be a bounded open set in R n , S 0 > 0 and α ∈ (0, S 0 /2). Let also Z = (0, S 0 ) × Ω and Y = (α, S 0α) × Ω. We set z = (s, x) with s ∈ (0, S 0 ) and x ∈ Ω. We define the elliptic operator A := -∂ 2 s -∆ x in Z. The Carleman estimate that we have proven in Section 3 holds for this operator.

We start with a weight function ϕ(z) defined in Z and choose

ρ 1 < ρ ′ 1 < ρ 2 < ρ ′ 2 < ρ 3 < ρ ′ 3 and set V = {z ∈ Z; ρ 1 < ϕ(z) < ρ ′ 3 }, V j = {z ∈ Z; ρ j < ϕ(z) < ρ ′ j }, j = 1, 2, 3.
We assume that V is compact in Z (we remain away from the boundary of Z) and that ϕ satisfies the subellipticity Assumption 3.1 in V.

The Carleman estimate of Theorem 3.5 yields the following local interpolation inequality.

Proposition 5.1 (G. Lebeau-L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]). There exist C > 0 and δ 0 ∈ (0, 1) such that for u ∈ H 2 (V)

we have u H 1 (V 2 ) ≤ C Au L 2 (V) + u H 1 (V 3 ) δ u 1-δ H 1 (V) , for δ ∈ [0, δ 0 ]. Proof. Let χ ∈ C ∞ c (V) be such that χ(z) = 1 in a neighborhood of ρ ′ 1 ≤ ϕ(z) ≤ ρ 3 .
We set w = χu. The Carleman estimate of Theorem 3.5 implies e ϕ/h w 0 + e ϕ/h ∇w 0 ≤ C e ϕ/h Aw 0 for h small, 0

< h < h 1 ≤ 1. We then observe that Aw = χAu + [A, χ]u, with the first-order operator [A, χ] uniquely supported in V 1 ∪ V 3 . We thus obtain e ρ 2 /h u H 1 (V 2 ) ≤ Ce ρ ′ 1 /h u H 1 (V 1 ) + Ce ρ ′ 3 /h ( Au L 2 (V) + u H 1 (V 3 ) ), as χ = 1 in V 2 . We finally write e ρ 2 /h u H 1 (V 2 ) ≤ Ce ρ ′ 1 /h u H 1 (V) + Ce ρ ′ 3 /h ( Au L 2 (V) + u H 1 (V 3 ) ), 0 < h ≤ h 1 .
We conclude with the following lemma. Lemma 5.2 (L. Robbiano [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF]). Let C 1 , C 2 and C 3 be positive and A, B, C non negative, such that C ≤ C 3 A and such that for all γ ≥ γ 0 we have

(5.1) C ≤ e -C 1 γ A + e C 2 γ B.
Then

(5.2) C ≤ Cst A C 2 C 1 +C 2 B C 1 C 1 +C 2 .
Proof. We optimize the r.h.s. of (5.1) as a function of γ and we find γ opt = ln((AC 1 )/(BC 2 ))

C 1 +C 2 . To simplify we choose γ 1 = ln(A/B) C 1 +C 2 . If γ 1 ≥ γ 0 , substitution in (5.1) then yields (5.2). If we now have γ 1 < γ 0 , we then see that A ≤ CstB. We conclude as C ≤ C 3 A.

We now apply the result of Proposition 5.1 to a particular weight function. Let y ∈ Z and r > 0 be such that B(y, 6r) ⋐ Z. Let us set ψ(z) =dist(z, y) and choose λ > 0 such that ϕ = e λψ satisfies the sub-ellipticity Assumption 3.1 in B(y, 6r) \ B(y, r/8) by Lemma 3.3. We then take 4.

ρ 1 = e -5rλ , ρ ′ 1 = e -4rλ , ρ 2 = e -3rλ , ρ ′ 2 = e -rλ , ρ 3 = e -r 2 λ , ρ ′ 3 = e -r 4 λ . The neighborhoods V 1 , V 2 and V 3 are illustrated in Figure
By applying Proposition 5.1 we obtain, for u ∈ H 2 (Z),

u H 1 (V 2 ) ≤ C Au L 2 (V) + u H 1 (V 3 ) δ u 1-δ H 1 (V) ≤ C Au L 2 (Z) + u H 1 (B(y,r)) δ u 1-δ H 1 (Z) , which yields u H 1 (B(y,3r)) ≤ C Au L 2 (Z) + u H 1 (B(y,r)) δ u 1-δ H 1 (Z)
. The H 1 -norm in the ball B(y, 3r) is thus estimated by the H 1 -norm in the ball B(y, r). In particular, we recover the local uniqueness result of Section 4 when Au = 0.

When Ω has a regular boundary, this local inequality can be "propagated" up to the boundary, under suitable boundary conditions. We then obtain a global result. In addition to the Carleman estimate we have proven here, one needs to prove a similar estimate at the boundary (0, S 0 ) × ∂Ω. The proof we give

y V 3 3r V 1 V 2 r Figure 4
. Level sets of the weight function ϕ and regions V 1 , V 2 and V 3 . The red regions, V 1 and V 3 , localise the support of ∇χ. below of a Carleman estimate at the boundary for a parabolic operator (see Theorem 7.6 and its proof in Appendix A.10) is similar to the proof of a Carleman estimate at the boundary for an elliptic operator (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]). The "propagation" technique makes use of a finite covering by balls of radius r. The reader is referred to [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for details (pages 353-356). Here, as in [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] (see the proof of theorem 3, pages 312-313), the interpolation inequality can be "initiated" at the boundary s = 0 (again by a Carleman estimate at the boundary).

Theorem 5.3 ([LR95, LZ98, JL99]). Let ω be an open set in Ω.

There exist C > 0 and δ ∈ (0, 1) such that for u ∈ H 2 (Z) that satisfies u(s, x)| x∈∂Ω = 0, for s ∈ (0, S 0 ) and u(0, x) = 0, for x ∈ Ω, we have

u H 1 (Y) ≤ C u 1-δ H 1 (Z) Au L 2 (Z) + ∂ s u(0, x) L 2 (ω) δ . (5.3)
We may now deduce a spectral inequality that, in particular, measures the loss of orthogonality of the eigenfunctions of -∆ in Ω, with homogeneous Dirichlet boundary conditions, when they are restricted to an open subset ω ⊂ Ω such that ω Ω. Let φ j , j ∈ N * , be an orthonormal basis of such eigenfunctions and

µ 1 ≤ µ 2 ≤ • • • ≤ µ k ≤ • • •
the associated eigenvalues, counted with their multiplicity.

Theorem 5.4 ([LZ98],[JL99]

). There exists K > 0 such that for all sequences (α j ) j∈N * ⊂ C and all µ > 0 we have (5.4)

µ j ≤µ |α j | 2 = ∫ Ω µ j ≤µ α j φ j (x) 2 dx ≤ Ke K √ µ ∫ ω µ j ≤µ α j φ j (x) 2 dx, or concisely µ j ≤µ α j φ j 2 L 2 (Ω) ≤ Ke K √ µ µ j ≤µ α j φ j 2 L 2 (ω) .
Proof. We apply Inequality (5.3) to the function u(s, x) = µ j ≤µ α j sinh( √ µ j s) √ µ j φ j (x) that satisfies Au = 0 as well as the boundary conditions required in Theorem 5.3. We have

u 2 H 1 (Y) ≥ u 2 L 2 (Y) = µ j ≤µ S 0 -α ∫ α |α j | 2 sinh 2 ( √ µ j s) µ j ds ≥ µ j ≤µ |α j | 2 S 0 -α ∫ α s 2 ds = C S 0 ,α µ j ≤µ |α j | 2 ,
and also

u 2 H 1 (Z) ≤ C S 0 ∫ 0 -∆u, u) + ∂ s u 2 ds = C µ j ≤µ |α j | 2 S 0 ∫ 0 sinh 2 ( √ µ j s) + cosh 2 ( √ µ j s) ds ≤ C ′ e C ′ √ µ µ j ≤µ |α j | 2 , using that v 2 H 1 (Ω) is equivalent to (-∆v, v) in H 1 0 (Ω). Finally, we have ∂ s u(0, x) 2 L 2 (ω) = ∫ ω µ j ≤µ α j φ j (x) 2 dx,
which yields

µ j ≤µ |α j | 2 ≤ Ce C √ µ µ j ≤µ |α j | 2 1-δ ∫ ω µ j ≤µ α j φ j (x) 2 dx δ ,
and the conclusion follows.

On the one hand, in the case ω = Ω, the result of Theorem 5.4 becomes trivial and the constant Ce C √ µ can be replaced by 1. On the other hand, it is clear that K = K(ω) tends to +∞ as the size of ω goes to zero. An interesting problem would be the precise estimation of K(ω). Some recent results are available with some lower bonds and uperbounds [START_REF] Miller | A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF][START_REF] Tenenbaum | On the null-controllability of diffusion equations[END_REF].

When ω Ω, the following proposition shows that the power 1 2 of µ in Ke K √ µ is optimal (see also [START_REF] Jerison | Harmonic analysis and partial differential equations[END_REF]).

Proposition 5.5. Let ω be a non empty open set in Ω with ω Ω. There exist C > 0 and µ 0 > 0 such that for all µ ≥ µ 0 there exists a sequence (α j ) µ j ≤µ , such that

µ j ≤µ |α j | 2 ≥ Ce C √ µ ∫ ω µ j ≤µ α j φ j (x) 2 dx.
Proof. We denote by P t (x, y) the heat kernel that we can write j∈N e -tµ j φ j (x)φ j (y) for t > 0; we have e t∆ f (x) = ∫ P t (x, y) f (y) dy. We then write µ j ≤µ e -tµ j φ j (x)φ j (y) ≤ |P t (x, y)| + µ j >µ e -tµ j φ j (x)φ j (y) .

For k ∈ N sufficiently large, Sobolev injections give (5.5)

φ j L ∞ ≤ C φ j H 2k ≤ C ′ ∆ k φ j L 2 = C ′ µ k j .
For all x, y ∈ Ω we have p t (x, y) ≤ (4πt) -n/2 e -|x-y| 2 4t by the maximum principle (see Appendix A.7). Let y 0 be such that d = dist(y 0 , ω) > 0. We then have p t (x, y 0 ) ≤ e -C 0 /t , with C 0 > 0, uniformly for x in ω. From (5.5) we thus obtain

µ j ≤µ e -tµ j φ j (x)φ j (y 0 ) ≤ e -C 0 /t + C µ j >µ e -tµ j µ 2k j , x ∈ ω.
We choose α j = e -tµ j φ j (y 0 ) and we take t = 1/ √ µ. We have

µ j ≤µ α j φ j (x) ≤ Ce -C 0 √ µ + C µ j >µ e -tµ j µ 2k j , x ∈ ω.
To estimate the second term we introduce J µ = {l; µ l ≤ µ}. The Weyl asymptotics (see e.g. [START_REF] Agmon | Lectures on Elliptic Boundary Values Problems[END_REF]) yields #J µ ≤ Cµ n/2 . Then, for µ > 1 large, we write

µ j >µ e -tµ j µ 2k j = N∈N N<µ j -µ≤N+1 e -tµ j µ 2k j ≤ N∈N N<µ j -µ≤N+1 e -t(µ+N) (µ + N + 1) 2k ≤ N∈N #J µ+N+1 e -t(µ+N) (µ + N + 1) 2k ≤ C N∈N e -t(µ+N) (µ + N + 1) 2k+n/2 ≤ C ∞ ∫ µ-1 e -tx (x + 1) 2k+n/2 dx = Ce t ∞ ∫ µ e -tx x 2k+n/2 dx.
In fact, with t = 1/ √ µ, the function e -tx x 2k+n/2 decreases in [µ, +∞) for µ large. We set l = 2k + n/2. The change of variable y = t(xµ) then yields

∞ ∫ µ e -tx x l dx = t -1-l e -tµ ∞ ∫ 0 e -y (µt + y) l dy = µ l+1 2 e -√ µ ∞ ∫ 0 e -y ( √ µ + y) l dy ≤ µ l+ 1 2 e -√ µ ∞ ∫ 0 e -y (1 + y) l dy = Cµ l+ 1 2 e -√ µ , since t = 1/ √ µ.
For µ > 1 large, we have thus obtained µ j ≤µ α j φ j (x) ≤ Ce -C √ µ , which yields

∫ ω µ j ≤µ α j φ j (x) 2 dx ≤ C|ω|e -C √ µ .
We now conclude by proving µ j ≤µ |α j | 2 ≥ Cµ n/4 ≥ 1, for µ sufficiently large with the choice of coefficients α j , j ∈ N, we have made above. In fact we find

µ j ≤µ |α j | 2 = µ j ≤µ
e -2tµ j |φ j (y 0 )| 2 = P 2t (y 0 , y 0 ) -

µ j >µ e -2tµ j |φ j (y 0 )| 2 .
As here t = 1/ √ µ is small, Lemma A.5 (see Appendix A.7) gives P 2t (y 0 , y 0 ) ≥ C(2t) -n/2 = C ′ µ n/4 . Finally, using Sobolev inequalities as above we obtain the following estimate µ j >µ e -2tµ j |φ j (y 0 )

| 2 ≤ C µ j >µ e -2tµ j µ 2k j ≤ C ′ e -C ′ √ µ .
The spectral inequality of Theorem 5.4 also leads to the following unique continuation result for series of eigenfunctions.

Proposition 5.6. Let ω ⊂ Ω be open and ε > 0. Then for all functions u = j∈N * α j φ j with the complex coefficients α j satisfying |α j | ≤ e -ε √ µ j , j ∈ N * , we have u = 0 if u| ω = 0. This result yields an analogy between the series j∈N * α j φ j and analytic functions, when the coefficients α j satisfy the asymptotics |α j | ≤ e -ε √ µ j .

Proof. For 0 ≤ s < ε we set v(s, x) = j∈N * α j sinh( √ µ j s) √ µ j φ j (x). The asymptotic behavior we have assumed for the coefficients α j yields v ∈ C 2 ((0, ε), H 2 (Ω)). We then apply the interpolation inequality of Theorem 5.3 taking Y = (α, S 0α) × Ω with 0 < α < S 0α < S 0 < ε. Since v satisfies the proper boundary conditions and since Av = 0 and ∂ s v| {0}×ω = u| ω = 0, this yields v H 1 (Y) = 0. For almost every s ∈ (α, S 0α) we thus

have x → j∈N * α j sinh( √ µ j s) √ µ j φ j (x) = 0 in L 2 (Ω).
The orthogonality of the eigenfunctions gives α j = 0 for all j ∈ N * .

Control of the heat equation

We shall now construct a control function for the heat equation in the time interval (0, T ) for an initial condition y 0 in L 2 (Ω),

             ∂ t y -∆y = 1 ω v in Q = (0, T ) × Ω, y = 0 on Σ = (0, T ) × ∂Ω, y(0) = y 0 in Ω. (6.1)
The function v is the control. The goal is to drive the solution y to zero at time T > 0, yet only acting in the sub-domain ω.

We start with a partial control result. Next, in Section 6.2, the control v will be built as a sequence of active and passive controls. The passive mode allows to take advantage of the natural parabolic exponential decay of the L 2 norm of the solution.

6.1. Observability and partial control. For j ∈ N, we define the finite dimensional space E j = span{φ k ; µ k ≤ 2 2 j } and the following null controllability problem

             ∂ t y -∆y = Π E j (1 ω v) in (0, T ) × Ω, y = 0 on (0, T ) × ∂Ω, y(0) = y 0 ∈ E j in Ω, (6.2) 
with T > 0 and where Π E j denotes the orthogonal projection onto E j in L 2 (Ω). We estimate the so-called control cost, i.e., the L 2 norm of the control function v that gives y(T ) = 0.

Lemma 6.1. There exists a control function v that drives the solution of system (6.2) to zero at time T and v L 2 ((0,T )×ω) ≤ CT -1 2 e C2 j y 0 L 2 (Ω) .

For a ≥ 0, when we consider the time interval [a, a + T ], we shall denote by V j (y 0 , a, T ) such a control satisfying V j (y 0 , a, T ) L 2 ((a,a+T )×Ω) ≤ CT -1 2 e C2 j y 0 L 2 (Ω) .

Proof. The adjoint system of (6.2) is

             -∂ t q -∆q = 0 in (0, T ) × Ω, q = 0 on (0, T ) × ∂Ω, q(T ) = q f ∈ E j . If we write q(0) = µ k ≤2 2 j b k φ k then q(t) = µ k ≤2 2 j α k (t)φ k with α k (t) = b k e µ k t
and we thus have

T q(0) 2 L 2 (Ω) ≤ T ∫ 0 q(t) 2 L 2 (Ω) dt = T ∫ 0 ∫ Ω µ k ≤2 2 j α k (t)φ k 2 dt dx ≤ Ce C2 j T ∫ 0 ∫ ω µ k ≤2 2 j α k (t)φ k 2 dt dx = Ce C2 j T ∫ 0 ∫ ω |q(t)| 2 dt dx,
because of the parabolic decay and from the spectral inequality of Theorem 5.4. This observability inequality yields the expected estimate of the cost of the control.

Construction of the control function.

We split the time interval [0, T ] into sub-intervals, [0, T ] = j∈N [a j , a j+1 ], with a 0 = 0, a j+1 = a j + 2T j , for j ∈ N and T j = K2 -jρ with ρ ∈ (0, 1) and the constant K chosen such that 2 ∞ j=0 T j = T . We now define the control function v according to the strategy exposed above: if t ∈ (a j , a j + T j ], v(t, x) = V j (Π E j y(a j , .), a j , T j ) and y(t, .) = S (ta j )y(a j , .) + t ∫ a j S (ts)v(s, .)ds, if t ∈ (a j + T j , a j+1 ], v(t, x) = 0 and y(t, .) = S (ta j -T j )y(a j + T j , .), where S (t) denotes the heat semi-group S (t) = e t∆ . In particular, S (t) (L 2 ,L 2 ) ≤ 1.

The choice of the control v in the time interval [a j , a j + T j ], j ∈ N, yields y(a j + T j , .) L 2 (Ω) ≤ (1 + Ce C2 j ) y(a j , .) L 2 (Ω) , and Π E j y(a j + T j , .) = 0.

During the passive mode, t ∈ [a j + T j , a j+1 ], the solution is subject to an exponential decay y(a j+1 , .) L 2 (Ω) ≤ e -2 2 j T j y(a j + T j , .) L 2 (Ω) .

We thus obtain y(a j+1 , .) L 2 (Ω) ≤ e C2 j -2 2 j T j y(a j , .) L 2 (Ω) , and hence we have

y(a j+1 , .) L 2 (Ω) ≤ e j k=0 C2 k -2 2k T k y 0 L 2 (Ω) , j ∈ N.
We have 2 2k T k = K2 k(2-ρ) . We observe that 2ρ > 1 which yields lim

j→∞ j k=0 (C2 k -K2 k(2-ρ) ) = -∞. For a certain constant C > 0 we have (6.3) y(a j+1 , .) L 2 (Ω) ≤ Ce -C2 j(2-ρ) y 0 L 2 (Ω) , j ∈ N.
We conclude that lim j→∞ y(a j , .) L 2 (Ω) = 0, i.e. y(T, .) = 0 since y(t, .) is continuous with values in L 2 (Ω) since the r.h.s. of (6.1) is in L 2 (Q) by construction as we shall now see.

We have v 2 L 2 (Q) = j≥0 v 2 L 2 ((a j ,a j +T j )×Ω) . From the cost of the control given in Lemma 6.1 and (6.3) we deduce

v 2 L 2 (Q) ≤ CT -1 0 e 2C + j≥1 CT -1 j e C2 j e -C2 ( j-1)(2-ρ) y 0 2 L 2 (Ω) .
As 2ρ > 1 and T j = K2 -jρ , arguing as above we obtain v L 2 (Q) ≤ C T y 0 L 2 (Ω) with C T < ∞. We have thus obtain the following null controllability result.

Theorem 6.2 (Null controllability [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]). For all T > 0, there exists C T > 0 such that for all initial conditions y 0 ∈ L 2 (Ω), there exists v

∈ L 2 (Q), with v L 2 (Q) ≤ C T y 0 L 2 (Ω)
, such that the solution to system (6.1) satisfies y(T ) = 0.

Corollary 6.3 (Observability).

There exists C T > 0 such that the solution y

∈ C ([0, T ], L 2 (Ω)) of the adjoint system              -∂ t q -∆q = 0 in Q, q = 0 on Σ, q(T ) = q T in Ω,
satisfies the following observability inequality q(0)

2 L 2 (Ω) ≤ C 2 T T ∫ 0 ∫ ω |q(t)| 2 dt dx.

Carleman estimates for parabolic operators

Here we shall prove Carleman estimates for parabolic operators, typically P = ∂ t + A with A = -∆. As in the previous sections Ω is a bounded open set in R n . We set Q = (0, T ) × Ω. We start by proving local (in space) estimates, away from the boundary ∂Ω.

Local estimates. We set θ(t) = t(Tt) and h = εθ(t).

The parameter ε will be small, 0 < ε ≤ ε 0 << 1. For a weight function ϕ(x) we define P ϕ = h 2 e ϕ/h Pe -ϕ/h . The semi-classical parameter h depends on the time variable t here, and moreover vanishes for t = 0 and t = T .

We have

P ϕ = h 2 ∂ t + εϕ(x)θ ′ (t) -h 2 ∆ + 2h ϕ ′ , ∇ x -|ϕ ′ | 2 + h∆ϕ.
We define the following symmetric operators

Q 2 = (P ϕ + P * ϕ )/2, Q 1 = (P ϕ -P * ϕ )/(2i), which gives Q 2 = -εhθ ′ (t) + εϕ(x)θ ′ (t) -h 2 ∆ -|ϕ ′ | 2 , Q 1 = h 2 i ∂ t + εh i θ ′ (t) + h i ∆ϕ + 2h i ϕ ′ , ∇ x ,
with respective principal symbols

q 2 = εϕ(x)θ ′ (t) + |ξ| 2 -|ϕ ′ | 2 , q 1 = hτ + 2 ϕ ′ , ξ .
We have p ϕ = q 2 + iq 1 and

P ϕ = Q 2 + iQ 1 .
We choose the weight function ϕ according to the following assumption.

Assumption 7.1. Let V be an open subset of Ω. The weight function ϕ satisfies

ϕ(x) < 0, |ϕ ′ (x)| 0, x ∈ V, q 2 | ε=0 = 0 ⇒ {q 2 | ε=0 , q 1 | ε=0 } > 0, x ∈ V, ξ ∈ R n , (7.1)
These conditions, stronger than those we presented in the elliptic case, were introduced in [START_REF] Lebeau | Cours sur les inégalités de Carleman. Mastère "Equations aux Dérivées Partielles et Applications[END_REF]. We shall see below that they are sufficient and also necessary for a Carleman estimate to hold. They only involve the spatial variables, x and ξ, and can be fulfilled by choosing ϕ of the form ϕ(x) = e λψ(x)e λL , with L > ψ ∞ , |ψ ′ (x)| 0, x ∈ V, and letting the positive parameter λ be sufficiently large (see Lemma A.1 in Section A.2).

With this assumption we can prove the following lemma (see Appendix A.8 for a proof).

Lemma 7.2. There exist C > 0, µ 1 > 0 and δ 1 > 0, such that for µ ≥ µ 1 and 0 ≤ εT ≤ δ 1 we have

µq 2 2 -2εθ ′ |ξ| 2 + {q 2 , b} ≥ C ξ 4 , x ∈ V, ξ ∈ R n , where b := 2 ϕ ′ , ξ .
We can now prove the following Carleman estimate, that is local in space and global in time, for the parabolic operator P.

Theorem 7.3 (Local Carleman estimate away from the boundary). Let K be a compact set of Ω and V an open subset of Ω that is a neighborhood of K. Let ϕ be a weight function that satisfies Assumption 7.1 in V.

Then there exist C > 0 and δ 2 > 0 such that

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) , for u ∈ C ∞ ([0, T ] × Ω), with u(t) ∈ C ∞ c (K) for all t ∈ [0, T ],
and 0 < (T + T 2 )ε ≤ δ 2 . Proof. We introduce v = e ϕ/h u. We observe that v, along with all its time derivatives, vanishes at time t = 0 and t = T , since ϕ ≤ -C < 0 in K. We have P ϕ v = h 2 e ϕ/h Pu = g and we write, similarly to (3.2),

g 2 L 2 (Q) = Q 1 v 2 L 2 (Q) + Q 2 v 2 L 2 (Q) + i([Q 2 , Q 1 ]v, v) L 2 (Q) , which yields, with B = Q 1 -h 2 i ∂ t -εh i θ ′ (t) = h i ∆ϕ + 2h i ϕ ′ , ∇ x , g 2 L 2 (Q) = Q 1 v 2 L 2 (Q) + Q 2 v 2 L 2 (Q) + ((-h 2 (∂ t Q 2 ) + i[Q 2 , B])v, v) L 2 (Q) ≥ (hµQ 2 2 -h 2 (∂ t Q 2 ) + i[Q 2 , B])v, v L 2 (Q) = h µQ 2 2 -h(∂ t Q 2 ) + i h [Q 2 , B] v, v L 2 (Q)
for µ > 0 and 0 < h < 1/µ. We note that h

(∂ t Q 2 ) = -εh 2 θ ′′ -ε 2 h(θ ′ ) 2 + εhθ ′′ ϕ -2εθ ′ h 2 ∆. The principal symbol of µQ 2 2 -h(∂ t Q 2 ) + i h [Q 2 , B] is µq 2 2 -2εθ ′ |ξ| 2 + {q 2 , b}.
We choose µ 1 > 0 and δ 1 > 0 according to Lemma 7.2 and we take 0 < εT ≤ δ 1 . The Gårding inequality is uniform with respect to the semi-classical parameter h, once taken sufficiently small (i.e., by taking 0 < εθ < εT 2 /4 ≤ δ ′ 1 for δ ′ 1 sufficiently small, for instance), and we obtain

(7.2) µQ 2 2 -h(∂ t Q 2 ) + i h [Q 2 , B] v(t), v(t) L 2 (Ω) ≥ C v(t) 2 2 , ∀t ∈ [0, T ],
for µ ≥ µ 1 and 0 < (T + T 2 )ε ≤ δ 2 = min(δ 1 , 4δ ′ 1 ), and it follows that

g 2 L 2 (Q) ≥ C ∫ T 0 h v 2 2 dt.
We then obtain the sought local Carleman estimate by arguing as in the end of the proof of Theorem 3.5.

Remark 7.4. In the proof of the previous theorem, we note the importance of only relying on the nonnegative term

Q 2 v 2 L 2 (Q) since the other square term Q 1 v 2 L 2 (Q)
involves a time derivative of v, and cannot be used in the Gårding inequality (7.2) at fixed t. If we chose to use a Gårding inequality with respect to all variables (t, x), we could then use both square terms

Q 2 v 2 L 2 (Q) and Q 1 v 2 L 2 (Q)
. This is the scheme of the proof that we shall follow to prove an estimate at the boundary below.

The following proposition shows the necessity of Assumption 7.1. See Appendix A.9 for a proof. Proposition 7.5. Let V be an open subset of Ω, ϕ(x) be defined on V, and δ > 0 and C > 0 be such that for a certain α ≤ 1 2 we have

h α e ϕ/h u L 2 (Q) ≤ C h 2 e ϕ/h Pu L 2 (Q) , (7.3) for all u ∈ C ∞ ([0, T ] × Ω), with u(t) ∈ C ∞ c (V) for all t ∈ [0, T ],
and 0 < (T + T 2 )ε ≤ δ. Then α = 1 2 and the weight function ϕ satisfies

|ϕ ′ (x)| 0, x ∈ V, q 2 | ε=0 = 0 ⇒ {q 2 | ε=0 , q 1 | ε=0 } > 0, x ∈ V, ξ ∈ R n .
7.2. Estimate at the boundary. If we place ourselves in the neighborhood of the boundary we have the following result.

Theorem 7.6 (Carleman estimate at the boundary). Let x 0 ∈ ∂Ω and K be a compact set of Ω, x 0 ∈ K, and V an open subset of Ω that is a neighborhood of K in Ω, with K and V chosen sufficiently small. Let ϕ be a weight function that satisfies Assumption 7.1 in V, and ∂ n ϕ| ∂Ω∩V < 0, where n is the outward pointing unit normal to Ω. Then there exist C > 0 and δ 3 > 0 such that

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) , for 0 < (T + T 2 )ε ≤ δ 3 , h = εt(T -t) and u ∈ C ∞ ([0, T ] × Ω), with supp(u(t)) ⊂ K for all t ∈ [0, T ], and u| (0,T )×(∂Ω∩V) = 0.
The proof of this estimate is more technical than that of Theorem 7.3. We have placed it in Appendix A.10. The idea of the proof is to use the Gårding inequality in the tangential directions, including the time direction. The original proof for this estimate is available in [START_REF] Fursikov | Controllability of evolution equations[END_REF]. However, following the approach of [START_REF] Fursikov | Controllability of evolution equations[END_REF] does not put forward the sufficiency of Assumption 7.1.

Global estimate.

We now focus our attention on global Carleman estimates. We proceed by patching together the local estimates we have presented here, in the interior and at the boundary. The global aspect of the estimate will impose an "observation" term over (0, T ) × ω, with ω ⋐ Ω in the r.h.s. of the estimate.

To patch these local estimates together we choose a global weight function that can be used to derive each of these local estimates by satisfying the following requirements. Assumption 7.7. Let ω 0 ⋐ ω ⋐ Ω. The weight function ϕ satisfies

ϕ| ∂Ω = Cst, ∂ n ϕ| ∂Ω < 0, sup x∈Ω ϕ(x) < 0, |ϕ ′ (x)| 0, x ∈ Ω \ ω 0 , q 2 | ε=0 = 0 ⇒ {q 2 | ε=0 , q 1 | ε=0 } > 0, x ∈ Ω \ ω 0 ,
Such conditions can be fulfilled by taking ϕ of the form

ϕ(x) = e λψ(x) -e λK , with K > ψ ∞ , |ψ ′ (x)| 0, x ∈ Ω \ ω 0 , and 
ψ| ∂Ω = 0, ∂ n ψ| ∂Ω < 0, ψ(x) > 0, x ∈ Ω,
and by taking the positive parameter λ sufficiently large. For the construction of such a function ψ we refer to [FI96, Lemma 1.1]. The construction makes use of Morse functions and the associated approximation theorem [START_REF] Aubin | Applied Non Linear Analysis[END_REF].

Theorem 7.8 (Global Carleman estimate). Let ϕ be a function that satisfies Assumption 7.7. Then there exist δ 4 > 0 and C ≥ 0 such that

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω) , for 0 < (T + T 2 )ε ≤ δ 4 , h = εt(T -t) and u ∈ C ∞ ([0, T ] × Ω) such that u| (0,T )×∂Ω = 0.
Proof. Let ω 1 be such that ω 0 ⋐ ω 1 ⋐ ω. For all x ∈ Ω \ ω 1 , there exist an open subset V x of Ω, with x ∈ V x ⊂ Ω \ ω 0 for which the local Carleman estimate, in the interior or at the boundary, holds with the weight function ϕ, for smooth functions with support in the compact

K x = V x .
From the covering of Ω \ ω 1 by the open sets V x , x ∈ Ω \ ω 1 we can extract a finite covering (V i ) i∈I , such that for all i ∈ I the Carleman estimate in V i holds for h < h i , C = C i > 0 and supp(u)

⊂ K i = V i .
Let (χ i ) i∈I be a partition of unity subordinated to the covering V i , i ∈ I, [START_REF] Trèves | Topological Vector Spaces, Distributions and Kernels[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF], i.e.,

χ i ∈ C ∞ (Ω), supp( χ i ) ⊂ K i = V i , 0 ≤ χ i ≤ 1, i ∈ I, and 
i∈I χ i = 1 in Ω \ ω 1
Note that we have supp( χ i ) ∩ ω 0 = ∅. For all i ∈ I, we set u i = χ i u. Then for each u i we have a local Carleman estimate. We now observe that we have

Pu i = P( χ i u) = χ i Pu + [P, χ i ]u = χ i Pu -[∆, χ i ]u,
where the commutator is a first-order differential operator in x. For all i ∈ I, we thus obtain

h 2 e ϕ/h Pu i 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + C h 2 e ϕ/h u 2 L 2 (Q) + C h 2 e ϕ/h ∇ x u 2 L 2 (Q) (7.4) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + C(εT 2 ) 3 h 1 2 e ϕ/h u 2 L 2 (Q) + CεT 2 h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) .
We note that we have

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤C i∈I h 1 2 e ϕ/h u i 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u i 2 L 2 (Q) + C h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω 1 ) + C h 3/2 e ϕ/h ∇ x u 2 L 2 ((0,T )×ω 1 )
, From (7.4) we then obtain

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + (εT 2 ) 3 h 1 2 e ϕ/h u 2 L 2 (Q) + εT 2 h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) + h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω 1 ) + h 3/2 e ϕ/h ∇ x u 2 L 2 ((0,T )×ω 1 ) .
For εT 2 sufficiently small we have

h 1 2 e ϕ/h u 2 L 2 (Q) + h 3/2 e ϕ/h ∇ x u 2 L 2 (Q) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω 1 ) + h 3/2 e ϕ/h ∇ x u 2 L 2 ((0,T )×ω 1 ) .
We now aim to remove the last term in the r.h.s. of the previous estimation. Let χ ∈ C ∞ c (ω) be such that χ = 1 in a neighborhood of ω 1 . If Pu = f , after multiplication by e 2ϕ/h h 3 χu, and integration over Q, we obtain 1 2

∫∫ Q e 2ϕ/h h 3 χ∂ t |u| 2 dt dx -Re ∫∫ Q e 2ϕ/h h 3 χu∆u dt dx = Re ∫∫ Q e 2ϕ/h h 3 χu f dt dx (7.5)
For the first term I 1 an integration by parts in t yields

|I 1 | = 1 2 ∫∫ Q e 2ϕ/h h 3 χ∂ t |u| 2 dt dx = 1 2 ∫∫ Q (3εθ ′ h 2 -2ϕεθ ′ h)e 2ϕ/h χ|u| 2 dt dx ≤ C h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω) ,
since ε|θ ′ | ≤ CεT is bounded. The third term can be estimated as

|I 3 | = Re ∫∫ Q e 2ϕ/h h 3 χu f dt dx ≤ C h 2 e ϕ/h f 2 L 2 (Q) + C h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω) .
For the second term, with integration by parts in x, we have

I 2 = ∫∫ Q e 2ϕ/h h 3 χ|∇ x u| 2 dt dx + Re ∫∫ Q h 3 ∇ x (e 2ϕ/h χ)u∇ x u dt dx ≥ h 3 2 e ϕ/h ∇ x u 2 L 2 ((0,T )×ω 1 ) - 1 2 ∫∫ Q h 3 ∆(e 2ϕ/h χ)|u| 2 dt dx,
and

∫∫ Q h 3 ∆(e 2ϕ/h χ)|u| 2 dt dx ≤ C h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω) .
The previous estimates and (7.5) then yield

h 3 2 e ϕ/h ∇ x u 2 L 2 ((0,T )×ω 1 ) ≤ C h 2 e ϕ/h Pu 2 L 2 (Q) + C h 1 2 e ϕ/h u 2 L 2 ((0,T )×ω) .
The proof is complete.

Observability inequality and controllability. It is now simple to deduce an observability inequality for the adjoint system

             -∂ t q -∆q = 0 in Q, q = 0 on Σ, q(T ) = q T in Ω.
We note that the estimate of Theorem 7.8 also applies to the adjoint operator -∂ t -∆. With the parabolic decay of energy we have 1 2 T q(0) 2 L 2 (Ω) ≤ q 2 L 2 ((T/4,3T/4)×Ω) . We also have Ce -C ′ /(εT 2 ) q 2 L 2 ((T/4,3T/4)×Ω) ≤ h 1 2 e ϕ/h q 2 L 2 ((T/4,3T/4)×Ω) since we have 0 < CT 2 ≤ t(Tt) ≤ C ′ T 2 on the interval [T/4, 3T/4] (we note that ϕ was chosen negative here, which explains the restriction to the interval [T/4, 3T/4] away from 0 and T for this estimation). Then for (T + T 2 )ε = δ 4 , the Carleman estimate yields

q(0) 2 L 2 (Ω) ≤ C T e C/(εT 2 ) q 2 L 2 ((0,T )×ω) ≤ e C+C ′ /T q 2 L 2 ((0,T )×ω) .
From this observability inequality we can also deduce the null controllability of the heat equation and obtain Theorem 6.2 again. We note however that we have a more explicit expression for the observability constant including its dependency in the control time T . We naturally see the blow up of this constant as T goes to zero.

Remark 7.9. As mentionned in the introduction, parabolic Carleman estimates allow to treat the controllability of more general parabolic equations. By linearization and with a fix point argument, one may consider the controllability of semi-linear parabolic equations for certain forms of non linearities [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] Doubova | On the controllability of parabolic systems with a nonlinear term involving the state and the gradient[END_REF]. A fine knowledge of the observability constant, obtained by parabolic Carleman estimates, is precisely what allows to treat these non linear cases. In particular, the powers of the semi-classical parameter h in the global Carleman estimate of Theorem 7.8 play a central role in these results. Proposition 7.5 shows the optimality of these powers.

Appendix A. Some additional results and proofs of intermediate results

A.1. Proof of the Gårding inequality. The symbol a(x, ξ, h) is of the form a(x, ξ, h) = a m (x, ξ, h) + ha m-1 (x, ξ, h), with a m-1 ∈ S m-1 . For h sufficiently small, say h < h 1 , the full symbol a(x, ξ, h) satisfies

Re a(x, ξ, h) ≥ C ′′ ξ m , x ∈ K, ξ ∈ R n , h ∈ (0, h 1 ), with C ′ < C ′′ < C. Let U be a neighborhood of K such that the previous inequality holds for (x, ξ) ∈ U × R n with the constant C ′′ replaced by C ′′′ that satisfies C ′ < C ′′′ < C ′′ < C. Let χ(x) ∈ C ∞ c (U) be such that 0 ≤ χ ≤ 1 and χ = 1 in a neighborhood of K. We then set ã(x, ξ, h) = χ(x)a(x, ξ, h) + C ′′′ (1 -χ)(x) ξ m that satisfies ã ∈ S m and Re ã(x, ξ, h) ≥ C ′′′ ξ m , x ∈ R n , ξ ∈ R n , h ∈ (0, h 1 ), (A.1)
We moreover note that (Op(ã)u, u) = (Op(a)u, u) if supp(u) ⊂ K. Without any loss of generality we may thus consider that the symbol a satisfies (A.1) in the remaining of the proof.

We then choose L > 0 such that

C ′ < L < C ′′′ and we set b(x, ξ, h) := Re a(x, ξ, h) -L ξ m 1 2 , and B = Op(b).
The ψDO symbolic calculus gives

B * • B = Re Op(a) -LΛ m + hR, with R ∈ Ψ m-1
, where Re Op(a) actually means (Op(a) + Op(a) * )/2. We then have

Re(Op(a)u, u) = (Re Op(a)u, u) ≥ L(Λ m u, u) -h(Ru, u) ≥ L Λ m/2 u 2 0 -hL ′ u 2 (m-1)/2 ≥ (L -hL ′ ) u 2 m/2
. We conclude the proof by taking h sufficiently small. A.2. Example of functions fulfilling the sub-ellipticity condition: proof of Lemma 3.3. We shall actually prove the following stronger lemma here.

Lemma A.1. Let V be a bounded open set in R n and ψ ∈ C ∞ (R n , R) be such that |ψ ′ | > 0 in V. Then for λ > 0 sufficiently large, ϕ = e λψ satisfies |ϕ ′ | ≥ C > 0 in V and (A.2) ∀(x, ξ) ∈ V × R n , q 2 (x, ξ) = 0 ⇒ {q 2 , q 1 }(x, ξ) ≥ C > 0.
Proof. The computation of the Poisson bracket {q 2 , q 1 } = j ∂ ξ j q 2 ∂ x j q 1 -∂ x j q 2 ∂ ξ j q 1 gives

{q 2 , q 1 } = 4 1≤ j,k≤n ϕ ′′ j,k (ξ j ξ k + ϕ ′ j ϕ ′ k ) = 4(ϕ ′′ (ξ, ξ) + ϕ ′′ (ϕ ′ , ϕ ′ )).
Here we have ϕ = e λψ , and thus

ϕ ′ = λϕψ ′ and ϕ ′′ jk = λϕψ ′′ jk + λ 2 ϕψ ′ j ψ ′ k , j, k = 1, . . . , n, which yields {q 2 , q 1 } = 4λ 3 ϕ 3 λ|ψ ′ | 4 + ψ ′′ (ψ ′ , ψ ′ ) + ψ ′′ ((λϕ) -1 ξ, (λϕ) -1 ξ) + λ -1 ϕ -2 ψ ′ , ξ 2 .
When q 2 = 0 we have |ξ| = λϕ|ψ ′ |. We then note that

|ψ ′′ ((λϕ) -1 ξ, (λϕ) -1 ξ)| ≤ C|ψ ′ | 2 , |ψ ′′ (ψ ′ , ψ ′ )| ≤ C|ψ ′ | 2 .
We deduce

{q 2 , q 1 } ≥ 4λ 3 ϕ 3 λ|ψ ′ | 4 -C|ψ ′ | 2 .
We then see that for λ sufficiently large we have

{q 2 , q 1 } ≥ C λ > 0, since |ψ ′ | ≥ C > 0.
Remark A.2. In Lemma 3.3 we chose to use an exponential function. The reader will note that a similar result can be obtained by taking ϕ = G(λψ), with λ sufficiently large, for a function G : R → R that satisfies

G ′ > 0, G ′′ > 0 and G ′′ /G ′ ≥ C > 0.
This procedure is often referred to as the "convexification" of the weight function.

A.3. Proof of Lemma 3.4. For |ξ| large, the property holds since q 2 = |ξ| 2 -|ϕ ′ | 2 and since the symbol {q 2 , q 1 } is only of order 2. It remains to prove the result for |ξ| ≤ R, with R > 0, i.e. for (x, ξ) in a compact set (here x ∈ V). In a more general framework, consider two continuous functions, f and g, defined in a compact set K, and assume that f ≥ 0 and f (y) = 0 ⇒ g(y) ≥ L > 0. We set h µ = µ f + g.

For all y ∈ K, either f (y) = 0 and thus h µ (y) > L, or f (y) > 0 and thus there exists µ y > 0 such that h µ y (y) > 0. This inequality holds locally in an open neighborhood V y of y. From the covering of K by the open sets V y , we select a finite covering V y 1 , . . . , V y n and set µ = max 1≤ j≤n µ j . We then obtain h µ ≥ C > 0. We simply apply this result to ρ/ ξ 4 . A.4. Proof of Lemma 3.10. We saw in Section A.2 that

{q 2 , q 1 } = 4λ 3 ϕ 3 λ|ψ ′ | 4 + ψ ′′ (ψ ′ , ψ ′ ) + ψ ′′ ((λϕ) -1 ξ, (λϕ) -1 ξ) + λ -1 ϕ -2 ψ ′ , ξ 2 . We observe that q 2 ∆ϕ = |ξ| 2 -λ 2 |ψ ′ | 2 ϕ 2 λ 2 |ψ ′ | 2 ϕ + λ(∆ψ)ϕ , which yields ρ = λ 3 ϕ 3 4ψ ′′ ((λϕ) -1 ξ, (λϕ) -1 ξ) + 2µ(λ|ψ ′ | 2 + ∆ψ) ξ λϕ 2 + λ -1 ϕ -2 ψ ′ , ξ 2 + (4 -2µ)λ|ψ ′ | 4 + 4ψ ′′ (ψ ′ , ψ ′ ) -2µ|ψ ′ | 2 ∆ψ ,
which, as 0 < µ < 2, we can make larger than C λ ξ 2 , with C λ > 0 by taking λ sufficiently large.

A.5. Estimations in the elliptic region and close to the characteristic set: proof of Proposition 3.8.

Let w 1 = Op( χ 1 )v. We observe that supp(w 1 ) ⊂ V from the assumption made on the support of the symbol χ 1 . Then P ϕ w 1 = g 1 = Op( χ 1 )g + [P ϕ , Op( χ 1 )]v, where g = P ϕ v. The commutator is in hΨ 1 and thus

(A.3) g 1 0 ≤ C g 0 + h v 1 .
Let χ ∈ S 0 be such that χ = 1 in a neighborhood of supp( χ 1 ) and χ = 0 in a neighborhood of Z . Because of the ellipticity of P ϕ in supp( χ), there exists a ψDO parametrix (see [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Martinez | An Introduction to Semiclassical and Microlocal Analysis[END_REF]) E M = Op(e), e ∈ S -2 , with e = M j=0 h j e j , for M ∈ N large, where e j ∈ S 2-j , e 0 = χ/p ϕ , and

E M • P ϕ = Op( χ) + h M+1 R M , R M ∈ Ψ -1-M .
We then obtain w 1 = E M g 1 + g1 , with g1 = (Id -Op( χ))w 1h M+1 R M w 1 . As supp(1χ) ∩ supp( χ 1 ) = ∅, and w 1 = Op( χ 1 )v, the ψDO calculus of Theorem 2.8 yields

(A.4) g1 2 ≤ Ch v 1 .
With (A.3) and (A.4) we obtain the first result of the proposition,

w 1 2 ≤ C g 1 0 + h v 1 ≤ C ′ g 0 + h v 1 .
For the second part we introduce w 2 = Op( χ 2 )v. We then have P ϕ w 2 = g 2 = Op( χ 2 )g + [P ϕ , Op( χ 2 )]v and g 2 0 ≤ C g 0 + h v 1 . The proof of the Carleman estimate then yields (see

(3.3)) h w 2 2 2 ≤ C g 2 0 + h 2 v 2 1 .
Let χ2 ∈ S 0 with compact support be such that χ2 = 1 in a neighborhood of supp(χ 2 ). The ψDO calculus of Theorem 2.8 yields

w 2 = Op(1 -χ2 )w 2 + Op( χ2 )w 2 = Op(1 -χ2 )Op( χ 2 ) ∈h N Ψ -N v + Op( χ2 )w 2 , N ∈ N,
and we thus obtain, for all N ∈ N and r, r ′ ∈ R,

w 2 s = Λ s w 2 0 ≤ C N,r,s h N v r + Λ s Op( χ2 ) ∈Ψ r ′ w 2 0 ≤ C N,r,s h N v r + C ′ r ′ ,s w 2 r ′ .
It follows that w 2 s ≤ C s h v 1 + C ′ s w 2 2 , for all s ∈ R, which yields the result. A.6. On the sub-ellipticity condition and the optimality of the powers of the semi-classical parameter: proof of Proposition 3.9. The proof that we give is adapted from that of Theorem 8.1.1 in [START_REF] Hörmander | Linear Partial Differential Operators[END_REF]. We refer the reader to this proof for the treatment of more general operators. Here, the symbol of the Laplace operator does not depend on x, which simplifies the proof.

Let x 0 ∈ V and let ξ 0 ∈ R n be such that p ϕ (x 0 , ξ 0 ) = 0 (such a ξ 0 always exists). There is no restriction to consider the case x 0 = 0 and ϕ(x 0 ) = 0. We set ζ 0 = ξ 0 + iϕ ′ (x 0 ). Then j ζ 2 0, j = 0. We set w(x) = x, ζ 0 and have

ϕ(x) -Im(w(x)) = A(x) + o(|x| 2 ), with A(x) = 1 2 j,k ϕ ′′ jk (x 0 )x j x k . Let φ ∈ C ∞ c (R n ) be such that φ(0) 0. We introduce u h = e iw(x)/h φ(x/h 1 
2 ) and we have

h 2 Pu h = e iw/h -h(∆φ)(x/h 1 2 ) -ih∆w(x)φ(x/h 1 2 ) + j (∂ x j w(x)) 2 φ(x/h 1 2 ) -2ih 1 2 ∇ x w(x), φ ′ (x/h 1 2 ) . (A.5)
We note that j (∂ x j w(x)) 2 = 0 and observe that we then have

h 2 e ϕ/h Pu h 2 0 = h n/2 ∫ e 2 h A(h 1 2 x)+o(|h 1 2 x| 2 ) -h∆φ(x) -ih(∆w)(h 1 2 x)φ(x) -2ih 1 2 (∇w)(h 1 2 x), φ ′ (x) 2 dx,
after the change of variables x → x/h 1 2 . In the limit h → 0, by dominated convergence, we have

h 2 e ϕ/h Pu h 2 0 ∼ 4h (n/2+1) ∫ e 2A(x) | ζ 0 , φ ′ (x) | 2 dx.
Similarly we have h 2α e ϕ/h u h 2 0 ∼ h (n/2+2α) ∫ e 2A(x) |φ(x)| 2 dx. With Inequality (3.7) we conclude that we necessarily have α = 1 2 and ζ 0 , φ ′ (x) 0. In particular ϕ ′ (x 0 ) 0 since otherwise we would have ζ 0 = 0.

If we denote by K the constant C in (3.7), with α = 1 2 , the limit h → 0 yields ∫ e 2A(x) 

|φ(x)| 2 dx ≤ K ∫ e 2A(x) | ζ 0 , φ(x) ′ | 2 dx, for all φ ∈ C ∞ c (R n ). Lemma 8.1.3 in [Hör63] then gives j,k ϕ ′′ jk ζ 0, j ζ 0,k ≥ 1 2K . We set ζ = ξ + iϕ ′ (x). The computation carried out in Section A.2 gives {q 2 , q 1 } = 4ϕ ′′ (ζ, ζ) = 4 j,k ϕ ′′ j,k ζ j ζ k . For all x ∈ V we thus have ξ ∈ R n and p ϕ (x, ξ) = 0 ⇒ {q 2 , q 1 }(x, ξ) ≥ 2 K . (A.6)
Let now (y, η) ∈ ∂V × R n be such that p ϕ (y, η) = 0. We first consider a sequence (x (k) ) k∈N * ⊂ V that converges to y and (ξ (k) ) k∈N * ⊂ R n such that p ϕ (x (k) , ξ (k) ) = 0. We set ζ (k) = ξ (k) + iϕ ′ (x (k) ). We have in particular |ξ (k) | = |ϕ ′ (x (k) )| and the sequence (ξ (k) ) k is hence bounded. It converges, up to a sub-sequence, to a certain ξ ∈ R n and thus p ϕ (y, ξ) = 0. In particular |ξ| = |ϕ ′ (y)|. We saw above that {q 2 , q 1 }(x (k) , ξ (k) ) =

4 i, j ϕ ′′ i, j (x (k) ) ζ (k) i ζ (k) j ≥ 2 K . If ζ = ξ + iϕ ′ (y) we have {q 2 , q 1 }(y, ξ) = 4 i, j ϕ ′′ i, j (y) ζ i ζ j ≥ 2 K . This excludes ζ = 0. As |ξ| = |ϕ ′ (y)| we obtain that ϕ ′ (y) 0.
The characteristic set over V is given by

Z = Z ∩ (V × R n ) with Z = {(x, ξ) ∈ R n × R n ; f 1 (x, ξ) = |ξ| 2 -|ϕ ′ (x)| 2 = 0, and f 2 (x, ξ) = ξ, ϕ ′ (x) = 0}.
As ϕ ′ (y) 0 and η 0 is orthogonal to ϕ ′ (y), we then see that the partial differentials d ξ f 1 and d ξ f 2 form a rank 2 system at (y, η). Up to rearranging the variables, with the implicit function theorem, this implies that in a neighborhood U 1 of (y, η) and in a neighborhood U 2 of (y, η 1 , . . . , η n-2 ) we have

(x, ξ) ∈ Z ∩ U 1 ⇔ (x, ξ 1 , . . . , ξ n-2 ) ∈ U 2 and (ξ n-1 , ξ n ) = g(x, ξ 1 , . . . , ξ n-2 ),
with a smooth function g. Consider then a sequence (x (k) ) k∈N * ⊂ V that converges to y. For k sufficiently large, k ≥ N 0 , we have (x (k) , η 1 , . . . , η n-2 ) ∈ U 2 and we set ξ (k) = (η 1 , . . . , η n-2 , g(x (k) , η 1 , . . . , η n-2 )). Then (x (k) , ξ (k) ) is in Z and converge to (y, η). We have {q 2 , q 1 }(x (k) , ξ (k) ) ≥ 2/K for all k ≥ N 0 by the first part of the proof. We thus obtain {q 2 , q 1 }(y, η) ≥ 2/K by passing to the limit.

Remark A.3. In the previous proof we have chosen a test function u h that is localized around x 0 in space, through the term φ(x/h 1 2 ), and around ζ 0 in frequencies, through the term e i x,ζ 0 /h , for the semi-classical Fourier transformation. This microlocalization shows clearly that the non-zero power of the parameter h in the l.h.s. of the Carleman estimate originates from the behavior of the symbol at the characteristic set Z as we already pointed out with Proposition 3.8. We note that the scaling x/h 1 2 in φ(x/h 1 2 ) allows to control the variations of A(x)/h in the support of u h . A.7. Estimation of the heat kernel. Let p t (x, y) be the heat kernel in Ω, a bounded open set in R n , with homogeneous Dirichlet boundary conditions. Lemma A.4. For all x, y ∈ Ω we have p t (x, y) ≤ (4πt) -n/2 e -|x-y| 2 4t if t > 0.

Proof. The heat kernel in R n is given by p 0,t (x, y) = (4πt) -n/2 e -|x-y| 2 4t if t > 0. Consider y 0 ∈ C ∞ c (Ω) such that y 0 ≥ 0. We also denote by y 0 its zero extension to R n . We consider the following parabolic problems

             ∂ t y -∆y = 0 in (0, T ) × Ω, y = 0 on (0, T ) × ∂Ω, y| t=0 = y 0 in Ω,        ∂ t z -∆z = 0 in (0, T ) × R n , z| t=0 = y 0 in R n .
For t > 0, the solutions z and y are smooth functions given by y(t, x) = p t (x, .), y 0 (.) and z(t, x) = p 0,t (x, .), y 0 (.) . In particular z(t, x) ≥ 0 if x ∈ ∂Ω. Thus zy ≥ 0 in (0, T ) × ∂Ω. The difference of the two solutions thus satisfies a parabolic problem of the following form

             ∂ t (z -y) -∆(z -y) = 0 in (0, T ) × Ω, z -y ≥ 0 on (0, T ) × ∂Ω, (z -y)| t=0 = 0 in Ω.
The maximum principle gives zy ≥ 0 in (0, T ) × Ω (see e.g. [Bre83, Theorem X.6]). If y 0 ∈ C ∞ c (Ω) with y 0 ≥ 0, it follows that p 0,t (x, .), y 0 (.) ≥ p t (x, .), y 0 (.) for t > 0. This yields the result. Lemma A.5. Let p 0,t (x, y) = (4πt) -n/2 e -|x-y| 2 4t be the heat kernel in R n and let y ∈ Ω and V y be a neighborhood of y such that V y ⊂ Ω. There exists C and C ′ > 0 such that

|p t (x, y) -p 0,t (x, y)| ≤ Cte -C ′ /t , x ∈ V y , t > 0.
Proof. Let χ ∈ C ∞ c (Ω) be such that χ = 1 near V y . We introduce v(t, x) = p t (x, y)χ(x)p 0,t (x, y) and observe that v| t=0 = 0, v| (0,+∞)×∂Ω = 0 and that v satisfies the parabolic equation (∂

t -∆)v = w with w(t, x) = p 0,t (x, y) ∆χ(x) - 1 t (∇χ(x), x -y) .
We observe that |x -y| ≥ d > 0 in supp( χ ′ ) and thus have w 

(t, x) = e d 2 4t w(t, x) ∈ C ∞ ([0, +∞[×Ω) with furthermore w L ∞ ([0,+∞[×Ω) < ∞. The Duhamel formula gives v(t, x) = ∫ t 0 S (t -s)w(s)
v(t) L ∞ (Ω) ≤ e -d 2 4t t ∫ 0 S (t -s) w(s) L ∞ (Ω) ds ≤ te -d 2 4t w(s) L ∞ ([0,+∞[×Ω) , t > 0,
by the maximum principle [Bre83, Theorem X.3]. The result follows in V y where χ = 1.

The reader will note that we can obtain the following short-time asymptotic expansion of the heat kernel on a Riemannian manifold, with or without boundary, on the diagonal, for all N ∈ N (see for instance estimate (13.59) along with (13.39) and (13.40) in [Tay96, Chapter 7.13])

P t (y, y) = t -n/2 C 0 (y) + t C 1 (y) + • • • + C N (y)t N + O(t N+1 ) , t → 0.
In the case we consider here, the metric is flat, and such an expansion is greatly simplified as shown in the previous lemma.

A.8. Proof of Lemma 7.2. The proof of Lemma 7.2 is close to that of Lemma 3.4. It suffices to prove the result for (x, ξ) in a compact K ⊂ R n × R n . We first take ε = 0. We have q 2 | ε=0 = |ξ| 2 -|ϕ ′ | 2 . For µ sufficiently large we have µq 2 2 | ε=0 + {q 2 | ε=0 , b} ≥ C ξ 4 , (x, ξ) ∈ K, as seen in the proof of Lemma A.1 (page 21). Finally, since (x, ξ) is in a compact set, this inequality still holds, with a different constant C, for ε|θ ′ | > 0 small. Since |θ ′ (t)| ≤ T , this concludes the proof.

A.9. Proof of Proposition 7.5. The proof is close to that of Proposition 3.9. Let x 0 ∈ V and ξ 0 ∈ R n be such that q 2 | ε=0 = 0 (such a ξ 0 always exists). We set ζ 0 = ξ 0 + iϕ ′ (x 0 ). There is no restriction to consider the case x 0 = 0. We then choose τ 0 ∈ R such that τ 0 + 2 ϕ ′ (x 0 ), ξ 0 = 0.

We then have

iτ 0 + j ζ 2 0, j = 0. (A.7) Next, we define w(t, x) = iϕ(0) + x, ζ 0 = w(x)
+τ 0 (tt 0 )/h, with t 0 = T/2, and we have

ϕ(x) -Im(w(t, x)) = A(x) + o(|x| 2 ), with A(x) = j,k ϕ ′′ jk (x 0 )x j x k . Let γ ∈ (0, T/2) and let φ ∈ C ∞ c ((γ, T -γ) × R n ) be such that φ(t 0 , 0) 0. We then set u ε = e iw(t,x)/h φ t -t 0 ε , x √ ε .
We recall that θ = t(Tt) and h = εθ. We have

∂ t u ε = e iw/h i∂ t w(t, x) h φ t -t 0 ε , x √ ε + ε -1 ∂ t φ t -t 0 ε , x √ ε , with ∂ t w(t, x) h = τ 0 ∂ t t -t 0 h 2 + w(x)∂ t h -1 = τ 0 h 2 -2τ 0 (t -t 0 ) θ ′ h 2 θ -w(x) θ ′ hθ .
We also have (similarly to the elliptic case in see (A.5)),

-h 2 ∆ x u ε = e iw/h j ∂ x j w(x) 2 -ih∆ x w(x) φ t -t 0 ε , x √ ε -2iε 1 2 θ ∇ x w(x), φ ′ x t -t 0 ε , x √ ε -εθ 2 (∆ x φ) t -t 0 ε , x √ ε .
With (A.7), and as θ ′ = 2(t 0t) it follows that

h 2 Pu ε = e iw/h 2i θ 2τ 0 (t -t 0 ) 2 + h(t -t 0 ) w(x) φ t -t 0 ε , x √ ε + hθ ∂ t φ t -t 0 ε , x √ ε -ih∆ x w(x)φ t -t 0 ε , x √ ε -2iε 1 2 θ ∇ x w(x), φ ′ x t -t 0 ε , x √ ε -εθ 2 (∆ x φ) t -t 0 ε , x √ ε .
After the change of variables (t, x) → (tt 0 )/ε, x/ε 1 2 , we obtain, for ε → 0,

h 2 e ϕ/h Pu ε 2 0 ∼ 4ε n/2+2 ∫ ∫ R n+1 e 2A(x)/θ(t 0 ) θ(t 0 ) 2 | ζ 0 , φ ′ x (t, x) | 2 dt dx. As we have h α e ϕ/h u ε 2 0 ∼ ε (n/2+1+2α) ∫∫ R n+1 e 2A(x)/θ(t 0 ) θ(t 0 ) 2α |φ(t, x)| 2 dt dx, Inequality (7.
3) yields α = 1 2 and ζ 0 0. It follows that ϕ ′ (x 0 ) 0. We then have obtained

∫ ∫ R n+1 e 2A(x)/θ(t 0 ) |φ(t, x)| 2 dt dx ≤ C ∫ ∫ R n+1 e 2A(x)/θ(t 0 ) | ζ 0 , φ ′ x (t, x) | 2 dt dx, for all φ ∈ C ∞ c ((γ, T -γ) × R n ). For φ 2 ∈ C ∞ c (R n ) we thus find 4 ∫ R n e 2A(x)/θ(t 0 ) |φ 2 (x)| 2 dx ≤ C ∫ R n e 2A(x)/θ(t 0 ) | ζ 0 , φ ′ 2 (x) | 2 dx,
which allows to conclude as in the proof of Proposition 3.9.

A.10. Proof of Theorem 7.6. This proof is based on a proof provided in [START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. Its counterpart in the elliptic case can be found in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. In a sufficiently small neighborhood V we place ourselves in normal geodesic coordinates. In such a coordinate system, the principal part of the Laplace operator A takes the form

A 2 = -∂ 2 x n -r(x, ∂ x ′ ), x = (x ′ , x n ), (A.8) with r(x, ξ ′ ) a homogeneous second-order polynomial in ξ ′ that satisfies r(x, ξ ′ ) ∈ R, and C 1 |ξ ′ | 2 ≤ r(x, ξ ′ ) ≤ C 2 |ξ ′ | 2 , x ∈ V, ξ ′ ∈ R n-1 , (A.9) for some 0 < C 1 ≤ C 2 < ∞.
The local coordinates are chosen such that x 0 is at the origin.

We set η(t) = T 2 (t(Tt)) -1 . Then h = εθ = εT 2 η -1 . We set ℏ = εT 2 and ℏ ′ = εT . We shall impose ℏ and ℏ ′ small in agreement with the statement of Theorem 7.6. To work on R for the time variable, instead of the finite interval (0, T ), we make the following change of variable:

s(t) = tan πt T - π 2 . (A.10) We note that ∂ t = a(s)
T ∂ s , with a(s) = π s 2 with s = (1 + s 2 ) 1 2 . The parabolic operator we consider becomes P = a(s) T ∂ s + A and we find

η(s) = π 2 π 2 + arctan(s) -1 π 2 -arctan(s) -1 , h -1 = η(s)/ℏ. (A.11)
(We keep the notations P, A, η, in an abusive way.) In particular we have

C s ≤ η(s) ≤ C ′ s , s ∈ R, and C s 1-k ≤ |η (k) (s)| ≤ C ′ s 1-k , k ∈ N. (A.12)
We define tangential semi-classical ψDOs adapted to the parabolic problem we consider here. We denote by S m T , the space of smooth functions a(z, ζ ′ , h), (z, ζ ′ ), z ∈ R n+1 + , ζ ′ ∈ R n , defined for ℏ ∈ (0, ℏ 0 ] for some ℏ 0 > 0, that satisfy the following property:

∀α, β, |∂ α z ∂ β ζ ′ a(z, ζ ′ , ℏ)| ≤ C α,β ζ ′ m-|β| , z ∈ R n+1 + , ζ ′ ∈ R n , ℏ ∈ (0, h 0 )
. Asymptotic series of such symbols as those defined in Section 2 can be considered. The notion of principal symbol is introduced similarly. The tangential ψDOs we shall consider are defined in the case z = (s, x ′ , x n ) ∈ R n+1 and ζ ′ = (τ, ξ ′ ), with s, τ ∈ R, x ′ , ξ ′ ∈ R n-1 and x n ∈ R + . We define s l Ψ m T as the space of tangential ψDOs A = Op(a), for a ∈ s l S m T , formally defined by A u(s, x) = (2π) -n ℏ -n (ℏ ′ ) -1 ∫∫∫∫ e i(s-t)τ/(ℏℏ ′ )+i x ′ -y ′ ,ξ ′ /ℏ a(s, x, τ, ξ ′ , ℏ) u(t, y ′ , x n ) dt dy ′ dτ dξ ′ .

If we let them act on a function u that does not depend on x n , they can be considered as regular ψDOs if we only consider the restriction of A u on x n = 0. We shall also denote the principal symbol by σ(A). We have the following quantizations:

σ ℏℏ ′ ∂ s i = τ, σ ℏ∂ x j i = ξ i .
We set D s = ℏℏ ′ ∂ s i and D x j = If we set P = P/a(s), its principal part is given by

P 2 = 1 T ∂ s -∂ 2 y n -r(y, ∂ y ′ ), r(y, ∂ y ′ ) = r(y/b(s), ∂ y ′ ).
We shall prove a Carleman estimate for this operator before moving back to the original coordinates. In the sequel it is important to remember that x = y/b(s) remains in the compact domain K. We set φ(s, y) = ϕ(y/b(s)), φ x (s, y) = η(s) b(s) ∂ x ϕ(y/b(s)).

Note that φ x does not stand for ∂ x φ but is in fact equal to η∂ x φ. This notation will however be convenient below since the calculus we have introduced uses ℏ and ℏ ′ for small parameters instead of h = ℏη -1 .

Remark A.6. With the definitions of r and φ, we find that derivatives of the symbols with respect to s and y generate a gain of a factor s -1 . This will be taken into account in the application of the composition formula (A.13).

Next since

Q 1 = 1 2 Q1 -[D y n , φ x n ] -φ x n D y n , (A.19) we compute Q 2 1 + φ 2 x n Q 2 = -Q 1 φ x n D y n + Q 1 2 Q1 -[D y n , φ x n ] + φ 2
x n ( Q2 -D 2 y n ). Using (A.19) a second time we have

Q 2 1 + φ 2 x n Q 2 = φ x n D y n - 1 2 ( Q1 -[D y n , φ x n ]) φ x n D y n + Q 1 2 Q1 -[D y n , φ x n ] + φ 2
x n ( Q2 -D 2 y n ), which reads

Q 2 1 + φ 2 x n Q 2 ∈ φ 2 x n Q2 - 1 2 D y n φ x n Q1 + Ψ 1 T Q1 + ℏ s -1 Ψ 0 T D y n + ℏ s -1 Ψ 1 T . (A.20)
We note that

ℏ φ 2 x n Q2 v, G s -1 v ≤ ℏ 1 2 C Q2 v 2 + ℏ 3 2 C s -1 v 2 ,
and

ℏ Re 1 2 D y n φ x n Q1 v, G s -1 v = ℏ 2 Re φ x n Q1 v, D y n G s -1 v -ℏ 2 Re φ x n 2i Q1 v| y n =0 + , G s -1 v| y n =0 + 0 ,
by integration by parts. The last term vanishes as v| y n =0 + = 0. We thus obtain

(A.21) ℏ Re (Q 2 1 + φ 2 x n Q 2 )v, G s -1 v ≤ C ℏ 1 2 Q1 v 2 + ℏ 1 2 Q2 v 2 + ℏ 3 2 s -1 D y n v 2 + ℏ 3 2 s -1 v 2 + ℏ 3 2 s -1 Op(M)v 2 .
By choosing ℏ sufficiently small, from (A.16), (A.17), (A.18) and (A.21), and Lemma A.8, we obtain

P ϕ v 2 ≥ Cℏ s -1 2 Op(M)v 2 + s -1 2 D y n v 2 ≥ Cℏ s -1 2 v 2 + ℏ 2 s -1 2 ∇ y v 2 .
Arguing as in the proof of Theorem 3.5 we obtain ℏ 4 e φ/h Pu 2 ≥ Cℏ e φ/h s -1 2 u 2 + ℏ 2 e φ/h s -1 2 ∇ y u 2 .

Moving back to the x coordinate we find ℏ 4 e ϕ/h s -n 2 -2 Pu 2 ≥ Cℏ e ϕ/h s -n+1 2 u 2 + ℏ 2 e ϕ/h s -n+3 2 ∇ x u 2 .

We now proceed with writing the local Carleman estimate we have obtained with the original time variable t ∈ (0, T ). From (A.10) we have ds = a(s(t)) T dt = π T s(t) 2 dt. We then have ℏ 4 e ϕ/h η(t) -n 2 -1 Pu 2 ≥ Cℏ e ϕ/h η(t) -n-1 2 u 2 + ℏ 2 e ϕ/h η(t) -n+1 2 ∇ x u 2 , as η(t)/C ≤ s(t) ≤ Cη(t). If we now change u into η(t) n 2 -1 u, which is possible because of the fast decay of e ϕ/h as t → 0 or T , we achieve ℏ 4 e ϕ/h η(t) -2 Pu 2 ≥ Cℏ e ϕ/h η(t) -1 2 u 2 + ℏ 2 e ϕ/h η(t) -3 2 ∇ x u 2 .

In fact, we chose εT = ℏ ′ sufficiently small to absorb the commutator [∂ t , η(t) n 2 -1 ] generated by this change of unknown function. Recalling that ℏ/η = h this concludes the proof.

Proof of Lemma A.7. We denote by {., .} s , and {., .} x the Poisson brackets with respect to the s, τ variables on the one hand and the x, ξ variables on the other hand. We have

s -1 S 2 ∋ σ i ℏ [ Q2 , Q1 ] = ℏ ′ { q2 , q1 } s ∈h ′ s -1 S 1 +{ã 2 , ã1 } x .
For the property we aim to prove we may thus focus on the second term that belongs to s -1 S 2 . We introduce the map -1 ξ , and set q j • κ -1 = η b (s) 2 ã j , j = 1, 2. We find ã2 (s, x, τ, ξ) = ξ 2 n + a 2 ∈ S 2 , a 2 = r(x, ξ ′ )r(x,

∂ x ′ ϕ) -∂ x n ϕ 2 ∈ S 2 T , ã1 (s, x, τ, ξ) = 2ξ n ∂ x n ϕ + 2a 1 ∈ S 1 , a 1 = τ 2 + r(x, ξ ′ , ∂ x ′ ϕ) ∈ S 1 T ,
where r(y, ., .) is the symmetric bilinear form associated with the real quadratic form r(x, ξ ′ ). Recall that the variable x remains in the compact set K, as opposed to y = b(s)x. We observe that { q2 , q1 } x = η 3 b 4 {ã 2 , ã1 } x • κ. In particular we have { q2 , q1 } x = h 0 q2 + h 1 q1 + h 2 , {ã 2 , ã1 } x = ℓ 0 ã2 + ℓ 1 ã1 + ℓ 2 , with h j = σ(H j ) ∈ s -1 S j T and ℓ j ∈ S j T . We find h 2 = η 3 b 4 ℓ 2 • κ. We set M ′ = M • κ -1 . We note that M ′ ∼ M. We set

ν = µ a 2 1 + (∂ x n ϕ) 2 a 2 2 M ′2 + s η ℓ 2 ∈ S 2 T .
We know prove that ν ≥ CM 2 for µ sufficiently large. For |(τ, ξ ′ )| large, say |(τ, ξ ′ )| ≥ R, we clearly have ν ≥ CM 2 . We may thus restrict ourselves to the case of the variables (x, τ, ξ) in a compact set. Recall that s = s(t) and observe that ν is smooth with respect to t ∈ [0, T ]. Hence all the variables (t, x, τ, ξ) lay in a compact set. We consider the case ℏ = ℏ ′ = 0. Assume that a 2 1 + (∂ x n ϕ) 2 a 2 and chose ξ n = -(a 1 /∂ x n ϕ). Then ã1 = ã2 = 0. By the sub-elliptic property (7.1) (which is invariant by change of variables) we obtain {ã 2 , ã1 } x = l 2 > 0. It follows that for µ sufficiently large ν/M 2 ≥ C > 0 in this case as well. Relaxing the condition ℏ = ℏ ′ = 0 only affects the constant C for ℏ, ℏ ′ positive and sufficiently small.

We conclude the proof since we have

h 2 + µ q 2 1 + φ 2 x n q 2 2 s M 2 = s -1 η b 4 ν • κ.

Theorem 2. 8 (

 8 Symbol calculus). Let a ∈ S m and b ∈ S m ′ . Then Op(a) • Op(b) = Op(c) for a certain c ∈ S m+m ′ that admits the following asymptotic expansion

Figure 2 .

 2 Figure 2. Characteristic set Z and supports of χ 1 and χ 2 in Proposition 3.8.

Figure 3 .

 3 Figure 3. Local geometry for the unique continuation problem. The striped region contains the support of [P, χ]u.

  we set M = (τ, ξ ′ ) ∈ S 1 T we have the following regularity result: if a ∈ s l S m T , l, m ∈ R, then there exists C > 0 such that Op(a)u ≤ C s l Op(M m )u .The composition formula for tangential symbols, a ∈ s l S m T , b ∈ s l ′ S m ′ T , is given by(a ♯ b)(s, x, τ, ξ ′ , ℏ) ∼ |α| ℏ |α| (ℏ ′ ) α 1 (-i) |α| α! (∂ α 1 τ ∂ α 2 ξ ′ a) (∂ α 1 s ∂ α 2 x ′ b)(s, x, τ, ξ ′ , ℏ), (A.13) with α = (α 1 , α 2 ), α 1 ∈ N, α 2 ∈ N n-1 ,and yields a tangential symbol in s l+l ′ S m+m ′ T . We now make the following change of variables in the x direction. y = b(s)x, with b(s) = a(s) 1 2 .

κ

  : (s, y, τ, ξ) → s, y b(s)

  The notation we use is classical. The canonical inner product on R n is denoted by ., . , the associated Euclidean norm by |.| and the Euclidean open ball with center x and radius r by B(x, r). For ξ ∈ R n we set ξ

1.2. Notation.

  ds, where S (t) is the heat semi-group and we find v(t) = ∫

	t 0 e -d 2 4s S (t -s) w(s)ds, which yields

In the sense that only constants are affected. In Theorem

3.5 below the constants C and h 1 change but not the form of the estimate.

Note that in the elliptic region, e.g. for large |ξ|, we can obtain a better result without the factor h in (3.3). In the neighborhood of the characteristic set Z = {p ϕ = 0} the choice of the norm in H 1 or H 2 matters very little since this region is compact. See Proposition 3.8 for more details.

In fact, we can Choose φ in the form φ(t,x) = η -1 2 φ 1 ((tt 0 )/η)φ 2 (x) with φ 1 ∈ C ∞ c (R), ∫ |φ 1 | 2 = 1, and and η > 0 sufficiently small. We then let η go to 0.

The CNRS Pticrem project facilitated the writting of these notes. The first author was partially supported by l'Agence Nationale de la Recherche under grant ANR-07-JCJC-0139-01.

M. Bellassoued's handwritten notes of [Leb05] were very valuable to us and we wish to thank him for letting us use them. The authors wish to thank L.

Introduce v = e φ/h u = e φη/ℏ u and P ϕ = ℏ 2 e φ/h Pe -φ/h . We have P ϕ v = ℏ 2 e φ/h Pu = g. We define the following symmetric operators Q2 = (P ϕ + P * ϕ )/2, Q1 = (P ϕ -P * ϕ )/(2i), with Q2 = D 2

T where r(y, ., .) is the symmetric bilinear form associated with the real quadratic form r(x, ξ ′ ). We note that

for w 1 and w 2 smooth, where (., .) 0 is the L 2 hermitian inner-product in {y n = 0}, and we thus obtain

which, as v| y n =0 + = 0, reduces to

We observe that we have i

We have the following lemma, which proof is given below.

Lemma A.7. For µ sufficiently large and ℏ and ℏ ′ sufficiently small, there exists C > 0 such that

Applying the Gårding inequality in the tangential directions (including the time direction) we thus obtain, for ℏ sufficiently small, (A.16)

From the form of Q1 we deduce the following lemma.

Lemma A.8. We have s -1 2 D y n v ≤ C Q1 v + C s -1 2 Op(M)v .