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ON CARLEMAN ESTIMATES FOR ELLIPTIC AND PARABOLIC OPERATORS.

APPLICATIONS TO UNIQUE CONTINUATION AND CONTROL OF PARABOLIC

EQUATIONS

JÉRÔME LE ROUSSEAU AND GILLES LEBEAU

Abstract. Local and global Carleman estimates play a central role in the study of some partial differential equa-

tions regarding questions such as unique continuation and controllability. We survey and prove such estimates

in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality

results for these estimates and some of their consequences are presented. We point out the connexion of these

optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we

introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as

interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null control-

lability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them

locally in space at first, and patch them together to obtain a global estimate. This second approach also yields

the null controllability of the heat equation.
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1. Introduction

In 1939, T. Carleman introduced some energy estimates with exponential weights to prove a unique-

ness result for some elliptic partial differential equations (PDE) with smooth coefficients in dimension two

[Car39]. This type of estimate, now referred to as Carleman estimates, were generalized and systematized
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2 JÉRÔME LE ROUSSEAU AND GILLES LEBEAU

by L. Hörmander and others for a large class of differential operators in arbitrary dimensions (see [Hör63,

chapter 8] and [Hör85a, Sections 28.1-2]; see also [Zui83]).

In more recent years, the field of applications of Carleman estimates has gone beyond the original domain

they had been introduced for, i.e., a quantitative result for unique continuation. They are also used in the

study of inverse problems and control theory for PDEs. Here, we shall mainly survey the application

to control theory in the case of parabolic equations, for which Carleman estimates have now become an

essential technique.

In control of PDEs, for evolution equations, one aims to drive the solution in a prescribed state, starting

from a certain initial condition. One acts on the equation through a source term, a so-called distributed

control, or through a boundary condition, a so-called boundary control. To achieve general results one

wishes for the control to only act in part of the domain or its boundary and one wishes to have as much

latitude as possible in the choice of the control region: location, size.

As already mentioned, we focus our interest on the heat equation here. In a smooth and bounded1 domain

Ω in Rn, for a time interval (0,T ) with T > 0, and for a distributed control we consider





∂ty − ∆y = 1ωv in Q = (0,T ) ×Ω,
y = 0 on Σ = (0,T ) × ∂Ω,
y(0) = y0 in Ω.

(1.1)

Here ω ⋐ Ω is an interior control region. The null controllability of this equation, that is the existence, for

any y0 ∈ L2(Ω), of a control v ∈ L2(Q), with ‖v‖L2(Q) ≤ C‖y0‖L2(Q), such that y(T ) = 0, was first proven in

[LR95], by means of Carleman estimates for the elliptic operator −∂2
s −∆x in a domain Z = (0, S 0)×Ω with

S 0 > 0. A second approach, introduced in [FI96], also led to the null controllability of the heat equation.

It is based on global Carleman estimates for the parabolic operator ∂t − ∆. These estimates are said to be

global for they apply to functions that are defined in the whole domain (0,T ) × Ω and that solely satisfy

boundary condition, e.g., homogeneous Dirichlet boundary conditions on (0,T ) × ∂Ω.

We shall first survey the approach of [LR95], proving and using local elliptic Carleman estimates. We

prove such estimates with techniques from semi-classical microlocal analysis. The estimates we prove are

local in the sense that they apply to functions whose support is localized in a closed region strictly included

in Ω. With these estimates at hand, we derive interpolation inequalities for functions in Z = (0, S 0) × Ω,

that satisfy some boundary conditions, and we derive a spectral inequality for finite linear combinations

of eigenfunctions of the Laplace operator in Ω with homogeneous Dirichlet boundary conditions. This

yields an iterative construction of the control function v working in increasingly larger finite dimensional

subspaces.

The method introduced in [LR95] was further extended to address thermoelasticity [LZ98], thermoelastic

plates [BN02], semigroups generated by fractional orders of elliptic operators [Mil06]. It has also been

used to prove null controllability results in the case of non smooth coefficients [BDL07b, LR10a]. Local

Carleman estimates have also been central in the study of other types of PDEs for instance to prove unique

continuation results [SS87, Rob91, FL96, Tat95b, Tat95a] and to prove stabilization results [LR97, Bel03]

to cite a few. Here, we shall consider self-adjoint elliptic operators, in particular the Laplace operator. The

method of [LR95] can also be extended to some non selfadjoint case, e.g. non symmetric systems [Léa10].

In a second part we survey the approach of [FI96], that is by means of global parabolic Carleman esti-

mates. These estimates are characterized by an observation term. Such an estimate readily yields a so-called

observability inequality for the parabolic operator, which is equivalent to the null controllability of the linear

system (1.1). The proof of parabolic Carleman estimates we provide is new and different from that given

in [FI96]. In [FI96] the estimate is derived through numerous integrations by parts and the identification of

positive “dominant” terms. As in the elliptic case of the first part, we base our analysis on semi-classical

microlocal analysis. In particular, the estimate is obtained through a time-uniform semi-classical Gårding

inequality. In the case of parabolic operators, we first prove local estimates and we also show how such

estimates can be patched together to finally yield a global estimate with an observation term in the form of

that proved by [FI96].

1The problem of null-controllability of the heat equation in the case whereΩ is unbounded is entirely different [MZ01, Mil05, Mil].
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The approach of [FI96] has been successful, allowing to also treat the controllability of more general

parabolic equations. Time dependent terms can be introduced in the parabolic equation. Moreover, one

may consider the controllability of some semi-linear parabolic equations. For these questions we refer to

[FI96, Bar00, FCZ00b, DFCGBZ02]. In fact, global Carleman estimates yield a precise knowledge of the

“cost” of the control function in the linear case [FCZ00a] which allows to carry out a fix point argument after

linearization of the semi-linear equation. The results on semi-linear equations have been extended to the

case of non smooth coefficients [DOP02, BDL07a, Le 07, LR10b]. The use of global parabolic Carleman

estimates has also allowed to address the controllability of non linear equations such as the Navier-Stokes

equations [Ima01, FCGIP04], the Boussinesq system [FCGIP06], fluid structure systems [IT07, BO08],

weakly coupled parabolic systems [de 00, ABDK05, ABD06, GBPG06] to cite a few. A review of the

application of global parabolic Carleman estimates can be found in [FCG06].

A local Carleman estimates takes the following form. For an elliptic operator P and for a well-chosen

weight function ϕ = ϕ(x), there exists C > 0 and h1 > 0 such that

h‖eϕ/hu‖20 + h3‖eϕ/h∇xu‖20 ≤ Ch4‖eϕ/hPu‖20,(1.2)

for u smooth with compact support and 0 < h ≤ h1.

In this type of estimate we can take the parameter h as small as needed, which is often done in appli-

cations to inverse problems or control theory. For this reason, it appeared sensible to us to present results

regarding the optimality of the powers of the parameter h in such Carleman estimates. For example, in the

case of parabolic estimates this question is crucial for the application to the controllability of semilinear

parabolic equations (see e.g. [FCZ00b, DFCGBZ02]). To make precise such optimality result we present

its connection to the local phase-space geometry. We show that the presences of h in front of the first term

and h3 in front of the second term in (1.2) are connected to the characteristic set of the conjugated operator

Pϕ = h2eϕ/hPe−ϕ/h. Away from this characteristic set, a better estimate can be achieved.

If ω is an open subset of Ω, from elliptic Carleman estimates we obtain a spectral inequality of the form

‖u‖2
L2(Ω)

≤ CeC
√
µ‖u‖2

L2(ω)
,

for some C > 0 and for u a linear combination of eigenfunctions of −∆ associated to eigenvalues less than

µ > 0. An optimality result for such an inequality is also presented as well as some unique continuation

property for series of eigenfunctions of −∆. This spectral inequality is also at the center of the construction

of the control function of (1.1) and the estimation of its “cost” for particular frequency ranges.

An important point in the derivation of a Carleman estimate consist in the choice of the weight function

ϕ. A necessary condition can be derived. This condition concerns the sub-ellipticity of the symbol of the

conjugated operator Pϕ. With the approach we use, the sufficiency of this condition is obtained. We also

consider stronger sufficient conditions: the method introduced by [FI96] to derive Carleman estimates is

analyzed in this framework.

This article originates in part from a lecture given by G. Lebeau at the Faculté des Sciences in Tunis in

February 2005 and from M. Bellassoued’s handwritten notes taken on this occasion [Leb05].

1.1. Outline. We start by briefly introducing semi-classical pseudodifferential operators (ψDO) in Sec-

tion 2. The Gårding inequality will be one of the important tools we introduce. It will allow us to quickly

derive a local Carleman estimate for an elliptic operator in Section 3. In that section, we present the sub-

ellipticity condition that the weight function has to fulfill. We also show the optimality of the powers of the

semi-classical parameter h in the Carleman estimates. We apply Carleman estimates to elliptic equations

and inequalities and prove unique continuation results in Section 4. In Section 5, we prove the interpola-

tion and spectral inequalities. The latter inequality concerns finite linear combinations of eigenfunctions of

the elliptic operator. We show the optimality of the constant eC
√
µ in this inequality where µ is the largest

eigenvalue considered in the sum. We also prove a unique continuation property for some series of such

eigenfunctions. In Section 6, these results are applied to construct a control function for the parabolic equa-

tion (1.1). Section 7 is devoted to parabolic Carleman estimates. We first prove them locally in space with

a uniform-in-time Gårding inequality. We then patch them together to obtain a global estimate. We provide

a second proof of the null controllability of parabolic equations with this approach.

For a clearer exposition, some of the results given in the main sections are proven in the appendices.
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1.2. Notation. The notation we use is classical. The canonical inner product on Rn is denoted by 〈., .〉,
the associated Euclidean norm by |.| and the Euclidean open ball with center x and radius r by B(x, r). For

ξ ∈ Rn we set 〈ξ〉 := (1 + |ξ|2)
1
2 . If α is a multi-index, i.e., α = (α1, . . . , αn) ∈ Nn, we introduce

ξα = ξα1

1
· · · ξαn

n , if ξ ∈ Rn, ∂α = ∂α1
x1
· · · ∂αn

xn
, Dα

= Dα1
x1
· · ·Dαn

xn
, and |α| = α1 + · · · + αn,

where D = h
i
∂. InRn, we denote by∇ the gradient (∂x1

, . . . , ∂xn
)t and by ∆ the Laplace operator ∂2

x1
+· · ·+∂2

xn
.

If needed the variables along which differentiations are performed will be made clear by writing ∇x or ∆x

for instance. We shall also write ϕ′ = ∇xϕ.

For an open setΩ inRn, we denote by C∞c (Ω) the set of functions of class C∞ whose support is a compact

subset of Ω. For a compact set K in Rn, we denote by C∞c (K) the set of functions in C∞c (Rn) whose support

is in K. The Schwartz space S (Rn) is the set of functions of class C∞ that decrease rapidly at infinity. Its

dual, S ′(Rn), is the set of tempered distributions. The Fourier transform of a function u ∈ S (Rn) is defined

by û(ξ) = ∫ e−i〈x,ξ〉u(x) dx, with an extension by duality to S ′(Rn).

Let Ω be an open subset of Rn. The space L2(Ω) of square integrable functions is equipped with the

hermitian inner product (u, v)L2 = ∫Ω u(x)v(x) dx and the associated norm ‖u‖L2 = ‖u‖0 = (u, u)1/2

L2 . In Rn,

classical Sobolev spaces are defined by Hs(Rn) = {u ∈ S ′(Rn); 〈ξ〉sû ∈ L2(Rn)} for all s ∈ R. In Ω, for

s ∈ N, Hs(Ω) is defined by Hs(Ω) = {u ∈ D ′(Ω); ∂αu ∈ L2(Rn),∀α ∈ Nn, |α| ≤ s}.
For two functions f and g with variables x, ξ in Rn × Rn, we defined their so-called Poisson bracket

{ f , g} = ∑
j

(∂ξ j
f∂x j

g − ∂x j
f∂ξ j

g).

For two operators A, B their commutator will be denoted [A, B] = AB − BA.

In these notes, C will always denote a generic positive constant whose value can be different in each line.

If we want to keep track of the value of a constant we shall use other letters. We shall sometimes write Cλ

for a generic constant that depends on a parameter λ.

2. Preliminaries: semi-classical (pseudo-)differential operators

Semi-classical theory originates from quantum physics. The scaling parameter h we introduce is consis-

tent with Plank’s constant in physics. It will be assumed small: h ∈ (0, h0), 0 < h0 << 1. We set D = h
i
∂.

The semi-classical limit corresponds to h→ 0.

If p(x, ξ) is a polynomial in ξ of order less than or equal to m, x, ξ ∈ Rn, p(x, ξ) =
∑

|α|≤m aα(x)ξα, we set

p(x,D)u =
∑

|α|≤m

aα(x)Dαu.

Here, α is a multi-index. We observe that Dαu = h|α|
(2π)n ∫Rn ei〈x,ξ〉ξαû(ξ) dξ, for u ∈ S (Rn), where û is the

classical Fourier transform of u. We thus have

p(x,D)u(x) =
∑

|α|≤m

h|α|

(2π)n ∫ ei〈x,ξ〉aα(x)ξαû(ξ) dξ = (2πh)−n ∫ ei〈x,ξ〉/h ∑
|α|≤m

aα(x)ξαû(ξ/h) dξ,

or, formally, p(x,D)u(x) = (2πh)−n ∫∫ ei〈x−y,ξ〉/h p(x, ξ) u(y) dy dξ. More generally we introduce the follow-

ing symbol classes.

Definition 2.1. Let a(x, ξ, h) ∈ C∞(Rn × Rn), with h as a parameter in (0, h0), be such that for all multi-

indices α, β we have

|∂αx∂βξa(x, ξ, h)| ≤ Cα,β〈ξ〉m−|β|, x ∈ Rn, ξ ∈ Rn, h ∈ (0, h0).

We write a ∈ S m.

For a ∈ S m we call principal symbol the equivalence class of a in S m/(hS m−1).

Lemma 2.2. Let m ∈ R and a j ∈ S m− j with j ∈ N. Then there exists a ∈ S m such that

∀N ∈ N, a −
N∑

j=0
h ja j ∈ hN+1S m−N−1.
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We then write a ∼ ∑ j h ja j. The symbol a is unique up to O(h∞)S −∞, in the sense that the difference of two

such symbols is in O(hN)S −M for all N,M ∈ N.

We identify a0 with the principal symbol of a. In general, for the symbols of the form a ∼ ∑ j h ja j that

we shall consider here the symbols a j will not depend on the scaling parameter h.

With these symbol classes we can define pseudodifferential operators (ψDOs).

Definition 2.3. If a ∈ S m, we set

a(x,D, h)u(x) = Op(a)u(x) := (2πh)−n ∫∫ ei〈x−y,ξ〉/ha(x, ξ, h) u(y) dy dξ

= (2πh)−n ∫ ei〈x,ξ〉/ha(x, ξ, h) û(ξ/h) dξ.

We denote by Ψm the set of these ψDOs. For A ∈ Ψm, σ(A) will be its principal symbol.

We have Op(a) : S (Rn) → S (Rn) continuously and Op(a) can be uniquely extended to S ′(Rn). Then

Op(a) : S ′(Rn)→ S ′(Rn) continuously.

Example 2.4. Consider the differential operator defined by A = −h2
∆+V(x)+h2∑

1≤ j≤n b j(x)∂ j. Its symbol

and principal symbol are a(x, ξ, h) = |ξ|2 + V(x) + ih
∑

1≤ j≤n b j(x)ξ j and σ(A) = |ξ|2 + V(x) respectively.

We now introduce Sobolev spaces and Sobolev norms which are adapted to the scaling parameter h. The

natural norm on L2(Rn) is written as ‖u‖20 := (∫ |u(x)|2 dx)
1
2 . Let s ∈ R; we then set

‖u‖s := ‖Λsu‖0, with Λs := Op(〈ξ〉s) and H
s(Rn) := {u ∈ S

′(Rn); ‖u‖s < ∞}.
The space H s(Rn) is algebraically equal to the classical Sobolev space Hs(Rn). For a fixed value of h, the

norm ‖.‖s is equivalent to the classical Sobolev norm that we write ‖.‖Hs . However, these norms are not

uniformly equivalent as h goes to 0. In fact we only have

‖u‖s ≤ C‖u‖Hs , if s ≥ 0, and ‖u‖Hs ≤ C‖u‖s, if s ≤ 0.

For s ∈ N the norm ‖.‖s is equivalent to the norm Ns(u) :=
∑

|α|≤s ‖Dαu‖20 =
∑

|α|≤s h2|α|‖∂αu‖20. The spaces

H s and H −s are in duality, i.e. H −s
= (H s)′ in the sense of distributional duality with L2

= H 0 as a

pivot space. We can prove the following continuity result.

Theorem 2.5. If a(x, ξ, h) ∈ S m and s ∈ R, we then have Op(a) : H s →H s−m continuously, uniformly in

h.

The following Gårding inequality is the important result we shall be interested in here.

Theorem 2.6 (Gårding inequality). Let K be a compact set of Rn. If a(x, ξ, h) ∈ S m, with principal part am,

if there exists C > 0 such that

Re am(x, ξ, h) ≥ C〈ξ〉m, x ∈ K, ξ ∈ Rn, h ∈ (0, h0),

then for 0 < C′ < C and h1 > 0 sufficiently small we have

Re(Op(a)u, u) ≥ C′‖u‖2m/2, u ∈ C
∞
c (K), 0 < h ≤ h1.

The positivity of the principal symbol of a thus implies a certain positivity for the operator Op(a). The

value of h1 depends on C, C′ and a finite number of constants Cα,β associated to the symbol a(x, ξ, h) (see

Definition 2.1). A proof of the Gårding inequality is provided in Appendix A.

Remark 2.7. We note here that the positivity condition on the principal symbol is imposed for all ξ in Rn,

as opposed to the assumptions made for the usual Gårding inequality, i.e., non semi-classical, that only ask

for such a positivity for |ξ| large (see e.g. [Tay81, Chapter 2]). The semi-classical result is however stronger

in the sense that it yields a true positivity for the operator.

We shall compose ψDOs in the sequel. Such compositions yield a calculus at the level of operator

symbols.



6 JÉRÔME LE ROUSSEAU AND GILLES LEBEAU

Theorem 2.8 (Symbol calculus). Let a ∈ S m and b ∈ S m′ . Then Op(a) ◦ Op(b) = Op(c) for a certain

c ∈ S m+m′ that admits the following asymptotic expansion

c(x, ξ, h) = (a ♯ b)(x, ξ, h) ∼ ∑
α

h|α|

i|α|α!
∂αξ a(x, ξ, h) ∂αx b(x, ξ, h), where α! = α1! · · ·αn!

The first term in the expansion, the principal symbol, is ab; the second term is h
i

∑

j ∂ξ j
a(x, ξ, h) ∂x j

b(x, ξ, h).

It follows that the principal symbol of the commutator [Op(a),Op(b)] is

σ([Op(a),Op(b)]) =
h

i
{a, b} ∈ hS m+m′−1.

Finally, the symbol of the adjoint operator can be obtained as follows.

Theorem 2.9. Let a ∈ S m. Then Op(a)∗ = Op(b) for a certain b ∈ S m that admits the following asymptotic

expansion

b(x, ξ, h) ∼ ∑
α

h|α|

i|α|α!
∂αξ ∂

α
x a(x, ξ, h).

The principal symbol of b is simply a.

For references on usual ψDOs the reader can consult [Tay81, Hör85b, AG91, GS94, Shu01]. For refer-

ences on semi-classical ψDOs the reader can consult [Rob87, DS99, Mar02].

3. Local Carleman estimates for elliptic operators

We shall prove a local Carleman estimates for a second-order elliptic operator. To simplify notation we

consider the Laplace operator P = −∆ but the method we expose extends to more general second-order

elliptic operators with a principal part of the form
∑

i, j ∂ j(ai j(x)∂i) with ai j ∈ C∞(Rn,R), 1 ≤ i, j ≤ n and
∑

i, j ai j(x)ξiξ j ≥ C|ξ|2, with C > 0, for all x, ξ ∈ Rn. In particular, we note that Carleman estimates are

insensitive2 to changes in the operator by zero- or first-order terms.

Let ϕ(x) be a real-valued function. We define the following conjugated operator Pϕ = h2eϕ/hPe−ϕ/h to be

considered as a semi-classical differential operator. We have Pϕ = −h2
∆ − |ϕ′|2 + 2〈ϕ′, h∇〉 + h∆ϕ. Its full

symbol is given by |ξ|2 − |ϕ′|2 + 2i〈ϕ′, ξ〉 + h∆ϕ. Its principal symbol is given by

pϕ = σ(Pϕ) = |ξ|2 − |ϕ′|2 + 2i〈ϕ′, ξ〉 = ∑
j

(ξ j + iϕ′x j
)2,

i.e., we have “replaced” ξ j by ξ j + iϕ′x j
. In fact we note that the symbol of eϕ/hD je

−ϕ/h is ξ j + iϕ′x j
.

We define the following symmetric operators Q2 = (Pϕ + P∗ϕ)/2, Q1 = (Pϕ − P∗ϕ)/(2i), with respective

principal symbols

q2 = |ξ|2 − |ϕ′|2, q1 = 2〈ξ, ϕ′〉.
We have pϕ = q2 + iq1 and Pϕ = Q2 + iQ1.

We choose ϕ that satisfies the following assumption.

Assumption 3.1 (L. Hörmander [Hör63, Hör85a]). Let V be a bounded open set in Rn. We say that the

weight function ϕ ∈ C∞(Rn,R) satisfies the sub-ellipticity assumption in V if |ϕ′| > 0 in V and

∀(x, ξ) ∈ V × Rn, pϕ(x, ξ) = 0 ⇒ {q2, q1}(x, ξ) ≥ C > 0.

Remark 3.2. We note that pϕ(x, ξ) = 0 is equivalent to |ξ| = |ϕ′| and 〈ξ, ϕ′〉 = 0. In particular, the

characteristic set Z = {(x, ξ) ∈ V × Rn; pϕ(x, ξ) = 0} is compact as illustrated in Figure 1.

Assumption 3.1 can be fulfilled as stated in the following lemma whose proof can be found in Appen-

dix A.

Lemma 3.3 (L. Hörmander [Hör63, Hör85a]). Let V be a bounded open set in Rn and ψ ∈ C∞(Rn,R) be

such that |ψ′| > 0 in V. Then ϕ = eλψ fulfills Assumption 3.1 in V for λ > 0 sufficiently large.

2In the sense that only constants are affected. In Theorem 3.5 below the constants C and h1 change but not the form of the estimate.
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pϕ = 0

ϕ′(x)

0

Figure 1. Form of the characteristic set Z at the vertical of each point x ∈ V .

The proof of the Carleman estimate will make use of the Gårding inequality. In preparation, we have the

following result proven in Appendix A that follows from Assumption 3.1.

Lemma 3.4. Let µ > 0 and ρ = µ(q2
2
+ q2

1
)+ {q2, q1}. Then, for all (x, ξ) ∈ V ×Rn, we have ρ(x, ξ) ≥ C〈ξ〉4,

with C > 0, for µ sufficiently large.

We may now prove the following Carleman estimate.

Theorem 3.5. Let V be a bounded open set in Rn and let ϕ satisfy Assumption 3.1 in V; then, there exist

0 < h1 < h0 and C > 0 such that

h‖eϕ/hu‖20 + h3‖eϕ/h∇xu‖20 ≤ Ch4‖eϕ/hPu‖20,(3.1)

for u ∈ C∞c (V) and 0 < h < h1.

Proof. We set v = eϕ/hu. Then, Pu = f is equivalent to Pϕv = g = h2eϕ/h f or rather Q2v + iQ1v = g.

Observing that (Q jw1,w2) = (w1,Q jw2) for w1,w2 ∈ C∞c (Rn) we then obtain

(3.2) ‖g‖20 = ‖Q1v‖20 + ‖Q2v‖20 + 2 Re(Q2v, iQ1v) =
((

Q2
1 + Q2

2 + i[Q2,Q1]
)

v, v
)

.

We choose µ > 0 as given in Lemma 3.4. Then, for h such that hµ ≤ 1 we have

h

((

µ(Q2
1 + Q2

2) +
i

h
[Q2,Q1]

)

︸                            ︷︷                            ︸

principal symbol = µ(q2
1
+q2

2
)+{q2,q1}

v, v
)

≤ ‖g‖20.

The Gårding inequality and Lemma 3.4 then yield

(3.3) h‖v‖22 ≤ C‖g‖20.
We content3 ourselves with the norm in H 1 here and we obtain h‖eϕ/hu‖20 + h3‖∇x(eϕ/hu)‖20 ≤ Ch4‖eϕ/h f ‖20.

We write ∇x(eϕ/hu) = h−1eϕ/h(∇xϕ)u + eϕ/h∇xu, which yields

h3‖eϕ/h∇xu‖20 ≤ Ch‖eϕ/hu‖20 +Ch3‖∇x(eϕ/hu)‖20,
since |∇xϕ| ≤ C. This concludes the proof. �

Remark 3.6. With a density argument the result of Theorem 3.5 can be extended to functions u ∈ H2
0
(V).

However, here, we do not treat the case of functions in H1
0
(V) ∩ H2(V). For such a result one needs a

local Carleman estimate at the boundary of the open set V as proven in [LR95, Proposition 2 page 351].

Moreover, a global estimate in V for a function u in H1
0
(V) ∩ H2(V) requires an observation term in the

3Note that in the elliptic region, e.g. for large |ξ|, we can obtain a better result without the factor h in (3.3). In the neighborhood

of the characteristic set Z = {pϕ = 0} the choice of the norm in H 1 or H 2 matters very little since this region is compact. See

Proposition 3.8 for more details.
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V × Rn

Z

supp( χ1)

supp( χ2)

Figure 2. Characteristic set Z and supports of χ1 and χ2 in Proposition 3.8.

r.h.s. of the Carleman estimate. We shall provide such details in the case of parabolic operators below (see

Section 7).

Remark 3.7. In the proof of Theorem 3.5 we have used Assumption 3.1. We give complementary roles to

the square terms in (3.2), ‖Q1u‖20 and ‖Q2u‖20, and to the action of the commutator i([Q2,Q1]u, u). As the

square terms approach zero, the commutator term comes into effect and yields positivity. A. Fursikov and

O. Yu. Imanuvilov [FI96] have introduced a modification of the proof that allows to only consider a term

equivalent to the commutator term without using the two square terms. This approach is presented below.

The following proposition yields a more precise result than the previous Carleman estimate and illus-

trates the loss of a half derivative in the neighborhood of the characteristic set Z .

Proposition 3.8. Let s ∈ R and V be a bounded open set in Rn and let ϕ satisfy Assumption 3.1 in V. Let

χ1, χ2 ∈ S 0 with compact supports in x. Assume that χ1 vanishes in a neighborhood of Z and that χ2

vanishes outside a compact neighborhood of Z . Then there exist C > 0 and 0 < h2 < h0 such that

‖Op( χ1)v‖2 ≤ C
(

‖Pϕv‖
0
+ h‖v‖1

)

, and h
1
2 ‖Op( χ2)v‖s ≤ C

(

‖Pϕv‖
0
+ h‖v‖1

)

,(3.4)

for v ∈ C∞c (V) and 0 < h < h2.

This proposition is proven in Appendix A.5. We take χ1 and χ2 that satisfy the assumptions made

in Proposition 3.8 and such that χ1 + χ2 = 1 in a neighborhood of V × Rn. For v ∈ C∞c (V) we have

‖Op(1 − χ1 − χ2)v‖r ≤ CN,r,r′h
N‖v‖r′ for all N ∈ N and r, r′ ∈ R. We thus obtain

h
1
2 ‖v‖2 ≤ h

1
2 (‖Op(1 − χ1 − χ2)v‖2 + ‖Op( χ1)v‖2 + ‖Op( χ2)v‖2) ≤ C

(

‖Pϕv‖
0
+ h‖v‖1

)

.

Choosing h sufficiently small we obtain

h
1
2 ‖v‖2 ≤ C′‖Pϕv‖

0
,(3.5)

which brings us back to the last step in the proof of Theorem 3.5. Also note that (3.5) allows us to remove

the second term in the r.h.s. in each inequalities in (3.4) and we thus obtain

‖Op( χ1)v‖2 ≤ C‖Pϕv‖
0
, and h

1
2 ‖Op( χ2)v‖s ≤ C‖Pϕv‖

0
.(3.6)

We have seen that the sub-ellipticity condition in Assumption 3.1 is sufficient to obtain a Carleman

estimate in Theorem 3.5. In fact we can prove that this condition is necessary. We also note that the powers

of the factors h in the l.h.s. of the estimate in Theorem 3.5 as well as in the second inequality in (3.6) are

optimal: for instance, we may not have h2α in front of the first term in inequality (3.1) with α < 1
2
. These

two points are summarized in the following proposition.

Proposition 3.9. Let V be a bounded open set in Rn, ϕ(x) ∈ C∞(Rn,R), 0 < h1 < h0 and C > 0 such that

for a certain α ≤ 1
2

we have

hα‖eϕ/hu‖0 ≤ Ch2‖eϕ/hPu‖0,(3.7)

for all u ∈ C∞c (V) and 0 < h < h1. Then α = 1
2

and the weight function ϕ satisfies Assumption 3.1 in V.
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The reader is referred to Appendix A.6 for a proof.

3.1. The method of A. Fursikov and O. Yu. Imanuvilov. Following the approach introduced by A. Fur-

sikov and O. Yu. Imanuvilov [FI96], we provide an alternative proof of Theorem 3.5 in the elliptic case. We

use the notation of the proof of Theorem 3.5, and write

‖g + µh∆ϕv‖20 = ‖Q2v‖20 + ‖Q̃1v‖20 + (i[Q2,Q1]v, v) + 2 Re(Q2v, µh∆ϕv), 0 < µ < 2.

where Q̃1 = Q1 − iµh∆ϕ and we obtain ‖g + µh∆ϕv‖20 = ‖Q2v‖20 + ‖Q̃1v‖20 + h Re(Rv, v), where ρ = σ(R) =

({q2, q1} + 2µq2∆ϕ). We have the following lemma, which proof can be found in Section A.4.

Lemma 3.10. If ϕ = eλψ, then for λ > 0 sufficiently large, there exists Cλ > 0 such that

ρ = {q2, q1} + 2µq2∆ϕ ≥ Cλ〈ξ〉2, x ∈ V , ξ ∈ Rn.

With the Gårding inequality we then conclude that Re(Rv, v) ≥ C′‖v‖21, for 0 < C′ < Cλ and h taken

sufficiently small. The Carleman estimate follows without using the square terms ‖Q2v‖20 and ‖Q̃1v‖20. In

fact we write

‖g + µh∆ϕv‖20 ≤ 2‖g‖20 + 2µ2h2‖∆ϕv‖20,
and the second term in the r.h.s. can be “absorbed” by h‖v‖21 for h sufficiently small. �

Remark 3.11. The method of A. Fursikov and O. Yu. Imanuvilov, at the symbol level, is a matter of adding

a term of the form 2µq2∆ϕ to the commutator symbol i
h
[Q2,Q1]. As the sign of q2∆ϕ is not fixed, a precise

choice of the value of µ is crucial.

In the proof of Lemma 3.3 in Section A.2 we in fact obtained the following condition on the weight

function

(3.8) ∀(x, ξ) ∈ V × Rn, q2(x, ξ) = 0 ⇒ {q2, q1}(x, ξ) ≥ C > 0.

which is stronger that the condition in Assumption 3.1, which reads

∀(x, ξ) ∈ V × Rn, pϕ(x, ξ) = 0 ⇒ {q2, q1}(x, ξ) ≥ C > 0.

Finally the condition of A. Fursikov and O. Yu. Imanuvilov, i.e., {q2, q1}+2µq2∆ϕ ≥ C〈ξ〉2 is itself stronger

than (3.8). The different conditions we impose on the weight function ϕ are sufficient to derive a Carleman

estimate. We recall that the weaker condition, that of Assumption 3.1, is in fact necessary (see Proposi-

tion 3.9 and its proof in Section A.6).

Condition (3.8) turns out to be useful in some situations, in particular to prove Carleman estimates for

parabolic operators, such as ∂t − ∆, as it is done in Section 7.1.

4. Unique continuation

Let Ω be a bounded open set in Rn. In a neighborhood V of a point x0 ∈ Ω, we take a function f such

that ∇ f , 0 in V . Let p(x, ξ) be a second-order polynomial in ξ that satisfies p(x, ξ) ≥ C|ξ|2 with C > 0.

We define the differential operator P = p(x, ∂/i).
We consider u ∈ H2(V) solution of Pu = g(u), where g is such that |g(y)| ≤ C|y|, y ∈ R. We assume that

u = 0 in {x ∈ V; f (x) ≥ f (x0)}. We aim to show that the function u vanishes in a neighborhood of x0.

We pick a function ψwhose gradient does not vanish near V and that satisfies 〈∇ f (x0),∇ψ(x0)〉 > 0 and is

such that f −ψ reaches a strict local minimum at x0 as one moves along the level set {x ∈ V; ψ(x) = ψ(x0)}.
For instance, we may choose ψ(x) = f (x) − c|x − x0|2. We then set ϕ = eλψ according to Lemma 3.3. In

the neighborhood V (or possibly in a smaller neighborhood of x0) the geometrical situation we have just

described is illustrated in Figure 3.

We call W the region {x ∈ V; f (x) ≥ f (x0)} (region beneath { f (x) = f (x0)} in Figure 3). We choose V ′

and V ′′ neighborhoods of x0 such that V ′′ ⋐ V ′ ⋐ V and we pick a function χ ∈ C∞c (V ′) such that χ = 1 in

V ′′. We set v = χu and then v ∈ H2
0
(V). Observe that the Carleman estimate of Theorem 3.5 applies to v by

Remark 3.6. We have

Pv = P( χu) = χ Pu + [P, χ]u,
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V′

∇ f

∇ϕ

V′′

ϕ(x) = ϕ(x0)

W

f (x) = f (x0)

x0

B0

ϕ(x) = ϕ(x0) − ε

V

S

Figure 3. Local geometry for the unique continuation problem. The striped region con-

tains the support of [P, χ]u.

where the commutator is a first-order differential operator. We thus obtain

h‖eϕ/hχu‖20 + h3‖eϕ/h∇x( χu)‖20 ≤ C

(

h4‖eϕ/hχg(u)‖20 + h4‖eϕ/h[P, χ]u‖20
)

≤ C′
(

h4‖eϕ/hχu‖20 + h4‖eϕ/h[P, χ]u‖20
)

, 0 < h < h1.

Choosing h sufficiently small, say h < h2, we may ignore the first term in the r.h.s. of the previous estimate.

We then write

h‖eϕ/hu‖2L2(V ′′) + h3‖eϕ/h∇xu‖2L2(V ′′) ≤ h‖eϕ/hχu‖20 + h3‖eϕ/h∇x( χu)‖20 ≤ Ch4‖eϕ/h[P, χ]u‖2L2(S ), 0 < h < h2,

where S := V ′ \ (V ′′ ∪W), since the support of [P, χ]u is confined in the region where χ varies and u does

not vanish (see the striped region in Figure 3).

For all ε ∈ R, we set Vε = {x ∈ V; ϕ(x) ≤ ϕ(x0) − ε}. There exists ε > 0 such that S ⋐ Vε. We then

choose a ball B0 with center x0 such that B0 ⊂ V ′′ \ Vε and obtain

einfB0
ϕ/h‖u‖H1(B0) ≤ CesupS ϕ/h‖u‖H1(S ), 0 < h < h2.

Since infB0
ϕ > supS ϕ, letting h go to zero, we obtain u = 0 in B0. We have thus proven the following local

unique-continuation result.

Proposition 4.1. Let g be such that |g(y)| ≤ C|y|, x0 ∈ Ω and u ∈ H2
loc

(Ω) satisfying Pu = g(u) and u = 0

in {x; f (x) ≥ f (x0)}, in a neighborhood V of x0. The function f is defined in V and such that |∇ f | , 0 in a

neighborhood of x0. Then u vanishes in a neighborhood of x0.

With a connectedness argument we then prove the following theorem.

Theorem 4.2 (A. Calderón theorem). Let g be such that |g(y)| ≤ C|y|. Let Ω be an connected open set in Rn

and let ω ⋐ Ω, with ω , ∅. If u ∈ H2(Ω) satisfies Pu = g(u) in Ω and u(x) = 0 in ω, then u vanishes in Ω.

Proof. The support of u is a closed set. Since F = supp(u) cannot be equal to Ω, let us show that F is open.

It will then follow that F = ∅. Assume that fr(F) = F \ F◦ is not empty and chose x1 ∈ fr(F). We set

A := Ω \ F. We recall that we denote by B(x, r) the Euclidean open ball with center x and radius r. There

exists R > 0 such that B(x1,R) ⋐ Ω and x0 ∈ B(x1,R/4) such that x0 ∈ A. Since A is open, there exists

0 < r1 < R/2 such that B(x0, r1) ⊂ A. For r2 = R/2 we have thus obtained r1 < r2 such that

B(x0, r1) ⊂ A, B(x0, r2) ⋐ Ω, and x1 ∈ B(x0, r2).

We set Bt = B(x0, (1 − t)r1 + tr2) for 0 ≤ t ≤ 1. The previous proposition shows that is u vanishes in Bt,

with 0 ≤ t ≤ 1, then there exists ε > 0 such that u vanishes in Bt+ε. Since u vanishes in B0, we thus find

that u vanishes in B1, and in particular in a neighborhood of x0 that thus cannot be in fr(F). Hence F is

open. �
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5. Interpolation and spectral inequalities

Let Ω be a bounded open set in Rn, S 0 > 0 and α ∈ (0, S 0/2). Let also Z = (0, S 0) × Ω and Y =

(α, S 0 − α) ×Ω. We set z = (s, x) with s ∈ (0, S 0) and x ∈ Ω. We define the elliptic operator A := −∂2
s − ∆x

in Z. The Carleman estimate that we have proven in Section 3 holds for this operator.

We start with a weight function ϕ(z) defined in Z and choose ρ1 < ρ
′
1
< ρ2 < ρ

′
2
< ρ3 < ρ

′
3

and set

V = {z ∈ Z; ρ1 < ϕ(z) < ρ′3}, V j = {z ∈ Z; ρ j < ϕ(z) < ρ′j}, j = 1, 2, 3.

We assume that V is compact in Z (we remain away from the boundary of Z) and that ϕ satisfies the sub-

ellipticity Assumption 3.1 in V .

The Carleman estimate of Theorem 3.5 yields the following local interpolation inequality.

Proposition 5.1 (G. Lebeau-L. Robbiano [LR95]). There exist C > 0 and δ0 ∈ (0, 1) such that for u ∈ H2(V)

we have

‖u‖H1(V2) ≤ C
(

‖Au‖L2(V) + ‖u‖H1(V3)

)δ ‖u‖1−δ
H1(V)

,

for δ ∈ [0, δ0].

Proof. Let χ ∈ C∞c (V) be such that χ(z) = 1 in a neighborhood of ρ′
1
≤ ϕ(z) ≤ ρ3. We set w = χu. The

Carleman estimate of Theorem 3.5 implies ‖eϕ/hw‖0+‖eϕ/h∇w‖0 ≤ C‖eϕ/hAw‖0 for h small, 0 < h < h1 ≤ 1.

We then observe that Aw = χAu+ [A, χ]u, with the first-order operator [A, χ] uniquely supported in V1∪V3.

We thus obtain

e ρ2/h‖u‖H1(V2) ≤ Ce ρ
′
1
/h‖u‖H1(V1) +Ce ρ

′
3
/h(‖Au‖L2(V) + ‖u‖H1(V3)),

as χ = 1 in V2. We finally write

e ρ2/h‖u‖H1(V2) ≤ Ce ρ
′
1
/h‖u‖H1(V) +Ce ρ

′
3
/h(‖Au‖L2(V) + ‖u‖H1(V3)), 0 < h ≤ h1.

We conclude with the following lemma. �

Lemma 5.2 (L. Robbiano [Rob95]). Let C1, C2 and C3 be positive and A, B, C non negative, such that

C ≤ C3A and such that for all γ ≥ γ0 we have

(5.1) C ≤ e−C1γA + eC2γB.

Then

(5.2) C ≤ Cst A
C2

C1+C2 B
C1

C1+C2 .

Proof. We optimize the r.h.s. of (5.1) as a function of γ and we find γopt =
ln((AC1)/(BC2))

C1+C2
. To simplify we

choose γ1 =
ln(A/B)
C1+C2

. If γ1 ≥ γ0, substitution in (5.1) then yields (5.2). If we now have γ1 < γ0, we then see

that A ≤ CstB. We conclude as C ≤ C3A. �

We now apply the result of Proposition 5.1 to a particular weight function. Let y ∈ Z and r > 0 be

such that B(y, 6r) ⋐ Z. Let us set ψ(z) = − dist(z, y) and choose λ > 0 such that ϕ = eλψ satisfies the

sub-ellipticity Assumption 3.1 in B(y, 6r) \ B(y, r/8) by Lemma 3.3. We then take

ρ1 = e−5rλ, ρ′1 = e−4rλ, ρ2 = e−3rλ, ρ′2 = e−rλ, ρ3 = e−
r
2
λ, ρ′3 = e−

r
4
λ.

The neighborhoods V1, V2 and V3 are illustrated in Figure 4.

By applying Proposition 5.1 we obtain, for u ∈ H2(Z),

‖u‖H1(V2) ≤ C
(

‖Au‖L2(V) + ‖u‖H1(V3)

)δ ‖u‖1−δ
H1(V)

≤ C
(

‖Au‖L2(Z) + ‖u‖H1(B(y,r))

)δ ‖u‖1−δ
H1(Z)

,

which yields

‖u‖H1(B(y,3r)) ≤ C
(

‖Au‖L2(Z) + ‖u‖H1(B(y,r))

)δ ‖u‖1−δ
H1(Z)

.

The H1-norm in the ball B(y, 3r) is thus estimated by the H1-norm in the ball B(y, r). In particular, we

recover the local uniqueness result of Section 4 when Au = 0.

When Ω has a regular boundary, this local inequality can be ”propagated” up to the boundary, under

suitable boundary conditions. We then obtain a global result. In addition to the Carleman estimate we

have proven here, one needs to prove a similar estimate at the boundary (0, S 0) × ∂Ω. The proof we give
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yV3

3r

V1

V2

r

Figure 4. Level sets of the weight function ϕ and regions V1, V2 and V3. The red regions,

V1 and V3, localise the support of ∇χ.

below of a Carleman estimate at the boundary for a parabolic operator (see Theorem 7.6 and its proof in

Appendix A.10) is similar to the proof of a Carleman estimate at the boundary for an elliptic operator (see

[LR95]). The “propagation” technique makes use of a finite covering by balls of radius r. The reader is

referred to [LR95] for details (pages 353–356). Here, as in [LZ98] (see the proof of theorem 3, pages 312–

313), the interpolation inequality can be “initiated” at the boundary s = 0 (again by a Carleman estimate at

the boundary).

Theorem 5.3 ([LR95, LZ98, JL99]). Let ω be an open set in Ω. There exist C > 0 and δ ∈ (0, 1) such that

for u ∈ H2(Z) that satisfies u(s, x)|x∈∂Ω = 0, for s ∈ (0, S 0) and u(0, x) = 0, for x ∈ Ω, we have

‖u‖H1(Y) ≤ C‖u‖1−δ
H1(Z)

(

‖Au‖L2(Z) + ‖∂su(0, x)‖L2(ω)

)δ
.(5.3)

We may now deduce a spectral inequality that, in particular, measures the loss of orthogonality of the

eigenfunctions of −∆ in Ω, with homogeneous Dirichlet boundary conditions, when they are restricted to

an open subset ω ⊂ Ω such that ω , Ω. Let φ j, j ∈ N∗, be an orthonormal basis of such eigenfunctions and

µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · the associated eigenvalues, counted with their multiplicity.

Theorem 5.4 ([LZ98],[JL99]). There exists K > 0 such that for all sequences (α j) j∈N∗ ⊂ C and all µ > 0

we have

(5.4)
∑

µ j≤µ
|α j|2 = ∫

Ω

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣

2

dx ≤ KeK
√
µ ∫
ω

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣

2

dx,

or concisely ‖∑µ j≤µ α jφ j‖2L2(Ω)
≤ KeK

√
µ‖∑µ j≤µ α jφ j‖2L2(ω)

.

Proof. We apply Inequality (5.3) to the function u(s, x) =
∑

µ j≤µ α j
sinh(

√
µ j s)√
µ j

φ j(x) that satisfies Au = 0 as

well as the boundary conditions required in Theorem 5.3. We have

‖u‖2
H1(Y)

≥ ‖u‖2
L2(Y)
=
∑

µ j≤µ

S 0−α
∫
α
|α j|2

sinh2(
√
µ js)

µ j

ds ≥ ∑
µ j≤µ
|α j|2

S 0−α
∫
α

s2 ds = CS 0,α
∑

µ j≤µ
|α j|2,
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and also

‖u‖2
H1(Z)

≤ C
S 0

∫
0

(( − ∆u, u) + ‖∂su‖2
)

ds = C
∑

µ j≤µ
|α j|2

S 0

∫
0

(

sinh2(
√
µ js) + cosh2(

√
µ js)
)

ds

≤ C′eC′
√
µ ∑

µ j≤µ
|α j|2,

using that ‖v‖2
H1(Ω)

is equivalent to (−∆v, v) in H1
0
(Ω). Finally, we have ‖∂su(0, x)‖2

L2(ω)
= ∫
ω

∣
∣
∣
∑

µ j≤µ α jφ j(x)
∣
∣
∣
2

dx,

which yields

∑

µ j≤µ
|α j|2 ≤ CeC

√
µ
(
∑

µ j≤µ
|α j|2
)1−δ (

∫
ω

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣

2

dx

)δ

,

and the conclusion follows. �

On the one hand, in the case ω = Ω, the result of Theorem 5.4 becomes trivial and the constant CeC
√
µ

can be replaced by 1. On the other hand, it is clear that K = K(ω) tends to +∞ as the size of ω goes to

zero. An interesting problem would be the precise estimation of K(ω). Some recent results are available

with some lower bonds and uperbounds [Mil09, TT09].

When ω , Ω, the following proposition shows that the power 1
2

of µ in KeK
√
µ is optimal (see also

[JL99]).

Proposition 5.5. Let ω be a non empty open set in Ω with ω , Ω. There exist C > 0 and µ0 > 0 such that

for all µ ≥ µ0 there exists a sequence (α j)µ j≤µ, such that

∑

µ j≤µ
|α j|2 ≥ CeC

√
µ ∫
ω

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣

2

dx.

Proof. We denote by Pt(x, y) the heat kernel that we can write
∑

j∈N e−tµ jφ j(x)φ j(y) for t > 0; we have

et∆ f (x) = ∫ Pt(x, y) f (y) dy. We then write
∣
∣
∣
∣

∑

µ j≤µ
e−tµ jφ j(x)φ j(y)

∣
∣
∣
∣ ≤ |Pt(x, y)| +

∣
∣
∣
∣

∑

µ j>µ
e−tµ jφ j(x)φ j(y)

∣
∣
∣
∣ .

For k ∈ N sufficiently large, Sobolev injections give

(5.5) ‖φ j‖L∞ ≤ C‖φ j‖H2k ≤ C′‖∆kφ j‖L2 = C′µk
j.

For all x, y ∈ Ω we have pt(x, y) ≤ (4πt)−n/2e−
|x−y|2

4t by the maximum principle (see Appendix A.7). Let y0

be such that d = dist(y0, ω) > 0. We then have pt(x, y0) ≤ e−C0/t, with C0 > 0, uniformly for x in ω. From

(5.5) we thus obtain
∣
∣
∣
∣

∑

µ j≤µ
e−tµ jφ j(x)φ j(y0)

∣
∣
∣
∣ ≤ e−C0/t +C

∑

µ j>µ
e−tµ jµ2k

j , x ∈ ω.

We choose α j = e−tµ jφ j(y0) and we take t = 1/
√
µ. We have

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣ ≤ Ce−C0

√
µ
+C

∑

µ j>µ
e−tµ jµ2k

j , x ∈ ω.

To estimate the second term we introduce Jµ = {l; µl ≤ µ}. The Weyl asymptotics (see e.g. [Agm65]) yields

#Jµ ≤ Cµn/2. Then, for µ > 1 large, we write

∑

µ j>µ
e−tµ jµ2k

j =
∑

N∈N
N<µ j−µ≤N+1

e−tµ jµ2k
j ≤

∑

N∈N
N<µ j−µ≤N+1

e−t(µ+N)(µ + N + 1)2k ≤ ∑
N∈N

#Jµ+N+1 e−t(µ+N)(µ + N + 1)2k

≤ C
∑

N∈N
e−t(µ+N)(µ + N + 1)2k+n/2 ≤ C

∞
∫

µ−1

e−tx(x + 1)2k+n/2 dx = Cet
∞
∫
µ

e−txx2k+n/2 dx.
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In fact, with t = 1/
√
µ, the function e−txx2k+n/2 decreases in [µ,+∞) for µ large. We set l = 2k + n/2. The

change of variable y = t(x − µ) then yields

∞
∫
µ

e−txxl dx = t−1−le−tµ
∞
∫
0

e−y(µt + y)l dy = µ
l+1
2 e−

√
µ
∞
∫
0

e−y(
√
µ + y)l dy

≤ µl+ 1
2 e−

√
µ
∞
∫
0

e−y(1 + y)l dy = Cµl+ 1
2 e−

√
µ,

since t = 1/
√
µ. For µ > 1 large, we have thus obtained

∣
∣
∣
∑

µ j≤µ α jφ j(x)
∣
∣
∣ ≤ Ce−C

√
µ, which yields

∫
ω

∣
∣
∣
∣

∑

µ j≤µ
α jφ j(x)

∣
∣
∣
∣

2

dx ≤ C|ω|e−C
√
µ.

We now conclude by proving
∑

µ j≤µ |α j|2 ≥ Cµn/4 ≥ 1, for µ sufficiently large with the choice of coefficients

α j, j ∈ N, we have made above. In fact we find

∑

µ j≤µ
|α j|2 = ∑

µ j≤µ
e−2tµ j |φ j(y0)|2 = P2t(y0, y0) − ∑

µ j>µ
e−2tµ j |φ j(y0)|2.

As here t = 1/
√
µ is small, Lemma A.5 (see Appendix A.7) gives P2t(y0, y0) ≥ C(2t)−n/2

= C′µn/4. Finally,

using Sobolev inequalities as above we obtain the following estimate
∑

µ j>µ e−2tµ j |φ j(y0)|2 ≤ C
∑

µ j>µ e−2tµ jµ2k
j
≤

C′e−C′
√
µ. �

The spectral inequality of Theorem 5.4 also leads to the following unique continuation result for series

of eigenfunctions.

Proposition 5.6. Let ω ⊂ Ω be open and ε > 0. Then for all functions u =
∑

j∈N∗ α jφ j with the complex

coefficients α j satisfying |α j| ≤ e−ε
√
µ j , j ∈ N∗, we have u = 0 if u|ω = 0.

This result yields an analogy between the series
∑

j∈N∗ α jφ j and analytic functions, when the coefficients

α j satisfy the asymptotics |α j| ≤ e−ε
√
µ j .

Proof. For 0 ≤ s < εwe set v(s, x) =
∑

j∈N∗ α j
sinh(

√
µ j s)√
µ j

φ j(x). The asymptotic behavior we have assumed for

the coefficients α j yields v ∈ C 2((0, ε),H2(Ω)). We then apply the interpolation inequality of Theorem 5.3

taking Y = (α, S 0 − α) ×Ω with 0 < α < S 0 − α < S 0 < ε. Since v satisfies the proper boundary conditions

and since Av = 0 and ∂sv|{0}×ω = u|ω = 0, this yields ‖v‖H1(Y) = 0. For almost every s ∈ (α, S 0 − α) we thus

have x 7→ ∑ j∈N∗ α j
sinh(

√
µ j s)√
µ j

φ j(x) = 0 in L2(Ω). The orthogonality of the eigenfunctions gives α j = 0 for all

j ∈ N∗.
�

6. Control of the heat equation

We shall now construct a control function for the heat equation in the time interval (0,T ) for an initial

condition y0 in L2(Ω),





∂ty − ∆y = 1ωv in Q = (0,T ) ×Ω,
y = 0 on Σ = (0,T ) × ∂Ω,
y(0) = y0 in Ω.

(6.1)

The function v is the control. The goal is to drive the solution y to zero at time T > 0, yet only acting in the

sub-domain ω.

We start with a partial control result. Next, in Section 6.2, the control v will be built as a sequence of

active and passive controls. The passive mode allows to take advantage of the natural parabolic exponential

decay of the L2 norm of the solution.
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6.1. Observability and partial control. For j ∈ N, we define the finite dimensional space E j = span{φk; µk ≤
22 j} and the following null controllability problem






∂ty − ∆y = ΠE j
(1ωv) in (0,T ) ×Ω,

y = 0 on (0,T ) × ∂Ω,
y(0) = y0 ∈ E j in Ω,

(6.2)

with T > 0 and where ΠE j
denotes the orthogonal projection onto E j in L2(Ω). We estimate the so-called

control cost, i.e., the L2 norm of the control function v that gives y(T ) = 0.

Lemma 6.1. There exists a control function v that drives the solution of system (6.2) to zero at time T and

‖v‖L2((0,T )×ω) ≤ CT − 1
2 eC2 j‖y0‖L2(Ω).

For a ≥ 0, when we consider the time interval [a, a + T ], we shall denote by V j(y0, a,T ) such a control

satisfying ‖V j(y0, a,T )‖
L2((a,a+T )×Ω)

≤ CT − 1
2 eC2 j‖y0‖L2(Ω).

Proof. The adjoint system of (6.2) is





−∂tq − ∆q = 0 in (0,T ) ×Ω,
q = 0 on (0,T ) × ∂Ω,
q(T ) = q f ∈ E j.

If we write q(0) =
∑

µk≤22 j bkφk then q(t) =
∑

µk≤22 j αk(t)φk with αk(t) = bkeµk t and we thus have

T‖q(0)‖2
L2(Ω)

≤
T
∫
0

‖q(t)‖2
L2(Ω)

dt =
T
∫
0
∫
Ω

∣
∣
∣
∣

∑

µk≤22 j

αk(t)φk

∣
∣
∣
∣

2

dt dx

≤ CeC2 j
T
∫
0
∫
ω

∣
∣
∣
∣

∑

µk≤22 j

αk(t)φk

∣
∣
∣
∣

2

dt dx = CeC2 j
T
∫
0
∫
ω
|q(t)|2 dt dx,

because of the parabolic decay and from the spectral inequality of Theorem 5.4. This observability inequal-

ity yields the expected estimate of the cost of the control. �

6.2. Construction of the control function. We split the time interval [0,T ] into sub-intervals, [0,T ] =
⋃

j∈N[a j, a j+1], with a0 = 0, a j+1 = a j + 2T j, for j ∈ N and T j = K2− jρ with ρ ∈ (0, 1) and the constant

K chosen such that 2
∑∞

j=0 T j = T . We now define the control function v according to the strategy exposed

above:

if t ∈ (a j, a j + T j], v(t, x) = V j(ΠE j
y(a j, .), a j,T j)

and y(t, .) = S (t − a j)y(a j, .) +
t

∫
a j

S (t − s)v(s, .)ds,

if t ∈ (a j + T j, a j+1], v(t, x) = 0 and y(t, .) = S (t − a j − T j)y(a j + T j, .),

where S (t) denotes the heat semi-group S (t) = et∆. In particular, ‖S (t)‖(L2,L2) ≤ 1.

The choice of the control v in the time interval [a j, a j + T j], j ∈ N, yields

‖y(a j + T j, .)‖L2(Ω) ≤ (1 +CeC2 j

)‖y(a j, .)‖L2(Ω), and ΠE j
y(a j + T j, .) = 0.

During the passive mode, t ∈ [a j + T j, a j+1], the solution is subject to an exponential decay

‖y(a j+1, .)‖L2(Ω) ≤ e−22 jT j‖y(a j + T j, .)‖L2(Ω).

We thus obtain ‖y(a j+1, .)‖L2(Ω) ≤ eC2 j−22 jT j ‖y(a j, .)‖L2(Ω), and hence we have

‖y(a j+1, .)‖L2(Ω) ≤ e
∑ j

k=0 C2k−22kTk ‖y0‖L2(Ω), j ∈ N.
We have 22kTk = K2k(2−ρ). We observe that 2− ρ > 1 which yields lim j→∞

∑ j

k=0
(C2k −K2k(2−ρ)) = −∞. For

a certain constant C > 0 we have

(6.3) ‖y(a j+1, .)‖L2(Ω) ≤ Ce−C2 j(2−ρ) ‖y0‖L2(Ω), j ∈ N.
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We conclude that lim j→∞ ‖y(a j, .)‖L2(Ω) = 0, i.e. y(T, .) = 0 since y(t, .) is continuous with values in L2(Ω)

since the r.h.s. of (6.1) is in L2(Q) by construction as we shall now see.

We have ‖v‖2
L2(Q)

=
∑

j≥0 ‖v‖2L2((a j,a j+T j)×Ω)
. From the cost of the control given in Lemma 6.1 and (6.3) we

deduce

‖v‖2
L2(Q)

≤
(

CT−1
0 e2C

+
∑

j≥1
CT−1

j eC2 j

e−C2( j−1)(2−ρ)
)

‖y0‖2L2(Ω)
.

As 2 − ρ > 1 and T j = K2− jρ, arguing as above we obtain ‖v‖L2(Q) ≤ CT ‖y0‖L2(Ω) with CT < ∞. We have

thus obtain the following null controllability result.

Theorem 6.2 (Null controllability [LR95]). For all T > 0, there exists CT > 0 such that for all initial con-

ditions y0 ∈ L2(Ω), there exists v ∈ L2(Q), with ‖v‖L2(Q) ≤ CT ‖y0‖L2(Ω), such that the solution to system (6.1)

satisfies y(T ) = 0.

Corollary 6.3 (Observability). There exists CT > 0 such that the solution y ∈ C ([0,T ], L2(Ω)) of the

adjoint system





−∂tq − ∆q = 0 in Q,

q = 0 on Σ,

q(T ) = qT in Ω,

satisfies the following observability inequality ‖q(0)‖2
L2(Ω)

≤ C2
T

T

∫
0
∫
ω
|q(t)|2 dt dx.

7. Carleman estimates for parabolic operators

Here we shall prove Carleman estimates for parabolic operators, typically P = ∂t + A with A = −∆. As

in the previous sections Ω is a bounded open set in Rn. We set Q = (0,T ) × Ω. We start by proving local

(in space) estimates, away from the boundary ∂Ω.

7.1. Local estimates. We set θ(t) = t(T − t) and h = εθ(t). The parameter ε will be small, 0 < ε ≤ ε0 << 1.

For a weight function ϕ(x) we define Pϕ = h2eϕ/hPe−ϕ/h. The semi-classical parameter h depends on the

time variable t here, and moreover vanishes for t = 0 and t = T .

We have

Pϕ = h2∂t + εϕ(x)θ′(t) − h2
∆ + 2h〈ϕ′,∇x〉 − |ϕ′|2 + h∆ϕ.

We define the following symmetric operators

Q2 = (Pϕ + P∗ϕ)/2, Q1 = (Pϕ − P∗ϕ)/(2i),

which gives

Q2 = −εhθ′(t) + εϕ(x)θ′(t) − h2
∆ − |ϕ′|2,

Q1 =
h2

i
∂t +

εh

i
θ′(t) +

h

i
∆ϕ +

2h

i
〈ϕ′,∇x〉,

with respective principal symbols

q2 = εϕ(x)θ′(t) + |ξ|2 − |ϕ′|2, q1 = hτ + 2〈ϕ′, ξ〉.
We have pϕ = q2 + iq1 and Pϕ = Q2 + iQ1.

We choose the weight function ϕ according to the following assumption.

Assumption 7.1. Let V be an open subset of Ω. The weight function ϕ satisfies

ϕ(x) < 0, |ϕ′(x)| , 0, x ∈ V ,

q2|ε=0 = 0⇒ {q2|ε=0, q1|ε=0} > 0, x ∈ V , ξ ∈ Rn,(7.1)
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These conditions, stronger than those we presented in the elliptic case, were introduced in [Leb05]. We

shall see below that they are sufficient and also necessary for a Carleman estimate to hold. They only

involve the spatial variables, x and ξ, and can be fulfilled by choosing ϕ of the form

ϕ(x) = eλψ(x) − eλL, with L > ‖ψ‖∞, |ψ′(x)| , 0, x ∈ V ,

and letting the positive parameter λ be sufficiently large (see Lemma A.1 in Section A.2).

With this assumption we can prove the following lemma (see Appendix A.8 for a proof).

Lemma 7.2. There exist C > 0, µ1 > 0 and δ1 > 0, such that for µ ≥ µ1 and 0 ≤ εT ≤ δ1 we have

µq2
2 − 2εθ′|ξ|2 + {q2, b} ≥ C〈ξ〉4, x ∈ V , ξ ∈ Rn,

where b := 2〈ϕ′, ξ〉.
We can now prove the following Carleman estimate, that is local in space and global in time, for the

parabolic operator P.

Theorem 7.3 (Local Carleman estimate away from the boundary). Let K be a compact set of Ω and V an

open subset of Ω that is a neighborhood of K. Let ϕ be a weight function that satisfies Assumption 7.1 in V.

Then there exist C > 0 and δ2 > 0 such that

‖h 1
2 eϕ/hu‖2L2(Q) + ‖h3/2eϕ/h∇xu‖2L2(Q) ≤ C‖h2eϕ/hPu‖2L2(Q),

for u ∈ C∞([0,T ] ×Ω), with u(t) ∈ C∞c (K) for all t ∈ [0,T ], and 0 < (T + T 2)ε ≤ δ2.

Proof. We introduce v = eϕ/hu. We observe that v, along with all its time derivatives, vanishes at time t = 0

and t = T , since ϕ ≤ −C < 0 in K. We have Pϕv = h2eϕ/hPu = g and we write, similarly to (3.2),

‖g‖2
L2(Q)

= ‖Q1v‖2
L2(Q)
+ ‖Q2v‖2

L2(Q)
+ i([Q2,Q1]v, v)L2(Q),

which yields, with B = Q1 − h2

i
∂t − εh

i
θ′(t) = h

i
∆ϕ + 2h

i
〈ϕ′,∇x〉,

‖g‖2
L2(Q)

= ‖Q1v‖2
L2(Q)
+ ‖Q2v‖2

L2(Q)
+ ((−h2(∂tQ2) + i[Q2, B])v, v)L2(Q)

≥
(

(hµQ2
2 − h2(∂tQ2) + i[Q2, B])v, v

)

L2(Q)
=

(

h
(

µQ2
2 − h(∂tQ2) +

i

h
[Q2, B]

)

v, v
)

L2(Q)

for µ > 0 and 0 < h < 1/µ. We note that h(∂tQ2) = −εh2θ′′ − ε2h(θ′)2
+ εhθ′′ϕ − 2εθ′h2

∆. The principal

symbol of µQ2
2
− h(∂tQ2) + i

h
[Q2, B] is µq2

2
− 2εθ′|ξ|2 + {q2, b}. We choose µ1 > 0 and δ1 > 0 according to

Lemma 7.2 and we take 0 < εT ≤ δ1. The Gårding inequality is uniform with respect to the semi-classical

parameter h, once taken sufficiently small (i.e., by taking 0 < εθ < εT 2/4 ≤ δ′
1

for δ′
1

sufficiently small, for

instance), and we obtain

(7.2)
((

µQ2
2 − h(∂tQ2) +

i

h
[Q2, B]

)

v(t), v(t)
)

L2(Ω)
≥ C‖v(t)‖22, ∀t ∈ [0,T ],

for µ ≥ µ1 and 0 < (T + T 2)ε ≤ δ2 = min(δ1, 4δ
′
1
), and it follows that ‖g‖2

L2(Q)
≥ C ∫ T

0 h‖v‖22 dt. We then

obtain the sought local Carleman estimate by arguing as in the end of the proof of Theorem 3.5. �

Remark 7.4. In the proof of the previous theorem, we note the importance of only relying on the non-

negative term ‖Q2v‖2
L2(Q)

since the other square term ‖Q1v‖2
L2(Q)

involves a time derivative of v, and cannot

be used in the Gårding inequality (7.2) at fixed t. If we chose to use a Gårding inequality with respect to all

variables (t, x), we could then use both square terms ‖Q2v‖2
L2(Q)

and ‖Q1v‖2
L2(Q)

. This is the scheme of the

proof that we shall follow to prove an estimate at the boundary below.

The following proposition shows the necessity of Assumption 7.1. See Appendix A.9 for a proof.

Proposition 7.5. Let V be an open subset of Ω, ϕ(x) be defined on V, and δ > 0 and C > 0 be such that for

a certain α ≤ 1
2

we have

‖hαeϕ/hu‖L2(Q) ≤ C‖h2eϕ/hPu‖L2(Q),(7.3)
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for all u ∈ C∞([0,T ]×Ω), with u(t) ∈ C∞c (V) for all t ∈ [0,T ], and 0 < (T + T 2)ε ≤ δ. Then α = 1
2

and the

weight function ϕ satisfies

|ϕ′(x)| , 0, x ∈ V ,

q2|ε=0 = 0 ⇒ {q2|ε=0, q1|ε=0} > 0, x ∈ V , ξ ∈ Rn.

7.2. Estimate at the boundary. If we place ourselves in the neighborhood of the boundary we have the

following result.

Theorem 7.6 (Carleman estimate at the boundary). Let x0 ∈ ∂Ω and K be a compact set of Ω, x0 ∈ K, and

V an open subset of Ω that is a neighborhood of K in Ω, with K and V chosen sufficiently small. Let ϕ be a

weight function that satisfies Assumption 7.1 in V, and ∂nϕ|∂Ω∩V < 0, where n is the outward pointing unit

normal to Ω. Then there exist C > 0 and δ3 > 0 such that

‖h 1
2 eϕ/hu‖2L2(Q) + ‖h3/2eϕ/h∇xu‖2L2(Q) ≤ C‖h2eϕ/hPu‖2L2(Q),

for 0 < (T + T 2)ε ≤ δ3, h = εt(T − t) and u ∈ C∞([0,T ] × Ω), with supp(u(t)) ⊂ K for all t ∈ [0,T ], and

u|(0,T )×(∂Ω∩V) = 0.

The proof of this estimate is more technical than that of Theorem 7.3. We have placed it in Appen-

dix A.10. The idea of the proof is to use the Gårding inequality in the tangential directions, including the

time direction. The original proof for this estimate is available in [FI96]. However, following the approach

of [FI96] does not put forward the sufficiency of Assumption 7.1.

7.3. Global estimate. We now focus our attention on global Carleman estimates. We proceed by patching

together the local estimates we have presented here, in the interior and at the boundary. The global aspect

of the estimate will impose an “observation” term over (0,T ) × ω, with ω ⋐ Ω in the r.h.s. of the estimate.

To patch these local estimates together we choose a global weight function that can be used to derive

each of these local estimates by satisfying the following requirements.

Assumption 7.7. Let ω0 ⋐ ω ⋐ Ω. The weight function ϕ satisfies

ϕ|∂Ω = Cst, ∂nϕ|∂Ω < 0, sup
x∈Ω

ϕ(x) < 0, |ϕ′(x)| , 0, x ∈ Ω \ ω0,

q2|ε=0 = 0⇒ {q2|ε=0, q1|ε=0} > 0, x ∈ Ω \ ω0,

Such conditions can be fulfilled by taking ϕ of the form

ϕ(x) = eλψ(x) − eλK , with K > ‖ψ‖∞, |ψ′(x)| , 0, x ∈ Ω \ ω0, and

ψ|∂Ω = 0, ∂nψ|∂Ω < 0, ψ(x) > 0, x ∈ Ω,
and by taking the positive parameter λ sufficiently large. For the construction of such a function ψ we refer

to [FI96, Lemma 1.1]. The construction makes use of Morse functions and the associated approximation

theorem [AE84].

Theorem 7.8 (Global Carleman estimate). Let ϕ be a function that satisfies Assumption 7.7. Then there

exist δ4 > 0 and C ≥ 0 such that

‖h 1
2 eϕ/hu‖2L2(Q) + ‖h3/2eϕ/h∇xu‖2L2(Q) ≤ C

(

‖h2eϕ/hPu‖2L2(Q) + ‖h
1
2 eϕ/hu‖2L2((0,T )×ω)

)

,

for 0 < (T + T 2)ε ≤ δ4, h = εt(T − t) and u ∈ C∞([0,T ] ×Ω) such that u|(0,T )×∂Ω = 0.

Proof. Let ω1 be such that ω0 ⋐ ω1 ⋐ ω. For all x ∈ Ω \ ω1, there exist an open subset Vx of Ω, with

x ∈ Vx ⊂ Ω \ ω0 for which the local Carleman estimate, in the interior or at the boundary, holds with the

weight function ϕ, for smooth functions with support in the compact Kx = Vx.

From the covering of Ω \ω1 by the open sets Vx, x ∈ Ω \ω1 we can extract a finite covering (Vi)i∈I, such

that for all i ∈ I the Carleman estimate in Vi holds for h < hi, C = Ci > 0 and supp(u) ⊂ Ki = Vi.
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Let (χi)i∈I be a partition of unity subordinated to the covering Vi, i ∈ I, [Trè67, Hör90], i.e.,

χi ∈ C
∞(Ω), supp( χi) ⊂ Ki = Vi, 0 ≤ χi ≤ 1, i ∈ I, and

∑

i∈I
χi = 1 in Ω \ ω1

Note that we have supp( χi) ∩ ω0 = ∅. For all i ∈ I, we set ui = χiu. Then for each ui we have a local

Carleman estimate. We now observe that we have

Pui = P( χiu) = χiPu + [P, χi]u = χiPu − [∆, χi]u,

where the commutator is a first-order differential operator in x. For all i ∈ I, we thus obtain

‖h2eϕ/hPui‖2L2(Q) ≤ C‖h2eϕ/hPu‖2L2(Q) +C‖h2eϕ/hu‖2L2(Q) +C‖h2eϕ/h ∇x u‖2L2(Q)(7.4)

≤ C‖h2eϕ/hPu‖2L2(Q) +C(εT 2)3‖h 1
2 eϕ/hu‖2L2(Q) +CεT 2‖h3/2eϕ/h ∇x u‖2L2(Q).

We note that we have

‖h 1
2 eϕ/h u‖2L2(Q) + ‖h3/2eϕ/h ∇x u‖2L2(Q) ≤C

∑

i∈I

(

‖h 1
2 eϕ/h ui‖

2

L2(Q) + ‖h3/2eϕ/h ∇xui‖2L2(Q)

)

+C‖h 1
2 eϕ/h u‖2L2((0,T )×ω1) +C‖h3/2eϕ/h∇xu‖2L2((0,T )×ω1),

From (7.4) we then obtain

‖h 1
2 eϕ/h u‖2L2(Q) + ‖h3/2eϕ/h ∇x u‖2L2(Q) ≤ C

(

‖h2eϕ/hPu‖2L2(Q) + (εT 2)3‖h 1
2 eϕ/hu‖2L2(Q) + εT 2‖h3/2eϕ/h ∇x u‖2L2(Q)

+ ‖h 1
2 eϕ/h u‖2L2((0,T )×ω1) + ‖h3/2eϕ/h∇xu‖2L2((0,T )×ω1)

)

.

For εT 2 sufficiently small we have

‖h 1
2 eϕ/h u‖2L2(Q) + ‖h3/2eϕ/h ∇x u‖2L2(Q) ≤ C

(

‖h2eϕ/hPu‖2L2(Q) + ‖h
1
2 eϕ/h u‖2L2((0,T )×ω1)

+ ‖h3/2eϕ/h∇xu‖2L2((0,T )×ω1)

)

.

We now aim to remove the last term in the r.h.s. of the previous estimation. Let χ ∈ C∞c (ω) be such that

χ = 1 in a neighborhood of ω1. If Pu = f , after multiplication by e2ϕ/hh3χu, and integration over Q, we

obtain

1

2
∫∫
Q

e2ϕ/hh3χ∂t |u|2 dt dx − Re ∫∫
Q

e2ϕ/hh3χu∆u dt dx = Re ∫∫
Q

e2ϕ/hh3χu f dt dx(7.5)

For the first term I1 an integration by parts in t yields

|I1| =
∣
∣
∣
∣

1

2
∫∫
Q

e2ϕ/hh3χ∂t |u|2 dt dx
∣
∣
∣
∣ =

∣
∣
∣
∣

1

2
∫∫
Q

(3εθ′h2 − 2ϕεθ′h)e2ϕ/hχ|u|2 dt dx
∣
∣
∣
∣ ≤ C‖h 1

2 eϕ/hu‖2L2((0,T )×ω),

since ε|θ′| ≤ CεT is bounded. The third term can be estimated as

|I3| =
∣
∣
∣
∣Re ∫∫

Q

e2ϕ/hh3χu f dt dx
∣
∣
∣
∣ ≤ C‖h2eϕ/h f ‖2L2(Q) +C‖h 1

2 eϕ/hu‖2L2((0,T )×ω).

For the second term, with integration by parts in x, we have

I2 = ∫∫
Q

e2ϕ/hh3χ|∇xu|2 dt dx + Re ∫∫
Q

h3∇x(e2ϕ/hχ)u∇xu dt dx

≥ ‖h 3
2 eϕ/h∇xu‖2L2((0,T )×ω1) −

1

2
∫∫
Q

h3
∆(e2ϕ/hχ)|u|2 dt dx,

and
∣
∣
∣ ∫∫

Q

h3
∆(e2ϕ/hχ)|u|2 dt dx

∣
∣
∣ ≤ C‖h 1

2 eϕ/hu‖2L2((0,T )×ω). The previous estimates and (7.5) then yield

‖h 3
2 eϕ/h∇xu‖2L2((0,T )×ω1) ≤ C‖h2eϕ/hPu‖2L2(Q) +C‖h 1

2 eϕ/hu‖2L2((0,T )×ω).

The proof is complete. �
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7.4. Observability inequality and controllability. It is now simple to deduce an observability inequality

for the adjoint system





−∂tq − ∆q = 0 in Q,

q = 0 on Σ,

q(T ) = qT in Ω.

We note that the estimate of Theorem 7.8 also applies to the adjoint operator −∂t − ∆. With the parabolic

decay of energy we have 1
2
T‖q(0)‖2

L2(Ω)
≤ ‖q‖2

L2((T/4,3T/4)×Ω)
. We also have Ce−C′/(εT 2)‖q‖2

L2((T/4,3T/4)×Ω)
≤

‖h 1
2 eϕ/hq‖2L2((T/4,3T/4)×Ω) since we have 0 < CT 2 ≤ t(T − t) ≤ C′T 2 on the interval [T/4, 3T/4] (we note that

ϕ was chosen negative here, which explains the restriction to the interval [T/4, 3T/4] away from 0 and T

for this estimation). Then for (T + T 2)ε = δ4, the Carleman estimate yields

‖q(0)‖2
L2(Ω)

≤ C

T
eC/(εT 2)‖q‖2

L2((0,T )×ω)
≤ eC+C′/T ‖q‖2

L2((0,T )×ω)
.

From this observability inequality we can also deduce the null controllability of the heat equation and obtain

Theorem 6.2 again. We note however that we have a more explicit expression for the observability constant

including its dependency in the control time T . We naturally see the blow up of this constant as T goes to

zero.

Remark 7.9. As mentionned in the introduction, parabolic Carleman estimates allow to treat the con-

trollability of more general parabolic equations. By linearization and with a fix point argument, one

may consider the controllability of semi-linear parabolic equations for certain forms of non linearities

[Bar00, FCZ00b, DFCGBZ02]. A fine knowledge of the observability constant, obtained by parabolic

Carleman estimates, is precisely what allows to treat these non linear cases. In particular, the powers of

the semi-classical parameter h in the global Carleman estimate of Theorem 7.8 play a central role in these

results. Proposition 7.5 shows the optimality of these powers.

Appendix A. Some additional results and proofs of intermediate results

A.1. Proof of the Gårding inequality. The symbol a(x, ξ, h) is of the form a(x, ξ, h) = am(x, ξ, h) +

ham−1(x, ξ, h), with am−1 ∈ S m−1. For h sufficiently small, say h < h1, the full symbol a(x, ξ, h) satisfies

Re a(x, ξ, h) ≥ C′′〈ξ〉m, x ∈ K, ξ ∈ Rn, h ∈ (0, h1),

with C′ < C′′ < C. Let U be a neighborhood of K such that the previous inequality holds for (x, ξ) ∈ U×Rn

with the constant C′′ replaced by C′′′ that satisfies C′ < C′′′ < C′′ < C. Let χ(x) ∈ C∞c (U) be such that

0 ≤ χ ≤ 1 and χ = 1 in a neighborhood of K. We then set ã(x, ξ, h) = χ(x)a(x, ξ, h)+C′′′(1− χ)(x)〈ξ〉m that

satisfies

ã ∈ S m and Re ã(x, ξ, h) ≥ C′′′〈ξ〉m, x ∈ Rn, ξ ∈ Rn, h ∈ (0, h1),(A.1)

We moreover note that (Op(ã)u, u) = (Op(a)u, u) if supp(u) ⊂ K. Without any loss of generality we may

thus consider that the symbol a satisfies (A.1) in the remaining of the proof.

We then choose L > 0 such that C′ < L < C′′′ and we set

b(x, ξ, h) :=
(

Re a(x, ξ, h) − L〈ξ〉m
) 1

2 , and B = Op(b).

The ψDO symbolic calculus gives B∗ ◦ B = Re Op(a)− LΛm
+ hR, with R ∈ Ψm−1, where Re Op(a) actually

means (Op(a) + Op(a)∗)/2. We then have

Re(Op(a)u, u) = (Re Op(a)u, u) ≥ L(Λmu, u) − h(Ru, u) ≥ L‖Λm/2u‖20 − hL′‖u‖2(m−1)/2

≥ (L − hL′)‖u‖2m/2.
We conclude the proof by taking h sufficiently small. �
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A.2. Example of functions fulfilling the sub-ellipticity condition: proof of Lemma 3.3. We shall actu-

ally prove the following stronger lemma here.

Lemma A.1. Let V be a bounded open set in Rn and ψ ∈ C∞(Rn,R) be such that |ψ′| > 0 in V. Then for

λ > 0 sufficiently large, ϕ = eλψ satisfies |ϕ′| ≥ C > 0 in V and

(A.2) ∀(x, ξ) ∈ V × Rn, q2(x, ξ) = 0 ⇒ {q2, q1}(x, ξ) ≥ C > 0.

Proof. The computation of the Poisson bracket {q2, q1} = ∑ j ∂ξ j
q2∂x j

q1 − ∂x j
q2∂ξ j

q1 gives

{q2, q1} = 4
∑

1≤ j,k≤n

ϕ′′j,k(ξ jξk + ϕ
′
jϕ
′
k) = 4(ϕ′′(ξ, ξ) + ϕ′′(ϕ′, ϕ′)).

Here we have ϕ = eλψ, and thus ϕ′ = λϕψ′ and ϕ′′
jk
= λϕψ′′

jk
+ λ2ϕψ′

j
ψ′

k
, j, k = 1, . . . , n, which yields

{q2, q1} = 4λ3ϕ3
(

λ|ψ′|4 + ψ′′(ψ′, ψ′) + ψ′′((λϕ)−1ξ, (λϕ)−1ξ) + λ−1ϕ−2〈ψ′, ξ〉2
)

.

When q2 = 0 we have |ξ| = λϕ|ψ′|. We then note that

|ψ′′((λϕ)−1ξ, (λϕ)−1ξ)| ≤ C|ψ′|2, |ψ′′(ψ′, ψ′)| ≤ C|ψ′|2.

We deduce

{q2, q1} ≥ 4λ3ϕ3
(

λ|ψ′|4 −C|ψ′|2
)

.

We then see that for λ sufficiently large we have {q2, q1} ≥ Cλ > 0, since |ψ′| ≥ C > 0. �

Remark A.2. In Lemma 3.3 we chose to use an exponential function. The reader will note that a similar

result can be obtained by taking ϕ = G(λψ), with λ sufficiently large, for a function G : R→ R that satisfies

G′ > 0, G′′ > 0 and G′′/G′ ≥ C > 0. This procedure is often referred to as the “convexification” of the

weight function.

A.3. Proof of Lemma 3.4. For |ξ| large, the property holds since q2 = |ξ|2 − |ϕ′|2 and since the symbol

{q2, q1} is only of order 2.

It remains to prove the result for |ξ| ≤ R, with R > 0, i.e. for (x, ξ) in a compact set (here x ∈ V). In

a more general framework, consider two continuous functions, f and g, defined in a compact set K , and

assume that f ≥ 0 and f (y) = 0⇒ g(y) ≥ L > 0. We set hµ = µ f + g.

For all y ∈ K , either f (y) = 0 and thus hµ(y) > L, or f (y) > 0 and thus there exists µy > 0 such that

hµy
(y) > 0. This inequality holds locally in an open neighborhood Vy of y. From the covering of K by the

open sets Vy, we select a finite covering Vy1
, . . . ,Vyn

and set µ = max1≤ j≤n µ j. We then obtain hµ ≥ C > 0.

We simply apply this result to ρ/〈ξ〉4. �

A.4. Proof of Lemma 3.10. We saw in Section A.2 that

{q2, q1} = 4λ3ϕ3
(

λ|ψ′|4 + ψ′′(ψ′, ψ′) + ψ′′((λϕ)−1ξ, (λϕ)−1ξ) + λ−1ϕ−2〈ψ′, ξ〉2
)

.

We observe that q2∆ϕ =
(

|ξ|2 − λ2|ψ′|2ϕ2
) (

λ2|ψ′|2ϕ + λ(∆ψ)ϕ
)

, which yields

ρ = λ3ϕ3
(

4ψ′′((λϕ)−1ξ, (λϕ)−1ξ) + 2µ(λ|ψ′|2 + ∆ψ)

∣
∣
∣
∣
∣

ξ

λϕ

∣
∣
∣
∣
∣

2

+ λ−1ϕ−2〈ψ′, ξ〉2

+ (4 − 2µ)λ|ψ′|4 + 4ψ′′(ψ′, ψ′) − 2µ|ψ′|2∆ψ
)

,

which, as 0 < µ < 2, we can make larger than Cλ〈ξ〉2, with Cλ > 0 by taking λ sufficiently large. �
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A.5. Estimations in the elliptic region and close to the characteristic set: proof of Proposition 3.8.

Let w1 = Op( χ1)v. We observe that supp(w1) ⊂ V from the assumption made on the support of the symbol

χ1. Then Pϕw1 = g1 = Op( χ1)g + [Pϕ,Op( χ1)]v, where g = Pϕv. The commutator is in hΨ1 and thus

(A.3) ‖g1‖0 ≤ C
(‖g‖0 + h‖v‖1

)

.

Let χ ∈ S 0 be such that χ = 1 in a neighborhood of supp( χ1) and χ = 0 in a neighborhood of Z . Because

of the ellipticity of Pϕ in supp( χ), there exists a ψDO parametrix (see [Hör85b, Mar02]) EM = Op(e),

e ∈ S −2, with e =
∑M

j=0 h je j, for M ∈ N large, where e j ∈ S 2− j, e0 = χ/pϕ, and

EM ◦ Pϕ = Op( χ) + hM+1RM , RM ∈ Ψ−1−M .

We then obtain w1 = EMg1 + g̃1, with g̃1 = (Id−Op( χ))w1 − hM+1RMw1. As supp(1 − χ) ∩ supp( χ1) = ∅,
and w1 = Op( χ1)v, the ψDO calculus of Theorem 2.8 yields

(A.4) ‖g̃1‖2 ≤ Ch‖v‖1.
With (A.3) and (A.4) we obtain the first result of the proposition,

‖w1‖2 ≤ C
(‖g1‖0 + h‖v‖1

) ≤ C′
(‖g‖0 + h‖v‖1

)

.

For the second part we introduce w2 = Op( χ2)v. We then have Pϕw2 = g2 = Op( χ2)g + [Pϕ,Op( χ2)]v

and ‖g2‖0 ≤ C
(‖g‖0 + h‖v‖1

)

. The proof of the Carleman estimate then yields (see (3.3)) h‖w2‖22 ≤
C
(

‖g‖20 + h2‖v‖21
)

.

Let χ̃2 ∈ S 0 with compact support be such that χ̃2 = 1 in a neighborhood of supp(χ2). The ψDO calculus

of Theorem 2.8 yields

w2 = Op(1 − χ̃2)w2 + Op( χ̃2)w2 = Op(1 − χ̃2)Op( χ2)
︸                  ︷︷                  ︸

∈hNΨ−N

v + Op( χ̃2)w2, N ∈ N,

and we thus obtain, for all N ∈ N and r, r′ ∈ R,

‖w2‖s = ‖Λsw2‖0 ≤ CN,r,sh
N‖v‖r + ‖ΛsOp( χ̃2)

︸      ︷︷      ︸

∈Ψr′

w2‖0 ≤ CN,r,sh
N‖v‖r +C′r′,s‖w2‖r′ .

It follows that ‖w2‖s ≤ Csh‖v‖1 +C′s‖w2‖2, for all s ∈ R, which yields the result. �

A.6. On the sub-ellipticity condition and the optimality of the powers of the semi-classical parameter:

proof of Proposition 3.9. The proof that we give is adapted from that of Theorem 8.1.1 in [Hör63]. We

refer the reader to this proof for the treatment of more general operators. Here, the symbol of the Laplace

operator does not depend on x, which simplifies the proof.

Let x0 ∈ V and let ξ0 ∈ Rn be such that pϕ(x0, ξ0) = 0 (such a ξ0 always exists). There is no restriction to

consider the case x0 = 0 and ϕ(x0) = 0. We set ζ0 = ξ0 + iϕ′(x0). Then
∑

j ζ
2
0, j = 0. We set w(x) = 〈x, ζ0〉

and have

ϕ(x) − Im(w(x)) = A(x) + o(|x|2), with A(x) =
1

2

∑

j,k
ϕ′′jk(x0)x jxk.

Let φ ∈ C∞c (Rn) be such that φ(0) , 0. We introduce uh = eiw(x)/hφ(x/h
1
2 ) and we have

h2Puh = eiw/h
(

−h(∆φ)(x/h
1
2 ) − ih∆w(x)φ(x/h

1
2 ) +
(∑

j(∂x j
w(x))2

)

φ(x/h
1
2 ) − 2ih

1
2 〈∇xw(x), φ′(x/h

1
2 )〉
)

.

(A.5)

We note that
∑

j(∂x j
w(x))2

= 0 and observe that we then have

‖h2eϕ/hPuh‖20 = hn/2 ∫ e
2
h

(

A(h
1
2 x)+o(|h 1

2 x|2)
)
∣
∣
∣
∣− h∆φ(x) − ih(∆w)(h

1
2 x)φ(x) − 2ih

1
2 〈(∇w)(h

1
2 x), φ′(x)〉

∣
∣
∣
∣

2

dx,

after the change of variables x→ x/h
1
2 . In the limit h→ 0, by dominated convergence, we have

‖h2eϕ/hPuh‖20 ∼ 4h(n/2+1) ∫ e2A(x)|〈ζ0, φ
′(x)〉|2 dx.

Similarly we have h2α‖eϕ/huh‖20 ∼ h(n/2+2α) ∫ e2A(x)|φ(x)|2 dx. With Inequality (3.7) we conclude that we

necessarily have α = 1
2

and 〈ζ0, φ
′(x)〉 . 0. In particular ϕ′(x0) , 0 since otherwise we would have ζ0 = 0.
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If we denote by K the constant C in (3.7), with α = 1
2
, the limit h→ 0 yields

∫ e2A(x)|φ(x)|2 dx ≤ K ∫ e2A(x)|〈ζ0, φ(x)′〉|2 dx,

for all φ ∈ C∞c (Rn). Lemma 8.1.3 in [Hör63] then gives
∑

j,k ϕ
′′
jk
ζ0, j ζ0,k ≥ 1

2K
. We set ζ = ξ + iϕ′(x). The

computation carried out in Section A.2 gives {q2, q1} = 4ϕ′′(ζ, ζ) = 4
∑

j,k ϕ
′′
j,k ζ j ζk. For all x ∈ V we thus

have

ξ ∈ Rn and pϕ(x, ξ) = 0 ⇒ {q2, q1}(x, ξ) ≥ 2

K
.(A.6)

Let now (y, η) ∈ ∂V × Rn be such that pϕ(y, η) = 0. We first consider a sequence (x(k))k∈N∗ ⊂ V that

converges to y and (ξ(k))k∈N∗ ⊂ Rn such that pϕ(x(k), ξ(k)) = 0. We set ζ(k)
= ξ(k)

+ iϕ′(x(k)). We have in

particular |ξ(k)| = |ϕ′(x(k))| and the sequence (ξ(k))k is hence bounded. It converges, up to a sub-sequence,

to a certain ξ ∈ Rn and thus pϕ(y, ξ) = 0. In particular |ξ| = |ϕ′(y)|. We saw above that {q2, q1}(x(k), ξ(k)) =

4
∑

i, j ϕ
′′
i, j(x(k)) ζ(k)

i
ζ(k)

j
≥ 2

K
. If ζ = ξ + iϕ′(y) we have {q2, q1}(y, ξ) = 4

∑

i, j ϕ
′′
i, j(y) ζi ζ j ≥ 2

K
. This excludes

ζ = 0. As |ξ| = |ϕ′(y)| we obtain that ϕ′(y) , 0.

The characteristic set over V is given by Z = Z̃ ∩ (V × Rn) with

Z̃ = {(x, ξ) ∈ Rn × Rn; f1(x, ξ) = |ξ|2 − |ϕ′(x)|2 = 0, and f2(x, ξ) = 〈ξ, ϕ′(x)〉 = 0}.
As ϕ′(y) , 0 and η , 0 is orthogonal to ϕ′(y), we then see that the partial differentials dξ f1 and dξ f2 form a

rank 2 system at (y, η). Up to rearranging the variables, with the implicit function theorem, this implies that

in a neighborhood U1 of (y, η) and in a neighborhood U2 of (y, η1, . . . , ηn−2) we have

(x, ξ) ∈ Z̃ ∩ U1 ⇔ (x, ξ1, . . . , ξn−2) ∈ U2 and (ξn−1, ξn) = g(x, ξ1, . . . , ξn−2),

with a smooth function g. Consider then a sequence (x(k))k∈N∗ ⊂ V that converges to y. For k sufficiently

large, k ≥ N0, we have (x(k), η1, . . . , ηn−2) ∈ U2 and we set ξ(k)
= (η1, . . . , ηn−2, g(x(k), η1, . . . , ηn−2)). Then

(x(k), ξ(k)) is in Z and converge to (y, η). We have {q2, q1}(x(k), ξ(k)) ≥ 2/K for all k ≥ N0 by the first part of

the proof. We thus obtain {q2, q1}(y, η) ≥ 2/K by passing to the limit. �

Remark A.3. In the previous proof we have chosen a test function uh that is localized around x0 in space,

through the term φ(x/h
1
2 ), and around ζ0 in frequencies, through the term ei〈x,ζ0〉/h, for the semi-classical

Fourier transformation. This microlocalization shows clearly that the non-zero power of the parameter h in

the l.h.s. of the Carleman estimate originates from the behavior of the symbol at the characteristic set Z as

we already pointed out with Proposition 3.8. We note that the scaling x/h
1
2 in φ(x/h

1
2 ) allows to control the

variations of A(x)/h in the support of uh.

A.7. Estimation of the heat kernel. Let pt(x, y) be the heat kernel in Ω, a bounded open set in Rn, with

homogeneous Dirichlet boundary conditions.

Lemma A.4. For all x, y ∈ Ω we have pt(x, y) ≤ (4πt)−n/2e−
|x−y|2

4t if t > 0.

Proof. The heat kernel in Rn is given by p0,t(x, y) = (4πt)−n/2e−
|x−y|2

4t if t > 0. Consider y0 ∈ C∞c (Ω) such

that y0 ≥ 0. We also denote by y0 its zero extension to Rn. We consider the following parabolic problems





∂ty − ∆y = 0 in (0,T ) ×Ω,
y = 0 on (0,T ) × ∂Ω,
y|t=0 = y0 in Ω,






∂tz − ∆z = 0 in (0,T ) × Rn,

z|t=0 = y0 in Rn.

For t > 0, the solutions z and y are smooth functions given by y(t, x) = 〈pt(x, .), y0(.)〉 and z(t, x) =

〈p0,t(x, .), y0(.)〉. In particular z(t, x) ≥ 0 if x ∈ ∂Ω. Thus z − y ≥ 0 in (0,T ) × ∂Ω. The difference of

the two solutions thus satisfies a parabolic problem of the following form





∂t(z − y) − ∆(z − y) = 0 in (0,T ) ×Ω,
z − y ≥ 0 on (0,T ) × ∂Ω,
(z − y)|t=0 = 0 in Ω.
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The maximum principle gives z − y ≥ 0 in (0,T ) × Ω (see e.g. [Bre83, Theorem X.6]). If y0 ∈ C∞c (Ω) with

y0 ≥ 0, it follows that 〈p0,t(x, .), y0(.)〉 ≥ 〈pt(x, .), y0(.)〉 for t > 0. This yields the result. �

Lemma A.5. Let p0,t(x, y) = (4πt)−n/2e−
|x−y|2

4t be the heat kernel in Rn and let y ∈ Ω and Vy be a neighbor-

hood of y such that Vy ⊂ Ω. There exists C and C′ > 0 such that

|pt(x, y) − p0,t(x, y)| ≤ Cte−C′/t, x ∈ Vy, t > 0.

Proof. Let χ ∈ C∞c (Ω) be such that χ = 1 near Vy. We introduce v(t, x) = pt(x, y) − χ(x)p0,t(x, y) and

observe that v|t=0 = 0, v|(0,+∞)×∂Ω = 0 and that v satisfies the parabolic equation (∂t − ∆)v = w with

w(t, x) = p0,t(x, y)
(

∆χ(x) − 1

t
(∇χ(x), x − y)

)

.

We observe that |x − y| ≥ d > 0 in supp( χ′) and thus have w̃(t, x) = e
d2

4t w(t, x) ∈ C∞([0,+∞[×Ω) with

furthermore ‖w̃‖L∞([0,+∞[×Ω) < ∞. The Duhamel formula gives v(t, x) = ∫ t
0 S (t − s)w(s)ds, where S (t) is the

heat semi-group and we find v(t) = ∫ t
0 e−

d2

4s S (t − s)w̃(s)ds, which yields

‖v(t)‖L∞(Ω) ≤ e−
d2

4t

t

∫
0

‖S (t − s)w̃(s)‖L∞(Ω)ds ≤ te−
d2

4t ‖w̃(s)‖L∞([0,+∞[×Ω), t > 0,

by the maximum principle [Bre83, Theorem X.3]. The result follows in Vy where χ = 1. �

The reader will note that we can obtain the following short-time asymptotic expansion of the heat kernel

on a Riemannian manifold, with or without boundary, on the diagonal, for all N ∈ N (see for instance

estimate (13.59) along with (13.39) and (13.40) in [Tay96, Chapter 7.13])

Pt(y, y) = t−n/2
(

C0(y) + t C1(y) + · · · +CN(y)tN
+ O(tN+1)

)

, t → 0.

In the case we consider here, the metric is flat, and such an expansion is greatly simplified as shown in the

previous lemma.

A.8. Proof of Lemma 7.2. The proof of Lemma 7.2 is close to that of Lemma 3.4. It suffices to prove

the result for (x, ξ) in a compact K ⊂ Rn × Rn. We first take ε = 0. We have q2|ε=0 = |ξ|2 − |ϕ′|2. For µ
sufficiently large we have

µq2
2|ε=0 + {q2|ε=0, b} ≥ C〈ξ〉4, (x, ξ) ∈ K ,

as seen in the proof of Lemma A.1 (page 21). Finally, since (x, ξ) is in a compact set, this inequality still

holds, with a different constant C, for ε|θ′| > 0 small. Since |θ′(t)| ≤ T , this concludes the proof. �

A.9. Proof of Proposition 7.5. The proof is close to that of Proposition 3.9. Let x0 ∈ V and ξ0 ∈ Rn be

such that q2|ε=0 = 0 (such a ξ0 always exists). We set ζ0 = ξ0 + iϕ′(x0). There is no restriction to consider

the case x0 = 0. We then choose τ0 ∈ R such that

τ0 + 2〈ϕ′(x0), ξ0〉 = 0.

We then have

iτ0 +
∑

j

ζ2
0, j = 0.(A.7)

Next, we define

w(t, x) = iϕ(0) + 〈x, ζ0〉
︸           ︷︷           ︸

=w̃(x)

+τ0(t − t0)/h, with t0 = T/2,

and we have

ϕ(x) − Im(w(t, x)) = A(x) + o(|x|2), with A(x) =
∑

j,k
ϕ′′jk(x0)x jxk.

Let γ ∈ (0,T/2) and let φ ∈ C∞c ((γ,T − γ) × Rn) be such that φ(t0, 0) , 0. We then set

uε = eiw(t,x)/hφ
( t − t0

ε
,

x√
ε

)

.
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We recall that θ = t(T − t) and h = εθ. We have

∂tuε = eiw/h
(

i∂t

(w(t, x)

h

)

φ
( t − t0

ε
,

x√
ε

)

+ ε−1(∂tφ
)( t − t0

ε
,

x√
ε

))

,

with

∂t

(w(t, x)

h

)

= τ0∂t

( t − t0

h2

)

+ w̃(x)∂th
−1
=
τ0

h2
− 2τ0(t − t0)

θ′

h2θ
− w̃(x)

θ′

hθ
.

We also have (similarly to the elliptic case in see (A.5)),

−h2
∆xuε = eiw/h

((∑

j

(

∂x j
w̃(x)
)2 − ih∆xw̃(x)

)

φ
( t − t0

ε
,

x√
ε

)

− 2iε
1
2 θ
〈

∇xw̃(x), φ′x
( t − t0

ε
,

x√
ε

)〉

− εθ2(∆xφ)
( t − t0

ε
,

x√
ε

))

.

With (A.7), and as θ′ = 2(t0 − t) it follows that

h2Puε = eiw/h
(
2i

θ

(

2τ0(t − t0)2
+ h(t − t0)w̃(x)

)

φ
( t − t0

ε
,

x√
ε

)

+ hθ
(

∂tφ
)( t − t0

ε
,

x√
ε

)

− ih∆xw̃(x)φ
( t − t0

ε
,

x√
ε

)

− 2iε
1
2 θ
〈

∇xw̃(x), φ′x
( t − t0

ε
,

x√
ε

)〉

− εθ2(∆xφ)
( t − t0

ε
,

x√
ε

))

.

After the change of variables (t, x)→ ((t − t0)/ε, x/ε
1
2
)

, we obtain, for ε→ 0,

‖h2eϕ/hPuε‖20 ∼ 4εn/2+2 ∫ ∫
Rn+1

e2A(x)/θ(t0)θ(t0)2|〈ζ0, φ
′
x(t, x)〉|2 dt dx.

As we have ‖hαeϕ/huε‖20 ∼ ε(n/2+1+2α) ∫∫Rn+1 e2A(x)/θ(t0)θ(t0)2α|φ(t, x)|2 dt dx, Inequality (7.3) yields α = 1
2

and

ζ0 , 0. It follows that ϕ′(x0) , 0. We then have obtained

∫ ∫
Rn+1

e2A(x)/θ(t0)|φ(t, x)|2 dt dx ≤ C ∫ ∫
Rn+1

e2A(x)/θ(t0)|〈ζ0, φ
′
x(t, x)〉|2 dt dx,

for all φ ∈ C∞c ((γ,T − γ) × Rn). For φ2 ∈ C∞c (Rn) we thus find4

∫
Rn

e2A(x)/θ(t0)|φ2(x)|2 dx ≤ C ∫
Rn

e2A(x)/θ(t0)|〈ζ0, φ
′
2(x)〉|2 dx,

which allows to conclude as in the proof of Proposition 3.9.

A.10. Proof of Theorem 7.6. This proof is based on a proof provided in [LR10b]. Its counterpart in the

elliptic case can be found in [LR95]. In a sufficiently small neighborhood V we place ourselves in normal

geodesic coordinates. In such a coordinate system, the principal part of the Laplace operator A takes the

form

A2 = −∂2
xn
− r(x, ∂x′ ), x = (x′, xn),(A.8)

with r(x, ξ′) a homogeneous second-order polynomial in ξ′ that satisfies

r(x, ξ′) ∈ R, and C1|ξ′|2 ≤ r(x, ξ′) ≤ C2|ξ′|2, x ∈ V, ξ′ ∈ Rn−1,(A.9)

for some 0 < C1 ≤ C2 < ∞. The local coordinates are chosen such that x0 is at the origin.

We set η(t) = T 2(t(T − t))−1. Then h = εθ = εT 2η−1. We set ℏ = εT 2 and ℏ′ = εT . We shall impose ℏ

and ℏ′ small in agreement with the statement of Theorem 7.6. To work on R for the time variable, instead

of the finite interval (0,T ), we make the following change of variable:

s(t) = tan
(πt

T
− π

2

)

.(A.10)

4In fact, we can Choose φ in the form φ(t, x) = η−
1
2 φ1((t − t0)/η)φ2(x) with φ1 ∈ C∞c (R), ∫ |φ1 |2 = 1, and and η > 0 sufficiently

small. We then let η go to 0.
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We note that ∂t =
a(s)
T
∂s, with a(s) = π〈s〉2 with 〈s〉 = (1 + s2)

1
2 . The parabolic operator we consider

becomes P =
a(s)
T
∂s + A and we find

η(s) = π2
(π

2
+ arctan(s)

)−1 (π

2
− arctan(s)

)−1
, h−1

= η(s)/ℏ.(A.11)

(We keep the notations P, A, η, in an abusive way.) In particular we have

C〈s〉 ≤ η(s) ≤ C′〈s〉, s ∈ R, and C〈s〉1−k ≤ |η(k)(s)| ≤ C′〈s〉1−k, k ∈ N.(A.12)

We define tangential semi-classical ψDOs adapted to the parabolic problem we consider here. We denote

by S m
T , the space of smooth functions a(z, ζ′, h), (z, ζ′), z ∈ Rn+1

+
, ζ′ ∈ Rn, defined for ℏ ∈ (0, ℏ0] for some

ℏ0 > 0, that satisfy the following property:

∀α, β, |∂αz ∂βζ′a(z, ζ′, ℏ)| ≤ Cα,β〈ζ′〉m−|β|, z ∈ Rn+1
+
, ζ′ ∈ Rn, ℏ ∈ (0, h0).

Asymptotic series of such symbols as those defined in Section 2 can be considered. The notion of prin-

cipal symbol is introduced similarly. The tangential ψDOs we shall consider are defined in the case

z = (s, x′, xn) ∈ Rn+1 and ζ′ = (τ, ξ′), with s, τ ∈ R, x′, ξ′ ∈ Rn−1 and xn ∈ R+. We define 〈s〉lΨm
T as

the space of tangential ψDOs A = Op(a), for a ∈ 〈s〉lS m
T , formally defined by

A u(s, x) = (2π)−n
ℏ
−n(ℏ′)−1 ∫∫∫∫ ei(s−t)τ/(ℏℏ′)+i〈x′−y′,ξ′〉/ℏa(s, x, τ, ξ′, ℏ) u(t, y′, xn) dt dy′ dτ dξ′.

If we let them act on a function u that does not depend on xn, they can be considered as regular ψDOs if we

only consider the restriction of A u on xn = 0. We shall also denote the principal symbol by σ(A). We have

the following quantizations:

σ
(ℏℏ

′∂s

i

)

= τ, σ
(ℏ∂x j

i

)

= ξi.

We set Ds =
ℏℏ
′∂s

i
and Dx j

=
ℏ∂x j

i
.

If we set M = 〈(τ, ξ′)〉 ∈ S 1
T we have the following regularity result: if a ∈ 〈s〉lS m

T , l,m ∈ R, then there

exists C > 0 such that

‖Op(a)u‖ ≤ C‖〈s〉lOp(Mm)u‖.
The composition formula for tangential symbols, a ∈ 〈s〉lS m

T , b ∈ 〈s〉l′S m′
T , is given by

(a ♯ b)(s, x, τ, ξ′, ℏ) ∼ ∑
|α|
ℏ
|α|(ℏ′)α1

(−i)|α|

α!
(∂α1
τ ∂

α2

ξ′ a) (∂α1
s ∂

α2

x′ b)(s, x, τ, ξ′, ℏ),(A.13)

with α = (α1, α2), α1 ∈ N, α2 ∈ Nn−1, and yields a tangential symbol in 〈s〉l+l′S m+m′
T .

We now make the following change of variables in the x direction.

y = b(s)x, with b(s) = a(s)
1
2 .

If we set P = P/a(s), its principal part is given by

P2 =
1

T
∂s − ∂2

yn
− r(y, ∂y′ ), r(y, ∂y′ ) = r(y/b(s), ∂y′).

We shall prove a Carleman estimate for this operator before moving back to the original coordinates. In the

sequel it is important to remember that x = y/b(s) remains in the compact domain K.

We set

φ(s, y) = ϕ(y/b(s)), φx(s, y) =
η(s)

b(s)
∂xϕ(y/b(s)).

Note that φx does not stand for ∂xφ but is in fact equal to η∂xφ. This notation will however be convenient

below since the calculus we have introduced uses ℏ and ℏ′ for small parameters instead of h = ℏη−1.

Remark A.6. With the definitions of r and φ, we find that derivatives of the symbols with respect to s and

y generate a gain of a factor 〈s〉−1. This will be taken into account in the application of the composition

formula (A.13).
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Introduce v = eφ/hu = eφη/ℏu and Pϕ = ℏ
2eφ/hPe−φ/h. We have Pϕv = ℏ2eφ/hPu = g. We define the

following symmetric operators Q̃2 = (Pϕ +P
∗
ϕ)/2, Q̃1 = (Pϕ −P∗ϕ)/(2i), with

Q̃2 = D2
yn
+ Q2, Q̃1 =

(

Dyn
φxn
+ φxn

Dyn

)

+ 2Q1,

with respective principal symbols

q̃2 = ξ
2
n + q2, q2 = r(y, ξ

′) − r(y, φx′ ) − φ2
xn
∈ S 2

T ,

q̃1 = 2ξnφxn
+ 2q1, q1 =

τ

2
+ r̃(y, ξ′, φx′ ) ∈ S 1

T

where r̃(y, ., .) is the symmetric bilinear form associated with the real quadratic form r(x, ξ′).
We note that

(

w1, Q̃2w2

)

=

(

Q̃2w1,w2

)

− iℏ
[(

w1|yn=0+ ,Dyn
w2|yn=0+

)

0
+

(

Dyn
w1|yn=0+ ,w2|yn=0+

)

0

]

,
(

w1, Q̃1w2

)

=

(

Q̃1w1,w2

)

− 2iℏ
(

φxn
w1|yn=0+ ,w2|yn=0+

)

0
,

for w1 and w2 smooth, where (., .)0 is the L2 hermitian inner-product in {yn = 0}, and we thus obtain

‖g‖2 = ‖Q̃1v‖2 + ‖Q̃2v‖2 + i([Q̃2, Q̃1]v, v) + ℏB(v),

with

(A.14) B(v) =
(

Q̃1v|yn=0+ ,Dyn
v|yn=0+

)

0
+

(

(Dyn
Q̃1 − 2φxn

Q̃2)v|yn=0+ , v|yn=0+

)

0
,

which, as v|yn=0+ = 0, reduces to

(A.15) B(v) = 2
(

φxn
Dyn

v|yn=0+ ,Dyn
v|yn=0+

)

0
≥ 0, as φxn

> 0.

We observe that we have i[Q̃2, Q̃1] = ℏ
(

H̃0D2
yn
+ H̃1Dyn

+ H̃2

)

, where H̃ j ∈ 〈s〉−1
Ψ

j

T , j = 0, 1, 2. We then

note that D2
yn
− Q̃2 ∈ Ψ2

T and Dyn
− 1

2φxn
Q̃1 ∈ Ψ1

T . We thus find

i[Q̃2, Q̃1] = ℏ
(

H0Q̃2 + H1Q̃1 + H2

)

, H j ∈ 〈s〉−1
Ψ

j

T , j = 0, 1, 2.

We have the following lemma, which proof is given below.

Lemma A.7. For µ sufficiently large and ℏ and ℏ′ sufficiently small, there exists C > 0 such that

〈s〉−1S 2
T ∋ µ

(

q2
1
+ φ2

xn
q2

)2

〈s〉M2
+ σ(H2) ≥ C〈s〉−1M2.

Applying the Gårding inequality in the tangential directions (including the time direction) we thus obtain,

for ℏ sufficiently small,

(A.16) ‖g‖2 ≥ ‖Q̃1v‖2 + ‖Q̃2v‖2 + ℏRe
(

H0Q̃2v, v
)

+ ℏRe
(

H1Q̃1v, v
)

+Cℏ‖〈s〉− 1
2 Op(M)v‖2 − ℏRe

(

(Q2
1 + φ

2
xn

Q2)v,G〈s〉−1v
)

,

where G ∈ Ψ0
T and σ(G) = µ

q2
1
+φ2

xn
q2

M2 ∈ S 0
T .

We first see that we have

ℏ

∣
∣
∣
∣

(

H0Q̃2v, v
) ∣∣
∣
∣ ≤ ℏ‖Q̃2v‖ ‖〈s〉−1v‖ ≤ Cℏ

1
2 ‖Q̃2v‖2 +C′ℏ

3
2 ‖〈s〉−1v‖2,(A.17)

ℏ

∣
∣
∣
∣

(

H1Q̃1v, v
) ∣∣
∣
∣ ≤ ℏ‖Q̃1v‖ ‖〈s〉−1Op(M)v‖ ≤ Cℏ

1
2 ‖Q̃1v‖2 +C′ℏ

3
2 ‖〈s〉−1Op(M)v‖2.(A.18)

From the form of Q̃1 we deduce the following lemma.

Lemma A.8. We have ‖〈s〉− 1
2 Dyn

v‖ ≤ C‖Q̃1v‖ +C‖〈s〉− 1
2 Op(M)v‖.
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Next since

Q1 =
1

2

(

Q̃1 − [Dyn
, φxn

]
)

− φxn
Dyn

,(A.19)

we compute Q2
1
+ φ2

xn
Q2 = −Q1φxn

Dyn
+

Q1

2

(

Q̃1 − [Dyn
, φxn

]
)

+ φ2
xn

(Q̃2 − D2
yn

). Using (A.19) a second time

we have

Q2
1 + φ

2
xn

Q2 =

(

φxn
Dyn
− 1

2
(Q̃1 − [Dyn

, φxn
])
)

φxn
Dyn
+

Q1

2

(

Q̃1 − [Dyn
, φxn

]
)

+ φ2
xn

(Q̃2 − D2
yn

),

which reads

Q2
1 + φ

2
xn

Q2 ∈ φ2
xn

Q̃2 − 1

2
Dyn

φxn
Q̃1 + Ψ

1
T Q̃1 + ℏ〈s〉−1

Ψ
0
T Dyn

+ ℏ〈s〉−1
Ψ

1
T .(A.20)

We note that

ℏ

∣
∣
∣
∣

(

φ2
xn

Q̃2v,G〈s〉−1v
)∣∣
∣
∣ ≤ ℏ 1

2 C‖Q̃2v‖2 + ℏ 3
2 C‖〈s〉−1v‖2,

and

ℏRe
(1

2
Dyn

φxn
Q̃1v,G〈s〉−1v

)

=
ℏ

2
Re
(

φxn
Q̃1v,Dyn

G〈s〉−1v
)

− ℏ2 Re
(φxn

2i
Q̃1v|yn=0+ ,G〈s〉−1v|yn=0+

)

0
,

by integration by parts. The last term vanishes as v|yn=0+ = 0. We thus obtain

(A.21)
∣
∣
∣
∣ℏRe

(

(Q2
1 + φ

2
xn

Q2)v,G〈s〉−1v
) ∣∣
∣
∣

≤ C

(

ℏ
1
2 ‖Q̃1v‖2 + ℏ 1

2 ‖Q̃2v‖2 + ℏ 3
2 ‖〈s〉−1Dyn

v‖2 + ℏ 3
2 ‖〈s〉−1v‖2 + ℏ 3

2 ‖〈s〉−1Op(M)v‖2
)

.

By choosing ℏ sufficiently small, from (A.16), (A.17), (A.18) and (A.21), and Lemma A.8, we obtain

‖Pϕv‖2 ≥ Cℏ
(

‖〈s〉− 1
2 Op(M)v‖2 + ‖〈s〉− 1

2 Dyn
v‖2
)

≥ Cℏ
(

‖〈s〉− 1
2 v‖2 + ℏ2‖〈s〉− 1

2∇yv‖2
)

.

Arguing as in the proof of Theorem 3.5 we obtain

ℏ
4‖eφ/hPu‖2 ≥ Cℏ

(

‖eφ/h〈s〉− 1
2 u‖2 + ℏ2‖eφ/h〈s〉− 1

2∇yu‖2
)

.

Moving back to the x coordinate we find

ℏ
4‖eϕ/h〈s〉− n

2
−2Pu‖2 ≥ Cℏ

(

‖eϕ/h〈s〉− n+1
2 u‖2 + ℏ2‖eϕ/h〈s〉− n+3

2 ∇xu‖2
)

.

We now proceed with writing the local Carleman estimate we have obtained with the original time variable

t ∈ (0,T ). From (A.10) we have ds =
a(s(t))

T
dt = π

T
〈s(t)〉2dt. We then have

ℏ
4‖eϕ/hη(t)−

n
2
−1Pu‖2 ≥ Cℏ

(

‖eϕ/hη(t)−
n−1

2 u‖2 + ℏ2‖eϕ/hη(t)−
n+1

2 ∇xu‖2
)

,

as η(t)/C ≤ 〈s(t)〉 ≤ Cη(t). If we now change u into η(t)
n
2
−1u, which is possible because of the fast decay of

eϕ/h as t → 0 or T , we achieve

ℏ
4‖eϕ/hη(t)−2Pu‖2 ≥ Cℏ

(

‖eϕ/hη(t)−
1
2 u‖2 + ℏ2‖eϕ/hη(t)−

3
2∇xu‖2

)

.

In fact, we chose εT = ℏ′ sufficiently small to absorb the commutator [∂t, η(t)
n
2
−1] generated by this change

of unknown function. Recalling that ℏ/η = h this concludes the proof. �

Proof of Lemma A.7. We denote by {., .}s, and {., .}x the Poisson brackets with respect to the s, τ variables

on the one hand and the x, ξ variables on the other hand. We have

〈s〉−1S 2 ∋ σ
( i

ℏ
[Q̃2, Q̃1]

)

= ℏ
′{q̃2, q̃1}s
︸      ︷︷      ︸

∈h′〈s〉−1S 1

+{ã2, ã1}x.

For the property we aim to prove we may thus focus on the second term that belongs to 〈s〉−1S 2. We

introduce the map

κ : (s, y, τ, ξ) 7→
(

s,
y

b(s)
,
( b

η
(s)
)2
τ,
( η

b(s)

)−1
ξ
)

,
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and set q̃ j ◦ κ−1
=

(
η
b
(s)
)2

ã j, j = 1, 2. We find

ã2(s, x, τ, ξ) = ξ2
n + a2 ∈ S 2, a2 = r(x, ξ′) − r(x, ∂x′ϕ) − (∂xn

ϕ
)2 ∈ S 2

T ,

ã1(s, x, τ, ξ) = 2ξn

(

∂xn
ϕ
)

+ 2a1 ∈ S 1, a1 =
τ

2
+ r̃(x, ξ′, ∂x′ϕ) ∈ S 1

T ,

where r̃(y, ., .) is the symmetric bilinear form associated with the real quadratic form r(x, ξ′). Recall that the

variable x remains in the compact set K, as opposed to y = b(s)x. We observe that {q̃2, q̃1}x = η3

b4
{ã2, ã1}x ◦ κ.

In particular we have

{q̃2, q̃1}x = h0q̃2 + h1q̃1 + h2, {ã2, ã1}x = ℓ0ã2 + ℓ1ã1 + ℓ2,

with h j = σ(H j) ∈ 〈s〉−1S
j

T and ℓ j ∈ S
j

T . We find h2 =
η3

b4
ℓ2 ◦ κ. We set M′ = M ◦ κ−1. We note that

M′ ∼ M. We set

ν = µ

(

a2
1
+ (∂xn

ϕ)2a2

)2

M′2
+
〈s〉
η
ℓ2 ∈ S 2

T .

We know prove that ν ≥ CM2 for µ sufficiently large. For |(τ, ξ′)| large, say |(τ, ξ′)| ≥ R, we clearly have

ν ≥ CM2. We may thus restrict ourselves to the case of the variables (x, τ, ξ) in a compact set. Recall that

s = s(t) and observe that ν is smooth with respect to t ∈ [0,T ]. Hence all the variables (t, x, τ, ξ) lay in a

compact set. We consider the case ℏ = ℏ′ = 0. Assume that a2
1
+ (∂xn

ϕ)2a2 and chose ξn = −(a1/∂xn
ϕ).

Then ã1 = ã2 = 0. By the sub-elliptic property (7.1) (which is invariant by change of variables) we obtain

{ã2, ã1}x = l2 > 0. It follows that for µ sufficiently large ν/M2 ≥ C > 0 in this case as well. Relaxing the

condition ℏ = ℏ′ = 0 only affects the constant C for ℏ, ℏ′ positive and sufficiently small.

We conclude the proof since we have

h2 + µ

(

q2
1
+ φ2

xn
q2

)2

〈s〉M2
= 〈s〉−1

(η

b

)4
ν ◦ κ.

�
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