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Mixture of the Riesz distribution with

respect to the multivariate Poisson

Abdelhamid Hassairi∗ and Mahdi Louati

Laboratory of Probability and Statistics. Sfax Faculty of Sciences, B.P. 802, Tunisia.

Running title: Mixture of the Riesz distribution

Abstract The aim of this paper is to study the mixture of the Riesz distribution on

symmetric matrices with respect to the multivariate Poisson distribution. We show, in

particular, that this distribution is related to the modified Bessel function of the first kind.

We also study the generated natural exponential family. We determine the domain of the

means and the variance function of this family.

Keywords: Mixed distribution, Riesz distribution, Bessel function, natural exponential
family, variance function.

1 Introduction

Let µλ be a probability distribution on a finite dimensional linear space E depending on
a parameter λ which belongs to a subset Λ of IRr. Suppose that

µλ = f(x, λ)σ(dx),

where σ is some reference measure, and that for each x in E, the map λ 7→ f(x, λ) defined
on Λ is measurable. For a probability distribution ν(dλ) on the set Λ, define

h(x) =

∫

Λ
f(x, λ)ν(dλ).

Then the probability measure

µν(dx) = h(x)σ(dx)

is called the mixture of the distribution µλ with respect to ν. (See Feller [4], Vol. II, page
53 or Johnson et al. [8], page 360). Usually, µλ is said the mixed distribution and ν the
mixing distribution (see Karlis and Meligkotsidou [9]).

∗Corresponding author. E-mail address: abdelhamid.hassairi@fss.rnu.tn
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A special case of interest is when µ is not concentrated on an affine hyperplane of E, µλ is
the λ−power of convolution of µ, and Λ is the so called Yørgensen set of µ. Specifically,
let

Lµ(θ) =

∫

E
exp(〈θ, x〉)µ(dx) (1.1)

denote the Laplace transform of µ, where 〈, 〉 is the duality crocket, and suppose that the
set

Θ(µ) = interior{θ ∈ E∗; Lµ(θ) < +∞} (1.2)

is nonempty. Then the set

Λ = {λ > 0; ∃ µλ such that Lµ
λ
(θ) = (Lµ(θ))λ for all θ ∈ Θ(µ)} (1.3)

is called the Yørgensen set of µ and the measure µλ is its λ−power of convolution. This
parameter λ appears in the most common models, it is in particular, the intensity in a
Poisson model, the variance in a Gaussian model, and the shape parameter in a gamma
model. For λ and λ′ in Λ, we have that

µλ ∗ µλ′ = µλ+λ′ .

The set Λ contains always the set IN∗ of positive integers and it is equal to ]0,+∞[ if and
only if µ is infinitely divisible (see Seshadri [13], page 155).

In fact, if X1, . . . ,XN are iid random variables with distribution µ, then the distribution
of X1 + . . . + XN is µN = µ⋆N , the N−power of convolution of µ. Accordingly, for
any distribution µ and any positive integer N , one may consider the distribution µN as
defined in (1.3). When µ is discrete, i.e., with countable support, then the mixture of µ
with respect of a distribution ν on the parameter N is known as a compound distribution.
The most famous compound distribution is the one corresponding to the case where ν is
Poisson (see Feller [4], Vol. I, page 286 or Vol. II, page 451 or Aalen [1], or Yørgensen
[14], page 140). In fact, the real Poisson distribution appears in numerous works either as
a mixed distribution (see Bhattacharya and Holla [2] or Johnson et al. [8], page 366) or
as a mixing distribution (see Perline [12]). In the present work, we will be interested in a
very special case in which the mixed distribution is defined on the cone of (r, r) positive
definite symmetric matrices Ω with a parameter which belongs to a subset of IRr. More
precisely, the mixed distribution will be the absolutely continuous Riesz model introduced
in Hassairi and Lajmi [6]

{
R(s, σ), s ∈

r∏

i=1

]
i− 1

2
,+∞

[}
.

This model contains the Wishart model, since R(s, σ) reduces to a Wishart distribution
when s1 = s2 = . . . = sr, and it has a convolution property which is analogous to the one

satisfied by the ordinary powers of convolution. In fact, if s and s′ are in
r∏

i=1

]
i− 1

2
,+∞

[
,

then
R(s, σ) ∗R(s′, σ) = R(s+ s′, σ).

The mixing distribution will be the multivariate Poisson distribution on INr. For simplicity,
we will be interested in the case where σ is equal to the identity matrix of size r denoted
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Ir. We first show that the mixture distribution is expressed in terms of the modified
Bessel function. We then determine the domain of the means of the generated natural
exponential family, and we calculate its variance function. This provides a rich class of
natural exponential families.

2 The Riesz exponential dispersion model

A dispersion model is a class of natural exponential families where each family is a power of
convolution of the other. In this section, we will first recall some general facts concerning
the exponential dispersion models in an Euclidean space. Then we introduce the Riesz
dispersion model on symmetric matrices.

2.1 Exponential dispersion model

Let E be an Euclidean space with finite dimension n, and let 〈, 〉 denote the scalar product
in E. If µ is a positive measure on E, we denote by M(E) the set of measures µ such that
Θ(µ) given in (1.2) is not empty and µ is not concentrated on an affine hyperplane of E.
If µ is in M(E), we denote

kµ(θ) = logLµ(θ), for all θ in Θ(µ)

the cumulant function of µ, where Lµ is the Laplace transform of µ defined in (1.1).

To each µ in M(E) and θ in Θ(µ), we associate the probability distribution on E

P (θ, µ)(dx) = exp (〈θ, x〉 − kµ(θ))µ(dx).
The set

F = F (µ) = {P (θ, µ); θ ∈ Θ(µ)}

is called the natural exponential family (NEF) generated by µ. We also say that µ is a
basis of F .

The function kµ is strictly convex and real analytic. Its first derivative k′µ defines a

diffeomorphism between Θ(µ) and its image MF . Since k′µ(θ) =

∫

E
xP (θ, µ)(dx), MF is

called the domain of the means of F . The inverse function of k′µ is denoted by ψµ and
setting P (m,F ) = P (ψµ(m), µ) the probability of F with mean m, we have

F = {P (m,F );m ∈MF } ,

which is the parametrization of F by the mean.

Now the covariance operator of P (m,F ) is denoted by VF (m) and the map

MF −→ Ls(E); m 7−→ VF (m) = k′′µ(ψµ(m))

is called the variance function of the NEF F . It is easy proved that for all m ∈MF ,

VF (m) = (ψ′
µ(m))−1,

and an important feature of VF is that it characterizes F in the following sense: If F
and F ′ are two NEFs such that VF (m) and VF ′(m) coincide on a nonempty open set of
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MF ∩MF ′ , then F = F ′. In particular, knowledge of the variance function gives knowledge
of the natural exponential family.

Let µ be an element of M(E) and let Λ be its Yørgensen set defined by (1.3). Then the
set

{P (θ, λ) = exp (< θ, x > −kµλ
(θ))µ; θ ∈ θ(µ), λ ∈ Λ}

is called the dispersion model generated by µ. For more details, we refer to Letac [11].

2.2 Riesz natural exponential families

Let E be the Euclidean space of (r, r) real symmetric matrices equipped with the scalar

product 〈x, y〉 = tr(xy), and the inner product x.y =
1

2

(
xy+yx

)
, where xy is the ordinary

product of two matrices.

We denote by e1, e2, . . . , er the canonical basis of IRr; ei = (0, . . . , 0, 1, 0 . . . 0), (1 in the

ith place), and we set ci = diag(ei) for all 1 ≤ i ≤ r.

For x ∈ E, we consider the endomorphism L(x) of E defined by

L(x) : y 7−→ x.y

and we set
P (x) = 2(L(x))

2 − L(x
2
).

We denote by Ω the cone of (r, r) real symmetric positive definite matrices.

For x = (xij)1≤i,j≤r in E and 1 ≤ k ≤ r, we define the sub-matrices

Pk(x) = (xij)1≤i,j≤k and P ∗
k (x) = (xij)r−k+1≤i,j≤r.

For convenience, Pk(x) and P ∗
k (x) are also considered as elements of the space E, where

the other entries are equal to zero and we set P ∗
0 (x) = 0.

Let ∆k(x) and ∆∗
k(x) denote the determinant of Pk(x) and the determinant of P ∗

k (x)
respectively. Then the generalized power of x in Ω is defined, for s = (s1, s2, . . . , sr) ∈ IRr,
by

∆s(x) = ∆1(x)
s1−s2∆2(x)

s2−s3 . . . . . .∆r(x)
sr . (2.4)

Note that if for all i ∈ {1, . . . , r}, si = p ∈ IR, then ∆s(x) = (detx)p. We also define

∆∗
s(x) = (∆∗

1(x))
s1−s2(∆∗

2(x))
s2−s3 . . . (∆∗

r−1(x))
sr−1−sr(∆∗

r(x))
sr . (2.5)

It is shown (see Hassairi and Lajmi [6]) that for all x ∈ Ω and all s ∈ IRr, we have

∆s(x
−1) = ∆∗

−s∗(x), (2.6)

where s∗ = (sr, sr−1, . . . , s1). .

We denote by T +
l the set of lower triangular matrices with positive diagonal elements,

and for u ∈ T +
l , we define on E the automorphism

u(y) = uyu∗,

where u∗ denotes the transpose matrix of u.
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It is well known that for all x ∈ Ω, there exists a unique u ∈ T +
l such that

x = u(Ir),

where Ir is the identity matrix of order r, it is the Cholesky decomposition of x.

We also have (see Hassairi and Lajmi [6]) that for all 1 ≤ i ≤ r,

(
P ∗

i

(
(u(Ir))

−1
))−1

= u




r∑

k=r−i+1

ck



 , (2.7)

and for all s = (s1, s2, . . . , sr) ∈ IRr,

∆s(u(Ir)) = ∆∗
−s∗(u

∗−1(Ir)). (2.8)

Recall also that for x ∈ Ω and u ∈ T +
l , we have

∆i(u(x)) = ∆i(u(Ir))∆i(x) = u2
1 . . . u

2
i ∆i(x), (2.9)

where for all i ∈ {1, . . . , r},
ui = 〈u, ci〉. (2.10)

(See Faraut and Koranyi [3], page 114).

Now let Ξ be the set of elements s = (s1, s2, . . . , sr) ∈ IRr defined as follows:

Consider the function ξ defined from IR+ into {0; 1}, by

ξ : a 7−→
{

0 if a = 0,
1 if a > 0.

For all (u1, u2, . . . , ur) ∈ IRr
+, we define





s1 = u1

sk = uk +
ξ(u1) + ...+ ξ(uk−1)

2
, ∀ k ∈ {2, . . . , r}.

A result due to Gindikin [5] and proved in Faraut and Korányi [3], page 124, says that
there exists a positive measure Rs such that for all θ ∈ −Ω,

LRs(θ) =

∫

E
e〈θ,x〉Rs(dx) = ∆s(−θ−1)

if and only if s is in Ξ. This measure is called the Riesz measure with parameter s.

When s = (s1, s2, . . . , sr) ∈ Ξ \
r∏

i=1

]
i− 1

2
,+∞

[
, the measure Rs is concentrated on the

boundary ∂Ω of Ω and when s = (s1, s2, . . . , sr) is such that for all i, si >
i− 1

2
, the

measure Rs is absolutely continuous with respect to the Lebesgue measure and is given
by

Rs(dx) =
∆s−n

r
(x)

ΓΩ(s)
1

Ω
(x)(dx)
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with n =
r(r + 1)

2
the dimension of E and

ΓΩ(s) = (2π)
r(r−1)

4

r∏

i=1

Γ

(
si −

i− 1

2

)
. (2.11)

It is shown in Hassairi and Lajmi [6] that the measure Rs generates a natural exponential
family if and only if s1 6= 0. In this case

F = F (Rs) =

{
R(s, σ) =

e−<σ,x>

∆s(σ−1)
Rs, σ ∈ Ω, s ∈ Ξ, s1 6= 0

}
.

The distribution R(s, σ) is called the Riesz distribution with parameters s and σ. It is
shown in Hassairi and Lajmi [6] that the Laplace transform of R(s, σ) is defined for θ in
σ − Ω, by

LR(s,σ)(θ) =
∆s((σ − θ)−1)

∆s(σ−1)
. (2.12)

This implies that if σ is an element of Ω and if s and s′ are in Ξ, then we have

R(s, σ) ∗R(s′, σ) = R(s+ s′, σ).

Let σ be an element of Ω. If s satisfies the conditions si >
i− 1

2
, for 1 ≤ i ≤ r, then the

Riesz distribution is given by

R(s, σ)(dx) =
e−<σ,x>∆s−n

r
(x)

ΓΩ(s)∆s(σ−1)
1

Ω
(x)(dx).

When s1 = s2 = . . . = sr = p > 0, R(s, σ) reduces to the Wishart distribution with

parameters p >
r − 1

2
and σ ∈ Ω,

W (p, σ)(dx) =
1

ΓΩ(p) det(σ−p)
e−<σ,x> det(x)p−

n
r 1

Ω
(x)(dx),

with Laplace transform equal for all θ ∈ σ − Ω, to

LW (p,σ)(θ) = det
(
Ir − σ−1θ

)−p
.

3 The mixture of the Riesz distribution with re-

spect to the multivariate Poisson

Consider the Poisson distribution on INr with parameter λ = (λ1, λ2, . . . , λr) ∈ (IR+)r

ν(dx) = e−
∑r

i=1
λi
∑

q∈INr

λq

q!
δq(dx), (3.13)

where q! = q1! q2! . . . qr! and λq = λ
q1

1 λ
q2

2 . . . λ
qr

r . Then for all θ ∈ IRr,

Lν(θ) =
r∏

i=1

eλi(e
θi−1). (3.14)
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The variance function of the natural exponential family generated by ν evaluated for
m ∈]0,+∞[

r

is equal to
V (m) = diag(m).

Note that this variance function is homogeneous of order 1 and consequently the natural
exponential family F (ν) belongs to the Tweedie scale of IRr (see Hassairi and Louati [7]).

Next, we will show that the mixture of the distribution R(s, Ir) with respect to ν is related
to the modified Bessel function of the first kind and of order 1.

Consider the second-order linear differential equation

z2y′′(z) + zy′(z) + (z2 − α2)y(z) = 0, (3.15)

where z is a complex variable and α is a real parameter. One of the solution of (3.15) is
the function J(α, z) known as the Bessel function of the first kind of order α, and defined
for z in IC by the series

J(α, z) =
+∞∑

k=0

(−1)k
(
z

2

)2k+α

k!Γ(k + α+ 1)
. (3.16)

In many applications, one frequently encounters two functions I(α, z) and K(α, z) called
respectively the modified Bessel functions of the first and second kinds of order α, defined
on the complex plane cut along the negative real axis by

I(α, z) = i−αJ(α, iz), (3.17)

and

K(α, z) =
Π

2

I(−α, x) − I(α, x)

sin(αΠ)
, α 6= 0,±1,±2, . . . .

It is an immediate fact that I(α, z) and K(α, z) are linearly independent solutions of the
differential equation:

z2y′′(z) + zy′(z) − (z2 + α2)y(z) = 0. (3.18)

For more details about the Bessel functions, we refer to Lebedev [10], page 108 and to
Feller [4], Vol. II, page 58.

We also need to establish the following result related to these functions.

Proposition 3.1 Let x > 0 and let b > 0, then

∑

k∈IN

xk

k! Γ(k + b)
= x

1−b
2 I(b− 1, 2

√
x).

Proof

Consider the function

g
b
(x) =

∑

k∈IN

xk

k! Γ(k + b)
. (3.19)

Deriving g
b

gives

g′
b
(x) =

∑

k∈IN

xk

k! Γ(k + 1 + b)
=
∑

k∈IN

xk

k!(k + b) Γ(k + b)
.
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This implies that
(
xbg′

b
(x)
)′

=
∑

k∈IN

xk+b−1

k! Γ(k + b)
= xb−1g

b
(x).

Consequently, g
b
(x) is a solution of the differential equation

xby′′(x) + bxb−1y′(x) − xb−1y(x) = 0.

Or equivalently, g
b
(x) is solution of the equation

xy′′(x) + by′(x) = y(x). (3.20)

Using now the fact that I(α, z) andK(α, z) are two linearly independent solutions of (3.18),

we deduce that x
1−b
2 I(b− 1, 2

√
x) and x

1−b
2 K(b− 1, 2

√
x) are two linearly independent

solutions of (3.20). It follows that the general solution of (3.20) is of the form

c1x
1−b
2 I(b− 1, 2

√
x) + c2x

1−b
2 K(b− 1, 2

√
x),

where c1 and c2 are two constants.

According to (3.19), (3.16) and (3.17), we deduce that

g
b
(1) =

∑

k∈IN

1

k! Γ(k + b)
= I(b− 1, 2).

Therefore c1 = 1 and c2 = 0.

Consequently, for all x > 0,

g
b
(x) =

∑

k∈IN

xk

k! Γ(k + b)!
= x

1−b
2 I(b− 1, 2

√
x). (3.21)

2

3.1 The probability density of the mixture of the Riesz dis-

tribution with respect to the multivariate Poisson

Let ρ =
(
0, 1

2 , . . . ,
r−1
2

)
, k = (k1, k2, . . . , kr) be in INr and let

R̃k = R(k + ρ, Ir).

Suppose that k = (k1, k2, . . . , kr) has the multivariate Poisson distribution ν defined in
(3.13). For simplicity, in what follows, we will denote by µ the mixture of R̃k by ν. The
following theorem gives the expression of µ in terms of the modified Bessel function of the
first kind.

Theorem 3.2

µ(dx) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1

√
λi e

−λi

√
∆i−1(x)

I

(
1, 2
√
λi∆ei

(x)

)
1

Ω
(x)(dx),

where ∆0(x) = 1.
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Proof

Let a = (a1, a2, . . . , ar) be an element of ]0,+∞[
r

and let

R̃k,a = R(k + ρ+ a, Ir).

Denote µa the mixture of R̃k,a with respect to ν. Then

µa(dx) = ha(x)1Ω
(x)(dx),

where

ha(x) = e−
∑r

i=1
λi

∑

q∈ INr

λq e−tr(x)∆q+ρ+a−n
r
(x)

q! ΓΩ(q + ρ+ a)
, (3.22)

and

lim
a−→0

µa(dx) = µ(dx) = e−
∑r

i=1
λi

∑

q∈ INr

λq e−tr(x)∆q+ρ−n
r
(x)

q! ΓΩ(q + ρ)
1

Ω
(x)(dx). (3.23)

According to (2.4) and (2.11), (3.22) may be written as

ha(x) =
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)

− 1
2 e−λi

∑

qi∈IN

λ
qi

i

qi! Γ(qi + ai)

(
∆i(x)

∆i−1(x)

)qi+ai


 .

=
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)

− 1
2 e−λi

∑

qi∈IN

λ
qi

i

qi! Γ(qi + ai)
∆ei

(x)
qi+ai


 .

=
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)

− 1
2 e−λi∆ei

(x)
ai
∑

qi∈IN

(λi∆ei
(x))

qi

qi! Γ(qi + ai)


 .

Therefore

ha(x) =
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1

(
e−λi

√
∆i(x)

∆ei
(x)

ai
gai

(λi∆ei
(x))

)
, (3.24)

where gai
is defined in (3.19). Inserting now (3.21) in (3.24), we obtain

ha(x) =
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1


λ

1−ai
2

i e−λi

√
∆i(x)

∆ei
(x)

1+ai
2
I

(
ai − 1, 2

√
λi∆ei

(x)

)
 .

According to (3.23), we deduce that

µ(dx) =
e−tr(x)

(2Π)
r(r−1)

4

√
det(x)

r∏

i=1

( √
λi e

−λi

√
∆i−1(x)

I

(
−1, 2

√
λi∆ei

(x)

))
1

Ω
(x)(dx).

Invoking the fact that for all x > 0, we have

I(1, x) = I(−1, x),

(see Lebedev [10], page 110), the proof of the theorem is complete. 2
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3.2 The variance function of F (µ)

In this subsection, we study the natural exponential family F generated by µ. We first
give the Laplace transform of µ, then we determine the domain of the means and the
variance function of the family F .

In what follows, for r ≥ 1, we denote κr =
r∑

j=1

j

2
ej and we set κ0 = 0.

Theorem 3.3 For all θ ∈ Ir − Ω, we have

Lµ(θ) = ∆∗
κr−1

(Ir − θ) exp

(
r∑

i=1

λi

(
∆∗

−er−i+1
(Ir − θ) − 1

))
. (3.25)

Proof

Let Xk be a random variable such that Xk ∼ R(k + ρ, Ir). Then, according to (2.12), we
have that for all θ ∈ Ir − Ω,

Lµ(θ) = E
(
e〈θ,Xk〉

)
= E

(
E
(
e〈θ,Xk〉 | k

))
= E

(
∆k+ρ((Ir − θ)−1)

)
.

Using (2.5) and (2.6), we can write

Lµ(θ) = E
(
∆∗

−(k+ρ)∗(Ir − θ)
)
.

= E
(
(∆∗

1(Ir − θ))kr−1−kr−
1
2 . . .

(
∆∗

r−1(Ir − θ)
)k1−k2−

1
2 (∆∗

r(Ir − θ))−k1
)
.

=
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E




r∏

i=1

(
∆∗

i−1(Ir − θ)

∆∗
i (Ir − θ)

)kr−i+1


 .

=
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E

(
r∏

i=1

(
∆∗

−ei
(Ir − θ)

)kr−i+1

)
.

It follows that for all θ ∈ Ir − Ω,

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E

(
r∏

i=1

e
kr−i+1 log(∆∗

−ei
(Ir−θ))

)
. (3.26)

Setting α(θ) =
(
log(∆∗

−er
(Ir − θ)), log(∆∗

−er−1
(Ir − θ)), . . . , log(∆∗

−e1
(Ir − θ))

)
, then (3.26)

becomes

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E
(
e〈α(θ),k〉

)
.

As k has the multivariate Poisson distribution ν, then

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

Lν (α(θ)) .
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According to (3.14), we can write for all θ ∈ Ir − Ω,

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2 r∏

i=1

e

λi


e

log

(
∆∗

−er−i+1
(Ir−θ)

)

−1




.

Therefore

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2 r∏

i=1

e
λi

((
∆∗

−er−i+1
(Ir−θ)

)
−1

)

. (3.27)

On the other hand, using (2.5), we have

∆∗
κr−1

(Ir − θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

.

Inserting this in (3.27), we get (3.25). 2

Theorem 3.4 The domain of the means of the natural exponential family F = F (µ)
generated by the mixture µ is Ω.

Proof

From (3.25), we deduce that for all θ ∈ Θ(µ) = Ir − Ω,

kµ(θ) =
r∑

i=1

λi

((
∆∗

−er−i+1
(Ir − θ)

)
− 1

)
+ log(∆∗

κr−1
(Ir − θ)). (3.28)

As for all i ∈ {1, . . . , r}, the map

ϕi : x 7−→ log ∆∗
i (x)

is differentiable on Ω and
ϕ′

i(x) = (P ∗
i (x))−1, (3.29)

then, for all i ∈ {1, . . . , r}, we have

(
∆∗

−ei
(x)
)′

=

(
∆∗

i−1(x)

∆∗
i (x)

)′

= ∆∗
−ei

(x)
(
(P ∗

i−1(x))
−1 − (P ∗

i (x))−1
)
, (3.30)

and for r ≥ 2, we have

(
log(∆∗

κr−1
(x))

)′
= −1

2

r−1∑

i=1

(P ∗
i (x))−1 (3.31)

Differentiating (3.28) and taking into account (3.30) and (3.31), we get

k′µ(θ) =
r∑

i=1

(
λr−i+1∆

∗
−ei

(Ir − θ)− λr−i∆
∗
−ei+1

(Ir − θ) +
1

2

)
(P ∗

i (Ir − θ))−1−1

2
(P ∗

r (Ir − θ))−1
,

(3.32)
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where λ0 = 0.

Let θ ∈ Ir −Ω, and let u be the unique element of T +
l such that Ir − θ = u∗−1(Ir). Then,

for all i ∈ {1, . . . , r}, we have

(P ∗
i (Ir − θ))−1 =

(
P ∗

i (u∗−1(Ir))
)−1

=
(
P ∗

i

(
(u(Ir))

−1
))−1

.

According to (2.7), this implies that for all i ∈ {1, . . . , r},

(P ∗
i (Ir − θ))−1 = u




r∑

j=r−i+1

cj


 . (3.33)

On the other hand, using (2.8), we can write for all i ∈ {1, . . . , r},

∆∗
−ei

(Ir − θ) = ∆∗
−ei

(
u∗−1(Ir)

)
= ∆e∗

i
(u(Ir)) = ∆er−i+1(u(Ir)) =

∆r−i+1(u(Ir))

∆r−i(u(Ir))
.

This with (2.9) imply that for all i ∈ {1, . . . , r},

∆∗
−ei

= u2
r−i+1, (3.34)

where for all i ∈ {1, . . . , r}, ui are defined in (2.10).

Using (3.33) and (3.34), we deduce from (3.32) that

k′µ(θ) =
r∑

i=1

(
λr−i+1u

2
r−i+1 − λr−iu

2
r−i +

1

2

)
u




r∑

j=r−i+1

cj


− 1

2
u

(
r∑

i=1

ci

)
.

This after a standard calculation, gives

k′µ(θ) =
r∑

i=1

(
λiu

2
i +

i− 1

2

)
u(ci) = u

(
r∑

i=1

ai(θ)ci

)
, (3.35)

where

ai(θ) =
i− 1

2
+ λiu

2
i . (3.36)

As the ai are strictly positive, we deduce that

k′µ(Θ(µ)) = k′µ(Ir − Ω) ⊆ Ω. (3.37)

Conversely, consider y ∈ Ω, then using the Cholesky decomposition, there exists a unique
w ∈ T +

l such that

y = w(Ir) = w

(
r∑

i=1

ci

)
= w

(
P

(
r∑

i=1

1√
ai(θ)

ci

)(
r∑

i=1

ai(θ)ci

))
.

Let θ such that Ir − θ = u∗−1 (Ir) ∈ Ω, where u = w
r∑

i=1

1√
ai(θ)

ci. Then

y = u

(
r∑

i=1

ai(θ)ci

)
.
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This, using (3.35), gives
y = k′µ(θ) ∈ k′µ(Ir − Ω).

Therefore
Ω ⊆ k′µ(Ir − Ω) = k′µ(Θ(µ)).

This with (3.37) imply that the domain of the means of the NEF F = F (µ) is

MF = k′µ(Θ(µ)) = Ω. 2

The following theorem gives the variance function of the natural exponential family F =
F (µ).

Theorem 3.5 For all m ∈ Ω,

VF (m) = −1

2
P

(
r∑

i=1

1

bi(m)

((
P ∗

r−i+1(m
−1)
)−1

−
(
P ∗

r−i(m
−1)
)−1

))

+
r∑

i=1

(
λr−i+1 ∆er−i+1(m)

br−i+1(m)
− λr−i ∆er−i

(m)

br−i(m)
+

1

2

)

×


P




r∑

j=r−i+1

1

bj(m)

((
P ∗

r−j+1(m
−1)
)−1

−
(
P ∗

r−j(m
−1)
)−1

)







+
r∑

i=1

λr−i+1 ∆er−i+1(m)

(br−i+1(m))3

[((
P ∗

i (m−1)
)−1

−
(
P ∗

i−1(m
−1)
)−1

)

⊗
((
P ∗

i (m−1)
)−1

−
(
P ∗

i−1(m
−1)
)−1

)]
, (3.38)

where for all i ∈ {1, . . . , r}, bi(m) =
i− 1

4
+

√(
i− 1

4

)2

+ λi∆ei(m).

Usually, for the calculation of the variance function, we set m = k′µ(θ) and we determine
its reciprocal θ = ψµ(m). This is difficult to do in the present situation, however, we
are able to determine (P ∗

i (Ir − ψµ(m)))−1, ∆∗
−ei

(Ir − ψµ(m)), and ai(ψµ(m)) where ai is
defined in (3.36).

Theorem 3.6 For all i ∈ {1, . . . , r},

i) ai(ψµ(m)) =
i− 1

4
+

√(
i− 1

4

)2

+ λi∆ei
(m).

ii) (P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1

aj(m)

[(
P ∗

r−j+1(m
−1)
)−1

−
(
P ∗

r−j(m
−1)
)−1

]
.

iii) ∆∗
−ei

(Ir − ψµ(m)) =
∆er−i+1(m)

ar−i+1(m)
. (3.39)

Proof

i) As from Theorem 3.4, m = k′µ(θ) is in Ω, there exists a unique v ∈ T +
l such that

m = v(Ir). According to (3.35), we have

v(Ir) = m = u

(
r∑

i=1

ai(ψµ(m))ci

)
= u

(
P

(
r∑

i=1

√
ai(ψµ(m)) ci

)(
r∑

i=1

ci

))
.
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Therefore

v(Ir) = u

(
P

(
r∑

i=1

√
ai(ψµ(m)) ci

)
(Ir)

)
.

It follows that

v = u
r∑

i=1

√
ai(ψµ(m)) ci.

Or equivalently,

u = v
r∑

i=1

1√
ai(ψµ(m))

ci. (3.40)

On the other hand, using (2.9), (3.36) becomes

ai(ψµ(m)) =
i− 1

2
+ λi∆ei

(u(Ir)).

Then using (3.40), we can write

ai(ψµ(m)) =
i− 1

2
+ λi∆ei







v
r∑

j=1

1√
aj(ψµ(m))

cj








r∑

j=1

1√
aj(ψµ(m))

cj v
∗







 .

=
i− 1

2
+ λi∆ei


v

r∑

j=1

1

aj(ψµ(m))
cj v

∗


 .

=
i− 1

2
+ λi∆ei



v




r∑

j=1

1

aj(ψµ(m))
cj







 .

Therefore ai(ψµ(m)) satisfies the equation

ai(ψµ(m)) =
i− 1

2
+

λiv
2
i

ai(ψµ(m))
, (3.41)

where vi is defined in (2.10).

As ai(ψµ(m)) > 0, we deduce that

ai(ψµ(m)) =
i− 1

4
+

√(
i− 1

4

)2

+ λiv
2
i .

On the other hand, since m = v(Ir), then using (2.9), we have that

v2
i = ∆ei

(m).

Consequently, for all i ∈ {1, . . . , r},

ai(ψµ(m)) =
i− 1

4
+

√(
i− 1

4

)2

+ λi∆ei
(m).

ii) With the notations used above, we can write for all i ∈ {1, . . . , r},
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(P ∗
i (Ir − ψµ(m)))−1 =

(
P ∗

i (u∗−1(Ir))
)−1

.

= u




r∑

j=r−i+1

cj


 .

=



v
r∑

i=1

1√
ai(ψµ(m))

ci








r∑

j=r−i+1

cj








r∑

i=1

1√
ai(ψµ(m))

ci v
∗



 .

= v
r∑

j=r−i+1

1

aj(ψµ(m))
cj v

∗.

= v




r∑

j=r−i+1

1

aj(ψµ(m))
cj




Thus

(P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1

aj(ψµ(m))
v(cj). (3.42)

As m = v(Ir), then for all j ∈ {1, . . . , r}, we have

v(cj) = v




r∑

i=j

ci −
r∑

i=j+1

ci



 =
(
P ∗

r−j+1(m
−1)
)−1

−
(
P ∗

r−j(m
−1)
)−1

.

Inserting this in (3.42), we deduce that

(P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1

aj(ψµ(m))

[(
P ∗

r−j+1(m
−1)
)−1

−
(
P ∗

r−j(m
−1)
)−1

]
.

(3.43)
Consequently

(P ∗
i (Ir − ψµ(m)))−1−

(
P ∗

i−1(Ir − ψµ(m))
)−1

=
1

ar−i+1(ψµ(m))

((
P ∗

i (m−1)
)−1

−
(
P ∗

i−1(m
−1)
)−1

)
.

(3.44)
iii) According to (2.5) we have

∆∗
i (Ir − ψµ(m)) = ∆∗

i (u
∗−1(Ir)) = ∆∗

ϑi
(u∗−1(Ir)),

where ϑi =
i∑

j=1

ej . Using (2.8) and (3.40), we deduce that

∆∗
i (Ir − ψµ(m)) = ∆−ϑ∗

i
(u(Ir)).

= ∆−ϑ∗

i
(uu∗).

= ∆−ϑ∗

i




v

r∑

j=1

1√
aj(ψµ(m))

cj






r∑

j=1

1√
aj(ψµ(m))

cj v
∗




 .
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= ∆−ϑ∗

i



v
r∑

j=1

1

aj(ψµ(m))
cj v

∗



 .

Therefore

∆∗
i (Ir − ψµ(m)) = ∆−ϑ∗

i



v




r∑

j=1

1

aj(ψµ(m))
cj







 .

Thus, using (2.4), we obtain

∆∗
i (Ir − ψµ(m)) =

∆r−i


v




r∑

j=1

1

aj(ψµ(m))
cj






∆r


v




r∑

j=1

1

aj(ψµ(m))
cj






.

It follows that for all i ∈ {1, . . . , r},

∆∗
−ei

(Ir − ψµ(m)) =
∆∗

i−1(Ir − ψµ(m))

∆∗
i (Ir − ψµ(m))

=

∆r−i+1


v




r∑

j=1

1

aj(ψµ(m))
cj






∆r−i


v




r∑

j=1

1

aj(ψµ(m))
cj






.

Using (2.9), we deduce that for all i ∈ {1, . . . , r},

∆∗
−ei

(Ir − ψµ(m)) =
v2
r−i+1

ar−i+1(ψµ(m))
.

Therefore

∆∗
−ei

(Ir − ψµ(m)) =
∆r−i+1(m)

ar−i+1(ψµ(m))∆r−i(m)
.

=
∆er−i+1(m)

ar−i+1(ψµ(m))
. 2

We are now in position to give the variance function of the natural exponential family F
stated in Theorem 3.5.

Proof of Theorem 3.5

We have that for all m ∈MF = Ω,

VF (m) = k′′µ(ψµ(m)).

Differentiating (3.32) and using (3.30) and the fact that for all i ∈ {1, . . . , r} and x ∈ Ω,

(
(P ∗

i (x))−1
)′

= −P
(
(P ∗

i (x))−1
)
,

we get for all θ ∈ Ir − Ω,
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k′′µ(θ) = −1

2
P
(
(P ∗

r (Ir − θ))−1
)

+
r∑

i=1

(
λr−i+1∆

∗
−ei

(Ir − θ) − λr−i∆
∗
−ei+1

(Ir − θ) +
1

2

)(
P
(
(P ∗

i (Ir − θ))−1
))

+
r∑

i=1

λr−i+1∆
∗
−ei

(Ir − θ)
(
(P ∗

i (Ir − θ))−1 −
(
P ∗

i−1(Ir − θ)
)−1

)
⊗ (P ∗

i (Ir − θ))−1

−
r∑

i=1

λr−i∆
∗
−ei+1

(Ir − θ)
((
P ∗

i+1(Ir − θ)
)−1 − (P ∗

i (Ir − θ))−1
)
⊗ (P ∗

i (Ir − θ))−1
.

It follows that for all θ ∈ Ir − Ω,

k′′µ(θ) = −1

2
P
(
(P ∗

r (Ir − θ))−1
)

+
r∑

i=1

(
λr−i+1∆

∗
−ei

(Ir − θ) − λr−i∆
∗
−ei+1

(Ir − θ) +
1

2

)(
P
(
(P ∗

i (Ir − θ))−1
))

+
r∑

i=1

λr−i+1∆
∗
−ei

(Ir − θ)

×
[(

(P ∗
i (Ir − θ))−1 −

(
P ∗

i−1(Ir − θ)
)−1

)
⊗
(
(P ∗

i (Ir − θ))−1 −
(
P ∗

i−1(Ir − θ)
)−1

)]
.

We need only to replace θ by ψµ(m), then insert (3.39), (3.43) and (3.44) to get the
expression of the variance function of F = F (µ) given in (3.38). 2
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