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Resonance phenomena for second-order
stochastic control equations

Patricio FELMER, Alexander QUAAS, Boyan SIRAKOV

Abstract

We study the existence and the properties of solutions to the
Dirichlet problem for uniformly elliptic second-order Hamilton-Jacobi-
Bellman operators, depending on the principal eigenvalues of the op-
erator.

1 Introduction

In this article we consider the Dirichlet problem

{
F (D2u,Du, u, x) = f(x) in Ω,

u = 0 on Ω,
(1.1)

where the second order differential operator F is of Hamilton-Jacobi-Bellman
(HJB) type and Ω ⊂ RN is a bounded domain. These equations – see the
book [17] and the surveys [21], [30], [9], as well as [22] (various other refer-
ences will be given below) – have been very widely studied because of their
connection with the general problem of Optimal Control for Stochastic Differ-
ential Equations (SDE). We recall that a powerful approach to this problem
is the so-called Dynamic Programming Method, originally due to R. Bell-
man, which indicates that the optimal cost (value) function of a controlled
SDE should be a solution of a PDE like (1.1). More precisely, let us have a
stochastic process Xt satisfying

dXt = bαt(Xt)dt + σαt(Xt)dWt ,

with X0 = x, for some x ∈ Ω, and the cost function

J(x, α) = E
∫ τx

0

f(Xt) exp{
∫ t

0

cαs(Xs)ds} dt,

where τx is the first exit time from Ω of Xt, and αt is an index (control) process
with values in a set A. Then the optimal cost function v(x) = infα∈A J(x, α)
is such that −v is a solution of (1.1), which is in the form

{
sup
α∈A

{tr(Aα(x)D2u) + bα(x).Du + cα(x)u} = f(x) in Ω

u = 0 on ∂Ω.
(1.2)
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We are going to study this boundary value problem under the following
hypotheses, which will be kept throughout the paper : for some constants
0 < λ ≤ Λ, γ ≥ 0, δ ≥ 0, we assume Aα(x) := σα(x)T σα(x) ∈ C(Ω),
λI ≤ Aα(x) ≤ ΛI, |bα(x)| ≤ γ, |cα(x)| ≤ δ, for almost all x ∈ Ω and all
α ∈ A, and f ∈ Lp(Ω), for some p > N . We stress however that all our
results are new even for operators with smooth coefficients.

Our main statements on resonance, applied to this setting, imply in par-
ticular that for some A, b, c the optimal cost becomes arbitrarily large or
small, depending on the function f which stays bounded. We give conditions
under which (1.2) is solvable or not, and describe properties of its solutions.

The majority of works on HJB equations concern proper equations, that
is, cases when F is monotone in the variable u (cα ≤ 0), in which no resonance
phenomena can arise. It was shown in the well-known papers [15], [16] and
[23] that a proper equation of type (1.2) has a unique strong solution, which
is classical, if the coefficients are smooth. Uniqueness in the viscosity sense
was proved in [20], [14], [12] and [31].

Two of the authors recently showed in [25] that existence and uniqueness
of viscosity solutions holds for a larger class of operators, including nonproper
operators whose principal eigenvalues – defined below – are positive. This
had been proved much earlier for HJB operators with smooth coefficients in
[22], through a mix of probabilistic and analytic techniques. Very recently
existence, non-existence and multiplicity results for cases when the eigenval-
ues are negative or have different signs, but are different from zero, appeared
in [1] and [28].

Thus the only situations which remain completely unstudied are the cases
when (1.2) is ”at resonance”, that is, when one of the principal eigenvalues
of F is zero. The present paper is devoted to this problem. We also obtain
a number of new results for cases without resonance.

We shall make essential use of the work [25], where the properties of the
eigenvalues are studied. In particular, based on the definition for the linear
case in [4], it is shown in [25] that the numbers

λ+
1 (F, Ω) = sup{λ |Ψ+(F, Ω, λ) 6= ∅}, λ−1 (F, Ω) = sup{λ |Ψ−(F, Ω, λ) 6= ∅},

where the sets Ψ+(F, Ω, λ) and Ψ−(F, Ω, λ) are defined as

Ψ±(F, Ω, λ) = {ψ ∈ C(Ω) | ± (F (D2ψ, Dψ, ψ, x) + λψ) ≤ 0, ±ψ > 0 in Ω},
are simple and isolated eigenvalues of F , associated to a positive and a neg-
ative eigenfunctions ϕ+

1 , ϕ−1 ∈ W 2,q(Ω), q < ∞, and that their positivity
guarantees the validity of one-sided Alexandrov-Bakelman-Pucci type esti-
mates – see the review in the next section. From the optimal control point of
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view, λ+
1 can be seen as the fastest exponential rate at which paths can exit

the domain, and λ−1 is the slowest one, we refer to the exact formulae given in
equalities (30)-(31) of [22]. For extensions and related results on eigenvalues
for fully nonlinear operators we refer to [19], [1], where Isaacs operators are
studied, and to [5], [6], where more general singular fully nonlinear elliptic
operators are considered. When no confusion arises, we write λ±1 or λ±1 (F ),
and we always suppose that λ+

1 < λ−1 — note it easily follows from the results
in [25] that λ+

1 = λ−1 can only happen if all linear operators which appear in
(1.2) have the same principal eigenvalues and eigenfunctions. For simplicity,
we assume that Ω is regular, in the sense that it satisfies an uniform interior
ball condition, even though many of the results can be extended to general
bounded domains.

We make the convention that all (in)equalities in the paper are meant to
hold in the Lp-viscosity sense, as defined and studied in [12]. Note however
that it is known that any viscosity solution of (1.2) is in W 2,p(Ω) and that
any W 2,p-function which satisfies (1.2) in the viscosity sense is also a strong
solution, that is, it satisfies (1.2) a.e. in Ω, see [11], [12], [31], [33]. All
constants in the estimates will be allowed to depend on N, λ, Λ, γ, δ and Ω.

Given a fixed function h ∈ Lp(Ω) which is not a multiple of the principal
eigenfunction ϕ+

1 , along the paper we write

f = tϕ+
1 + h, t ∈ R, (1.3)

and consider t as a parameter. We note that all results and proofs below
hold without modifications if the function ϕ+

1 in (1.3) is replaced by any other
positive function, which vanishes on ∂Ω and whose interior normal derivative
on the boundary is strictly positive. We visualize the set S of solutions of
(1.2) in the space C(Ω)×R as follows: (u, t) ∈ S if and only if u is a solution
of (1.2) with f = tϕ+

1 + h. The following notation will be useful: given a
subset A ⊂ C(Ω)× R and t ∈ R we define At = {u ∈ C(Ω) | (u, t) ∈ A} and
AI = ∪t∈IAt, if I is an interval.

Our purpose is to describe the set S = {(ut, t) | t ∈ R}. When λ+
1 (F ) > 0

this can be done in a rather precise way, thanks to the results in [22], [25].

Theorem 1.1 Assume λ+
1 (F ) > 0. Then

1. ([25]) For every t ∈ R equation (1.2) possesses exactly one solution
u = ut. In addition, if f = tϕ+

1 + h 6= 0 and f ≤ (≥)0 then u > (<)0
in Ω. If t < s then ut > us in Ω.

2. The set S is a Lipschitz continuous curve such that t → ut(x) is convex
for each x ∈ Ω. There exist numbers t± = t±(h) such that if t ≥ t+
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(t ≤ t−) then ut < (>)0 in Ω. Moreover, for each compact K ⊂⊂ Ω

lim
t→−∞

min
x∈K

ut(x) = +∞ and lim
t→+∞

max
x∈K

ut(x) = −∞.

Next, we state our first main theorem, which describes the set S when the
first eigenvalue is zero. In this case the set of solutions is again a unique
continuous curve, but it exists only on a half-line with respect to t, and
becomes unbounded when t is close or equal to a critical number t∗+ – see
Figure 1 below. Note the picture is very different from the one we obtain in
the linear case - if L is a linear operator then the Fredholm alternative for
Lu+λ1(L)u = tϕ1(L)+h says this equation has a solution only for one value
of t, and then any two solutions differ by a multiple of ϕ1(L).

Theorem 1.2 Assume λ+
1 (F ) = 0. Then

1. There exists a number t∗+ = t∗+(h) such that if t < t∗+ then there is no
solution of (1.2), while for t > t∗+ (1.2) has a solution.

2. The set S is a continuous curve such that St is a singleton for all
t > t∗+, that is, solutions are unique for t > t∗+. If t∗+ ≤ t < s and
(ut, t), (us, s) ∈ S then ut > us in Ω. The map t → ut(x) is convex for
each x ∈ Ω.

3. There exists t+ = t+(h) > t∗+ such that if t ≥ t+ then ut < 0 in Ω, and
for every compact K ⊂⊂ Ω we have lim

t→+∞
max
x∈K

ut(x) = −∞.

4. If t = t∗+ then either:

(i) Equation (1.2) does not have a solution, that is, St∗ is empty,
limt↘t∗+ minx∈K ut = +∞ for every compact K ⊂⊂ Ω, and there exists
ε = ε(h) > 0 such that if t ∈ (t∗+, t∗+ + ε) then ut > 0, or

(ii) There exists a function u∗ such that St∗+ = {u∗+ sϕ+
1 | s ≥ 0}.

In case the two eigenvalues have opposite signs, a multiplicity phenomenon
occurs. This situation was studied in [28] and we recall it here.

Theorem 1.3 ([28]) Assume λ+
1 (F ) < 0 < λ−1 (F ). Then there exists a

number t∗ = t∗(h) such that

1. If t < t∗ then there is no solution of (1.2) ;

2. If t > t∗ then there are at least two solutions of (1.2) ; more precisely,
for t ∈ (t∗,∞) there is a continuous curve of minimal solutions ut of
(1.2) such that t → ut(x) is convex and strictly decreasing for x ∈ Ω,
and a connected set of solutions different from the minimal ones ;
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3. If t = t∗ then there is at least one solution of (1.2).

Note that in [28] the properties of the two branches were not described ;
however by using the results there, our Lemma 2.1 and some topological and
degree arguments, like in Sections 3-5, they can be obtained easily.

Now we state our second main theorem, which describes properties of the
set S when the second eigenvalue is at resonance, that is, when λ−1 (F ) = 0.
Here the analysis is more difficult than in Theorem 1.2, but still the picture
is quite clear.

Theorem 1.4 Assume λ−1 (F ) = 0. Then there exists t∗− = t∗−(h) such that

1. If t < t∗− then there is no solution of (1.2).

2. There is a closed connected set C ⊂ S, such that Ct 6= ∅ for all t > t∗−.

3. The set SI is bounded in W 2,p(Ω), for each compact I ⊂ (t∗−,∞).

4. If we denote αt = inf{supΩ u |u ∈ St}, we have limt→+∞ αt = +∞.

5. The set C[t∗−,t∗−+ε) is unbounded in L∞(Ω), for all ε > 0; there exists
C = C(h) > 0 such that if u ∈ S[t∗−,t∗−+ε) and ‖u‖L∞(Ω) ≥ C then u < 0
in Ω; if un ∈ S[t∗−,t∗−+ε) and ‖un‖L∞(Ω) → ∞ then maxK un → −∞ for
each compact K ⊂ Ω.

6. If St∗− is unbounded in L∞(Ω) then there exists a function u∗ such that

St∗− = {u∗ + sϕ−1 | s ≥ 0}.
Both Theorems 1.2 and 1.4 are proved by a careful analysis of the be-

haviour of the sets of solutions to equations with positive (resp. negative)
eigenvalues, when λ+

1 (F ) ↘ 0 (resp. λ−1 (F ) ↗ 0).
We note that not much is known on solutions of (1.2) when both eigen-

values are negative. Thus, before proving Theorem 1.4, we need to analyze
solutions of problems in which λ−1 (F ) is small and negative. This is the
content of the next theorem, which is of clear independent interest.

Theorem 1.5 There exists 0 < L ≤ ∞ such that if λ−1 (F ) ∈ (−L, 0) then

1. There exists a closed connected set C ⊂ S, such that Ct 6= ∅ for each
t ∈ R. Further, SI is bounded in W 2,p(Ω), for each bounded I ⊂ R.

2. Setting αt = inf{supΩ u | u ∈ St} and ut(x) = sup{u(x) |u ∈ St}, we
have

lim
t→+∞

αt = +∞, and lim
t→−∞

sup
K

ut(x) = −∞,

for each K ⊂⊂ Ω, and ut < 0 in Ω for all t below some number t−(h).

5



The mere existence of solutions to (1.2) when λ−1 (F ) ∈ (−L, 0) was recently
proved in [1]. Here we describe qualitative properties of the set of solutions.

To summarize, the five theorems above give a global picture of the so-
lutions of (1.2), depending on the values of the eigenvalues with respect to
zero. This is shown on the following figure.

(1)

t

u

t

u

t

u

t t t

u u u

(2.1) (2.2)

(3) (5)(4)

Figure 1: The number at each graph corresponds to the number of the theorem
where the shown situation is described. When λ+

1 crosses 0 the set S curves so
that one region of non-existence and one region of multiplicity of solutions appears
for t. Similarly when λ−1 crosses 0 the set S ”uncurves” back. In this process, the
set S evolves from being ”decreasing”, when both eigenvalues are positive, to being
”increasing”, at least for large |t|, when both eigenvalues are negative. Note (1)
and (2.1)-(2.2) are exact, while in (3)-(5) there may be other solutions, except if
Theorem 1.6 below holds.

A number of remarks on questions that are still open are now in order.
First, it is clearly very important to give some characterization of the critical
numbers t∗ in terms of F, h, and λ. On submitting this paper we learned of a
very recent work by Armstrong [2], where he studies this question in the case
λ = λ+

1 , and proves part 1. of Theorem 1.2. by a different method. More
specifically, he proves an interesting minimax formula for λ+

1 (F ), which gen-
eralizes the Donsker-Varadhan formula for linear operators to the nonlinear
case. In particular, it is proved in [2] that

λ+
1 = min

µ∈M(Ω)
sup

u∈C2
+(Ω)

∫

Ω

(−F (D2u(x), Du(x), u(x), x)

u(x)
dµ(x).

Further, if M∗ is the subset of the set of probability measures M, on which
this minimum is attained, then for each µ ∈ M∗ there exists a positive

6



function ϕµ ∈ LN/(N−1)(Ω) such that dµ = ϕµϕ
+
1 dx, and the number t∗+ from

Theorem 1.2 can be written as

t∗+ = − min
µ∈M∗

∫

Ω

hϕµ dx.

The results in [2] and our Theorem 1.2 are complementary to each other, as
we describe the set of solutions, while the main theorems in [2] characterize
the critical value t∗+(h).

Next, it is not clear how to distinguish between the two alternatives in
statement 4. of Theorem 1.2 (that is, (2.1) and (2.2) on the above figure),
for any given operator F . A simple and important example where we have
(ii) is the Fucik operator F (u) = ∆u + λ1(∆)u+ + bu−, indeed if we had (i),
the fact that the solutions become positive for t close to t∗, eliminates the
term in u−, giving a contradiction. A rather simple example of an operator
for which both (i) and (ii) can happen (depending on f) is given in [2].

Naturally, the description of the set S when λ−1 = 0, in contrast with
λ+

1 = 0, is less precise due to the fact that in this situation we only have degree
theory at our disposal to get existence of solutions, and that uniqueness of
solutions above λ−1 is not available in general (see however Theorem 1.6
below).

Further, a number of basic questions can be asked about exact multiplicity
of solutions of (1.2) when λ+

1 (F ) < 0. When λ−1 (F ) > 0 this question is a
generalization of the famous Lazer-McKenna problem, which concerns the
Fucik equation

∆u + bu+ = ϕ1 in Ω, u = 0 on ∂Ω. (1.4)

Here F (D2u,Du, u) = ∆u + bu+, λ+
1 (F ) = λ1 − b, λ−1 (F ) = λ1, b = λ−1 − λ+

1

and λi are the eigenvalues of the Laplacian. It is known that equation (1.4)
has exactly one solution if b < λ1, exactly two solutions if b ∈ (λ1, λ2), exactly
four solutions if b ∈ (λ2, λ3) and exactly six solutions if b ∈ (λ3, λ3 + δ), see
[29] and the references in that paper. This example suggests that multiplicity
of solutions when the two eigenvalues have opposite signs depends on the
distance λ−1 − λ+

1 . We conjecture that there exists a number C0 such that
if λ+

1 (F ) < 0 < λ−1 (F ) ≤ λ+
1 (F ) + C0 then problem (1.2) has exactly two

solutions, one solution or no solution, depending on f .
In the same way it should be asked if uniqueness of solutions holds when

λ−1 (F ) ∈ (−L, 0), for some L > 0. In view of the discussion above one might
expect that the answer is affirmative if the two eigenvalues are sufficiently
close to each other. This fact constitutes our last main theorem.
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Theorem 1.6 There exists a number d0 > 0 such that if

−d0 ≤ λ+
1 (F ) ≤ λ−1 (F ) < 0,

then problem (1.2) has at most one solution.

A consequence of this result is that if both Theorems 1.5 and 1.6 hold, then
the sets C of solutions obtained in Theorems 1.4 and 1.5 are continuous
curves, like in Theorems 1.1 and 1.2. We remark that d0 is the difference be-
tween λ+

1 (F, Ω′) and λ+
1 (F, Ω), where Ω′ is some subset of Ω, whose Lebesgue

measure is smaller than half the measure of Ω - see Proposition 6.1 and the
proof of Theorem 1.6 in Section 6.

The article is organized as follows. In Section 2. we recall some known
results which we use repeatedly in our analysis. We also complete the proof
of Theorem 1.1. Section 3 is devoted to resonance phenomena at λ+

1 = 0. In
Section 4 we analyze the existence and the properties of the set of solutions of
(1.2) when λ−1 < 0. This set serves to obtain the set of solutions at resonance
when λ−1 = 0, in Section 5. Finally, in Section 6 we prove Theorem 1.6.

Some notational conventions will be helpful in the sequel. When no con-
fusion arises, we write F [u] := F (D2u,Du, u, x). We reserve the notation
‖ · ‖ = ‖ · ‖L∞(Ω), while for all other norms we make precise mention to the
corresponding space.

2 Preliminaries

In this section we give, for the reader’s convenience, some of the results of
the general theory of viscosity solutions of HJB equations, which we use in
the sequel. We start by restating the basic assumptions on the operator
F : SN × RN × R× Ω → R.

(H0) F is positively homogeneous of degree 1, that is, for all t ≥ 0 and for
all (M, p, u, x) ∈ SN × RN × R× Ω,

F (tM, tp, tu, x) = tF (M, p, u, x).

(H1) There exist γ, δ > 0 such that for all M,N ∈ SN , p, q ∈ RN , u, v ∈ R,
and a.e. x ∈ Ω

M−
λ,Λ(M −N)− γ|p− q| − δ|u− v| ≤ F (M, p, u, x)− F (N, q, v, x)

≤M+
λ,Λ(M −N) + γ|p− q|+ δ|u− v|.

(H2) F (M, 0, 0, x) is continuous in SN × Ω.
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(H3) If we denote G(M, p, u, x) = −F (−M,−p,−u, x) then

G(M −N, p− q, u− v, x) ≤ F (M, p, u, x)− F (N, q, v, x)

≤ F (M −N, p− q, u− v, x).

Under (H0) the last assumption (H3) is equivalent to the convexity of F
in (M, p, u). The simple proof of this fact can be found for instance in
Lemma 1.1 in [25]. We recall that Pucci’s extremal operators are defined
by M+(M) = supA∈A tr(AM), M−

λ,Λ(M) = infA∈A tr(AM), where A ⊂ SN

denotes the set of matrices whose eigenvalues lie in the interval [λ, Λ].
We often use the following results from [25] (Theorems 1.2-1.4 of that

paper), which state that the principle eigenvalues are simple and isolated.

Theorem 2.1 ([25]) Assume F satisfies (H0) − (H3) and there exists a
viscosity solution u ∈ C(Ω) of

F (D2u, Du, u, x) = −λ+
1 u in Ω, u = 0 on ∂Ω, (2.1)

or of one of the problems

{
F (D2u,Du, u, x) ≤ −λ+

1 u in Ω
u > 0 in Ω,

(2.2)

{
F (D2u,Du, u, x) ≥ −λ+

1 u in Ω
u(x0) > 0, u ≤ 0 on ∂Ω,

(2.3)

for some x0 ∈ Ω. Then u ≡ tϕ+
1 , for some t ∈ R. If a function v ∈ C(Ω)

satisfies either (2.1) or the inverse inequalities in (2.2) or (2.3), with λ+
1

replaced by λ−1 , then v ≡ tϕ−1 for some t ∈ R.

Theorem 2.2 ([25]) There exists ε0 > 0 depending on N, λ, Λ, γ, δ, Ω, such
that the problem

F (D2u,Du, u, x) = −λu in Ω, u = 0 on ∂Ω, (2.4)

has no solutions u 6≡ 0, for λ ∈ (−∞, λ−1 + ε0) \ {λ+
1 , λ−1 }.

In the sequel we shall need the following one-sided Alexandrov-Bakelman-
Pucci (ABP) estimate, obtained in [25] as well. The ABP inequality for
proper operators can be found in [12] (an ABP inequality for the Pucci
operator was first proved in [11]). We recall that λ+

1 , λ−1 are bounded above
and below by constants which depend only on N, λ, Λ, γ, δ, Ω, and that both
principal eigenvalues of any proper operator are positive, see [25].
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Theorem 2.3 ([25]) Suppose the operator F satisfies (H0)− (H3).
I. If λ−1 (F, Ω) > 0 then for any u ∈ C(Ω), f ∈ LN(Ω), the inequality

F (D2u,Du, u, x) ≤ f implies

sup
Ω

u− ≤ C(sup
∂Ω

u− + ‖f+‖LN (Ω)),

where C depends on N, λ, Λ, γ, δ, Ω, and 1/λ−1 .
II. In addition, if λ+

1 (F, Ω) > 0 then F (D2u,Du, u, x) ≥ f implies

sup
Ω

u ≤ C(sup
∂Ω

u+ + ‖f−‖LN (Ω)).

Hence if λ+
1 (F, Ω) > 0 then the comparison principle holds : if u, v ∈ C(Ω)

are such that F [u] ≤ F [v] in Ω, u ≥ v on ∂Ω, and one of u, v is in W 2,N(Ω)
then u ≥ v in Ω.

Note this result with f = 0 gives one-sided maximum principles. We
also recall the following strong maximum principle or Hopf’s lemma, which
is a consequence from the results in [3] (a simple proof can be found in the
appendix of [1]).

Theorem 2.4 ([3]) Suppose w ∈ C(Ω) is a viscosity solution of

M−
λ,Λ(D2w)− γ|Dw| − δw ≤ 0 in Ω,

and w ≥ 0 in Ω. Then either w ≡ 0 in Ω or w > 0 in Ω and at any point

x0 ∈ ∂Ω at which w(x0) = 0 we have lim inf
t↘0

w(x0 + tν)− w(x0)

t
> 0, where

ν is the interior normal to ∂Ω at x0.

We are going to use the following regularity result. It was proved in this
generality in [31] (interior estimate) and in [33] (global estimate).

Theorem 2.5 ([31],[33]) Suppose the operator F satisfies (H0)−(H2) and
u is a viscosity solution of F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω. Then
u ∈ W 2,p(Ω), and

‖u‖W 2,p(Ω) ≤ C
(‖u‖L∞(Ω) + ‖f‖Lp(Ω)

)
,

where C depends only on N, p, λ, Λ, γ, δ, Ω.

Next we quote the existence result from [22] and [25].
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Theorem 2.6 ([25]) Suppose the operator F satisfies (H0)− (H3).
I. If λ−1 (F, Ω) > 0 then for any f ∈ Lp(Ω), p ≥ N , such that f ≥ 0 in Ω,

there exists a solution u ∈ W 2,p(Ω) of F (D2u,Du, u, x) = f in Ω, u = 0 on
∂Ω, such that u ≤ 0 in Ω.

II. In addition, if λ+
1 (F, Ω) > 0 then for any f ∈ Lp(Ω), p ≥ N , there

exists a unique viscosity solution u ∈ W 2,p(Ω) of F (D2u,Du, u, x) = f in Ω,
u = 0 on ∂Ω.

The next theorem is a simple consequence of the compact embedding
W 2,p(Ω) ↪→ C1,α(Ω), Theorem 2.5, and the convergence properties of viscos-
ity solutions (see Theorem 3.8 in [12]).

Theorem 2.7 Let λn → λ in R and fn → f in Lp(Ω), p > N . Suppose F
satisfies (H1) and un is a solution of F (D2un, Dun, un, x) + λnun = fn in Ω,
un = 0 on ∂Ω. If {un} is bounded in L∞(Ω) then a subsequence of {un}
converges in C1(Ω) to a function u, which solves F (D2u,Du, u, x) + λu = f
in Ω, u = 0 on ∂Ω.

We now give the proof of Theorem 1.1.
Proof of Theorem 1.1. Part 1. is a consequence of Theorems 2.3 and 2.6.

Let us prove Part 2. For t ∈ R, let ut be the solution of (1.2) with f as
in (1.3), that is, F [ut] = tϕ+

1 + h, where λ+
1 (F ) > 0. Then ‖ut‖/t is bounded

as t → −∞. Indeed, if this is not the case, there exists a sequence {tn}
such that we have tn → −∞ and ‖utn/tn‖ → ∞, in particular ‖utn‖ → ∞.
Defining ûn = utn/‖utn‖, we get by (H0)

F (D2ûn, Dûn, ûn, x) =
tn

‖utn‖
ϕ+

1 +
h

‖utn‖
in Ω, ûn = 0 on ∂Ω.

The right-hand side of this equation converges to zero in Lp(Ω), so ûn con-
verges uniformly to zero, by Theorem 2.7 (note the limit equation F [û] = 0
has only the trivial solution, since λ+

1 (F, Ω) > 0). This contradicts ‖ûn‖ = 1.
Thus, by Theorem 2.7, for some sequence tn → −∞, we have that

lim
n→∞

utn

−tn
= v∗ in C1(Ω), (2.5)

where v∗ satisfies

F (D2v∗, Dv∗, v∗, x) = −ϕ+
1 in Ω, v∗ = 0 on ∂Ω.

By Theorems 2.3 and 2.4 we have v∗ > 0 in Ω and ∂v
∂ν

> 0 on ∂Ω. These
facts, (2.5), and the monotonicity of ut in t imply the last two statements of
Part 2 (the analysis for t →∞ is similar).
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That S is Lipschitz follows from (H3) and Theorem 2.3, applied to

F [ut − us] ≥ (t− s)ϕ+
1 and F [us − ut] ≥ (s− t)ϕ+

1 .

Finally, the convexity property of the curve is a consequence of the fol-
lowing simple lemma and the comparison principle, Theorem 2.3.

Lemma 2.1 Let t0, t1 ∈ R and tk = kt1 + (1 − k)t0, for k ∈ [0, 1]. Suppose
uti ∈ Sti, i = 0, 1. Then the function kut1 + (1− k)ut0 is a supersolution of

F (D2u,Du, u, x) = tkϕ
+
1 + h in Ω, u = 0 on ∂Ω.

Proof. Use F [kut1 + (1− k)ut0 ] ≤ kF [ut1 ] + (1− k)F [ut0 ]. ¤

Notation. In what follows it will be convenient for us to write problem (1.1)
in the form

{
F (D2u,Du, u, x) + λu = tϕ1(x) + h(x) in Ω,

u = 0 on Ω,
(2.6)

where F is supposed to proper (if necessary, we replace F by F − δ and λ
by λ + δ), and study its solvability in terms of the value of the parameter
λ ∈ R+. For instance, Theorem 1.2 corresponds to λ = λ+

1 , Theorem 1.4
corresponds to λ = λ−1 , Theorem 1.1 corresponds to λ < λ+

1 , etc.

3 Resonance at λ = λ+
1 . Proof of Theorem 1.2

We first set up some preliminaries. Let {λn} be a sequence such that λn < λ+
1

for all n, and limn→∞ λn = λ+
1 . We consider the problem

F (D2u,Du, u, x) + λnu = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

and its unique solution u(n, t). In the sequel we shall write un(t) = u(n, t)
and also sometimes un or ut instead of u(n, t), when one of the parameters
is kept fixed.

We define Γ+
n = {un(t) | t ∈ R}. Recall that, by Theorem 1.1, if s < t

then un(t) < un(s).
We parameterize Γ+

n in the following way. We take a reference function
ũn = un(t̃n) ∈ Γ+

n , which is arbitrary but fixed for each n ∈ N (later we
choose an appropriate sequence {ũn}), and we define the function

{
dn : Γ+

n → R
dn(u) = sign(u− ũn)‖u− ũn‖. (3.7)

12



Lemma 3.1 The function dn : Γ+
n → R is a bijection, for each n ∈ N. In

addition, dn is (Lipschitz) continuous.

Proof. By (H3) for any t1, t2 ∈ R (say t1 > t2) we have

F [un(t1)− un(t2)] + λn(un(t1)− un(t2)) ≥ (t1 − t2)ϕ
+
1 . (3.8)

The ABP inequality (Theorem 2.3) applies to this inequality - here we use
λn < λ+

1 - so we have

‖un(t1)− un(t2)‖ ≤ Cn|t1 − t2|.
If t1 > t2 > t̃n (the argument is the same if t2 < t1 < t̃n) we get

|dn(u1)− dn(u2)| = ‖ut1 − ũn‖ − ‖ut2 − ũn‖ ≤ ‖ut1 − ut2‖ ≤ Cn|t1 − t2|.
If t1 > t̃n > t2 we have

|dn(u1)−dn(u2)| ≤ ‖ut1−ũn‖+‖ut2−ũn‖ ≤ Cn(t1− t̃n+ t̃n−t2) = Cn|t1−t2|,
which proves the Lipschitz continuity.

Assume that dn(un(t1)) = dn(un(t2)), then ‖un(t1)− ũn‖ = ‖un(t2)− ũn‖
and un(ti) > ũn (or un(ti) < ũn) for i = 1, 2. On the other hand, if t1 6= t2, say
t1 < t2, then un(t1) > un(t2) and consequently ‖un(t1)− ũn‖ 6= ‖un(t2)− ũn‖,
which is impossible. Thus, dn is one to one. By Part 2. in Theorem 1.1 we
see that dn is onto. ¤

Now we start the analysis of the resonance at λ = λ+
1 (recall we are

working with (2.6)). Given s ∈ R we define the proposition P(s) as follows:

P(s) : There exist sequences {λn}, {hn} and {un} such that λn < λ+
1 for all n,

limn→∞ λn = λ+
1 , hn → h in Lp(Ω) as n →∞,

F (D2un, Dun, un, x) + λnun = sϕ+
1 + hn, (3.9)

and ‖un‖ is unbounded.

By dividing (3.9) by ‖un‖, thanks to (H0), Theorem 2.1 and Theorem 2.7,
we easily see that this definition is equivalent to

P(s) : There exist sequences {λn}, {hn}, such that λn < λ+
1 for all n, λn →λ+

1 ,
hn → h in Lp(Ω), the solution of F (D2un, Dun, un, x)+λnun = sϕ+

1 +hn

satisfies ‖un‖ → ∞, and

un

‖un‖ → ϕ+
1 > 0 in C1(Ω).
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We define
t∗+ = sup{t ∈ R | P(s) for all s < t}. (3.10)

The next lemmas give meaning to this definition.

Lemma 3.2 Given t̄ ∈ R, P(t̄) implies P(t) for all t < t̄.

Proof. Assuming the contrary, there is t0 < t̄ such that P(t0) is false. This
means that for some sequences {λn}, {hn} as above, the sequence of the
solutions of

F (D2vn, Dvn, vn, x) + λnvn = t̄ϕ+
1 + hn in Ω, vn = 0 on ∂Ω.

is unbounded, while the sequence of the solutions of

F (D2un, Dun, un, x) + λnun = t0ϕ
+
1 + hn in Ω, un = 0 on ∂Ω,

is bounded in L∞(Ω). By the comparison principle (Theorem 2.3) vn ≤ un

for all n, since t̄ > t0 and ϕ+
1 > 0. On the other hand, by the one-sided

ABP inequality, Theorem 2.3 1. (note λn is uniformly away from λ−1 , that
is, λ−1 (F + λn) ≥ λ−1 (F )− λ+

1 (F ) > 0), the sequence {vn} is bounded below.
Thus {vn} is bounded, a contradiction. ¤

Lemma 3.3 There exists a real number t̄1 = t̄1(h), such that the problem

F (D2u,Du, u, x) + λ+
1 u = tϕ+

1 + h in Ω, u = 0 on ∂Ω, (3.11)

has no solutions for t < t̄1.

Proof. Let v be the solution of the Dirichlet problem

F (D2v, Dv, v, x) = −h in Ω, u = 0 on ∂Ω

(this problem is uniquely solvable, by the well-known results on proper equa-
tions, or by Theorem 2.6). We are going to show that the statement of the
lemma is true with

t̄1 = −1− λ+
1 sup

x∈Ω

v(x)

ϕ+
1 (x)

.

The last quantity is finite, by Theorems 2.3-2.5.
Indeed, if (3.11) has a solution u = u(t) for some t < t̄1, we get

F [u + v] + λ+
1 (u + v) ≤ F [u] + F [v] + λ+

1 u + λ+
1 v

≤ tϕ+
1 + λ+

1 v ≤ −ϕ+
1 < 0, (3.12)

where we have used F [u + v] ≤ F [u] + F [v], which follows from (H3). Since
we have λ−1 (F + λ+

1 , Ω) = λ−1 − λ+
1 > 0, Theorem 2.3 1. again applies and

yields u + v > 0 in Ω. We can now use Theorem 2.1 and conclude that u + v
is a multiple of ϕ+

1 , which contradicts the strict inequality in (3.12). ¤
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Lemma 3.4 The set T = {t ∈ R | P(t)} is not empty.

Proof. Assuming the contrary, we find sequences {tn}, {um
n }, such that

P(tn) is false, tn → −∞ as n →∞, um
n satisfies

F (D2um
n , Dum

n , um
n , x)+(λ+

1 −1/m)um
n = tnϕ+

1 +h in Ω, um
n = 0 on ∂Ω,

for each n, and {um
n } is bounded in L∞(Ω) as m → ∞. Hence, by Theo-

rem 2.7, um
n converges as m → ∞ (up to a subsequence), for each fixed n,

to a function un which satisfies (3.11) with t = tn. This and the previous
lemma give a contradiction, when tn is sufficiently small. ¤

Lemma 3.5 The set T is bounded above, that is, t∗+ is a real number.

Proof. Let λn ↗ λ+
1 , hn → h in Lp(Ω), and let un = un(t) be such that

F (D2un, Dun, un, x) + λnun = tϕ+
1 + hn in Ω, un = 0 on ∂Ω.

(we recall this problem has a unique solution, since λn < λ+
1 and comparison

holds). We need to show {un} is bounded in L∞(Ω), if t is large enough.
First, Theorem 2.3 I. implies that un is bounded below independently

of n (we recall once again that λ−1 (F + λn) ≥ λ−1 − λ+
1 > 0).

Next, let vn be the solution of the Dirichlet problem

F (D2vn, Dvn, vn, x) = min{hn, 0} ≤ 0 in Ω, v = 0 on ∂Ω.

Then vn ≥ 0 in Ω, by the maximum principle, {vn} is bounded in C1(Ω), by
Theorems 2.3 and 2.5, and

F [vn] + λnvn ≤ min{hn, 0}+ λ+
1 vn ≤ hn + tϕ+

1 = F [un] + λnun,

provided

t > λ+
1 sup

x∈Ω,n∈N

vn(x)

ϕ+
1 (x)

. (3.13)

By the comparison principle un ≤ vn, hence un is bounded above inde-
pendently of n. So P(t) is false if (3.13) holds. ¤

The following two propositions give existence and uniqueness of solutions
to our problem at resonance, provided t > t∗+.

Proposition 3.1 1. If t > t∗+ then the equation

F (D2u,Du, u, x) + λ+
1 u = tϕ+

1 + h in Ω, u = 0 on ∂Ω, (3.14)

possesses at least one solution.
2. If t < t∗+ then (3.14) has no solutions.
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Proof. 1. Given a sequence {λn} such that λn < λ+
1 for all n ∈ N and

λn → λ+
1 as n →∞, there is a sequence {un} such that

F (D2un, Dun, un, x)+λnun = tϕ+
1 +h in Ω, un = 0 on ∂Ω. (3.15)

Then t > t∗ implies {un} is bounded, so by Theorem 2.7 {un} converges, up
to a subsequence, to a function u satisfying (3.14).

2. Suppose for contradiction (3.14) has a solution u for some t < t∗+. Fix
t1 ∈ (t, t∗+). Then P(t1) holds, so for some sequences λn ↗ λ+

1 , hn → h, the
sequence of solutions un of

F (D2un, Dun, un, x) + λnun = t1ϕ
+
1 + hn in Ω, un = 0 on ∂Ω

is such that un ≥ knϕ+
1 for some kn →∞. Let now wn be the solution of

F (D2wn, Dwn, wn, x) = hn − h in Ω, un = 0 on ∂Ω (3.16)

By Theorems 2.3 and 2.5 we know that (up to a subsequence) wn → 0 in
C1(Ω). Hence, by the boundary Lipschtiz estimates (see Theorem 2.5, or
Proposition 4.9 in [25]) applied to (3.14), (3.16), we have

‖u‖+ ‖wn‖ ≤ Cdist(x, ∂Ω),

which implies
un − wn − u > 0

for n sufficiently large. Since wn → 0 and λn → λ+
1 we also have

t1ϕ
+
1 − 2λ+

1 |wn| > tϕ+
1 and |u| ≤ t1 − t

2(λ+
1 − λn)

ϕ+
1 in Ω.

However (H3) implies F [un − wn − u] ≥ F [un]− F [wn]− F [u], so

F [un − wn − u] + λn(un − wn − u) ≥ (t1 − t)ϕ+
1 − λ+

1 |wn|+ (λ+
1 − λn)u ≥ 0.

Then the maximum principle (Theorem 2.3) gives un − wn − u ≤ 0, a con-
tradiction. ¤

Next we prove the uniqueness of solutions above t∗+. In order to do this,
we need the following simple result on convex functions.

Lemma 3.6 Let f : Rn → R be positively homogeneous of degree one and
convex. If for some u, v ∈ Rn and for some τ > 0 we have

f(u + τv) = f(u) + τf(v) (3.17)

then (3.17) holds for all τ ≥ 0.
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Proof. Using (3.17) and the homogeneity of f we find that

f(λ0u + (1− λ0)v) = λ0f(u) + (1− λ0)f(v),

with λ0 = 1/(1 + τ). If there is λ ∈ (λ0, 1) such that

f(λu + (1− λ)v) < λf(u) + (1− λ)f(v) (3.18)

we take θ = 1− λ0/λ ∈ (0, 1), that is, (1− θ)λ = λ0, and notice that

λ0f(u) + (1− λ0)f(v) = f(λ0u + (1− λ0)v)

= f (θv + (1− θ)(λu + (1− λ)v))

≤ θf(v) + (1− θ)f(λu + (1− λ)v)

< (1− λ0)f(v) + λ0f(u),

which is a contradiction. If there is λ ∈ (0, λ0) such that (3.18) holds, we
proceed similarly. Thus, f(λu + (1 − λ)v) = λf(u) + (1 − λ)f(v), for all
λ ∈ [0, 1]. From here we get the conclusion, taking λ = 1/(1 + t). ¤

Proposition 3.2 1. If t > t∗+ and u1, u2 satisfy

F (D2ui, Dui, ui, x) + λ+
1 ui = tϕ+

1 + h in Ω, ui = 0 on ∂Ω,

i = 1, 2, then u1 = u2.
2. If t = t∗+ and u1, u2 are as in 1. then u1 = u2 + sϕ1, for some s ∈ R.

Proof. Suppose u1 6= u2, then we may assume there exists x0 ∈ Ω such
that u1(x0) > u2(x0). By (H3) we have F [u1 − u2] + λ+

1 (u1 − u2) ≥ 0, so by
Theorem 2.1 there exists τ > 0 such that u1 − u2 = τϕ+

1 . This implies

F [u1 + τϕ+
1 ] = F [u1] + τF [ϕ+

1 ] a.e. in Ω (3.19)

(note u1, ϕ
+
1 ∈ W 2,N(Ω)). Consider the function f(X) = F (X, x) where

X = (M, p, u) ∈ SN×RN×R = RN2+N+1, and x ∈ Ω is fixed. By hypotheses
(H0) and (H3) the function f is positively homogeneous of degree one and
convex in X. Therefore we can use Lemma 3.6 to conclude that (3.19) holds
for every τ > 0.

We obtain that for every n ∈ N the function vn = u1 + nϕ+
1 satisfies

F (D2vn, Dvn, vn, x) + λ+
1 vn = tϕ+

1 + h in Ω, ui = 0 on ∂Ω. It follows that

F [vn] +

(
λ+

1 −
1

n2

)
vn = tϕ+

1 + h− 1

n2
u1 − 1

n
ϕ+

1 =: tϕ+
1 + hn
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in Ω. Note hn → h in Lp(Ω). However this is impossible if t > t∗+, by the
definition of t∗+, since ‖vn‖ is unbounded, which means P(t) holds. ¤

Now we study the behaviour of the branch Γ+
n as n → ∞. Let ũ be the

unique solution (given by Proposition 3.1) of

F (D2ũ, Dũ, ũ, x) + λ+
1 ũ = (1 + t∗+)ϕ+

1 + h in Ω, ũ = 0 on ∂Ω,

and set
d(u) = sign(u− ũ)‖u− ũ‖.

Lemma 3.7 If ui and ti, i = 1, 2, are such that d(u1) = d(u2) and

F (D2ui, Dui, ui, x) + λ+
1 ui = tiϕ

+
1 + h in Ω, ui = 0 on ∂Ω,

for i = 1, 2, then t1 = t2 and u1 = u2.

Proof. By Proposition 3.2 u1 6= u2 implies t1 6= t2. If t1 6= t2 (say t1 > t2),

F [u1− u2] + λ+
1 (u1− u2) ≥ (t1− t2)ϕ

+
1 > 0 in Ω, u1− u2 = 0 on ∂Ω.

Either there exists x0 ∈ Ω such that u1(x0) > u2(x0) or u1 ≤ u2 in Ω. In the
first case, Theorem 2.1 implies the existence of τ > 0 such that u1−u2 = τϕ+

1

so that u1 > u2 in Ω. In the second case, by the strong maximum principle,
we have that u1 = u2 (excluded by t1 6= t2) or u1 < u2 in Ω.

Thus, if u1 6= u2, then either u1 > u2 or u1 < u2 in Ω, and in both cases
d(u1) 6= d(u2), completing the proof of the lemma. ¤

We recall (Lemma 3.1) that the set Γ+
n can be re-parameterized as a

curve, by using the function dn. In the definition of dn we used the arbitrary
function ũn, which we choose now as the unique solution of

F (D2ũn, Dũn, ũn, x) + λnũn = (1 + t∗+)ϕ+
1 + h in Ω, ũn = 0 on ∂Ω.

By the definition of t∗+ {‖ũn‖} is bounded, so by Theorem 2.7 and the unique-
ness property proved in Proposition 3.2 we find that ũn → ũ, where ũ is as
above, the unique solution of

F (D2ũ, Dũ, ũ, x) + λ+
1 ũ = (1 + t∗+)ϕ+

1 + h in Ω, ũ = 0 on ∂Ω.

By Lemma 3.7, for fixed d ∈ R the following system in (u, t)

{
F (D2u,Du, u, x) + λnu = tϕ+

1 + h in Ω, u = 0 on ∂Ω,
dn(u) = d

(3.20)
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has a unique solution (un, tn) in C(Ω) × R. The sequence {un} is bounded,
since ‖un − ũn‖ = |d| and {ũn} is bounded. Hence {tn} is also bounded (if
not, un/tn → 0, so by passage to the limit F [0] = ϕ+

1 ).
Then subsequences of {un} and {tn} converge to a function u = u(d) and

a number t = t(d), which satisfy

F (D2u,Du, u, x) + λ+
1 u = tϕ+

1 + h in Ω, u = 0 on ∂Ω. (3.21)

By Lemma 3.7 the whole sequences {un} and {tn} converge to the same limit
that we call u(d) and t(d).

Lemma 3.8 The map

{
U : R → C(Ω)× R
U(d) = (u(d), t(d))

is continuous.

Proof. Take dk → d as k →∞. Then the sequences uk = u(dk), tk = t(dk)
are bounded, as above. Any convergent subsequence of {(uk, tk)} tends to a
solution of an equation to which Lemma 3.7 applies, so the whole sequences
uk, tk converge to u(d), t(d). ¤

We define Γ+ = {u(d) | d ∈ R}. The last lemma allows us to say that Γ+

is actually a continuous curve, the pointwise limit of the curves {Γ+
n }.

Lemma 3.9 If t1 > t2 ≥ t∗+ then any two solutions of

F (D2ui, Dui, ui, x) + λ+
1 ui = tiϕ

+
1 + h in Ω, ui = 0 on ∂Ω,

are such that u1 < u2 in Ω.

Proof. We already showed in the proof of Lemma 3.7 that either u1 > u2

or u1 < u2 in Ω. Since the curve Γ+ is the limit of Γ+
n which are strictly

decreasing in t, u1 > u2 is impossible. ¤
Proof of Theorem 1.2. The set of solutions is {(u(d), t(d)) | d ∈ R}, as
the above discussion shows. Part 1. of the Theorem was proved in Proposi-
tion 3.1. The first two statements of Part 2. follow from Proposition 3.2 and
Lemma 3.9.

For t > t∗, let ut be the solution of

F (D2ut, Dut, ut, x) + λ+
1 ut = tϕ+

1 + h in Ω, ut = 0 on ∂Ω, (3.22)

By Lemma 3.9 ut is strictly decreasing in t.
When t → t∗+ two cases may occur : either ‖ut‖ is bounded or ‖ut‖ → ∞.

In the first case the monotonous sequence ut converges in C1(Ω) to a solution
u∗ of (3.22) with t = t∗+. Then by Proposition 3.2 all solutions u ∈ Γ+ with

19



d(u) ≥ d(u∗) are solutions of (3.22) with t = t∗+, which is the situation
described in Part 4. (ii). In the second case ut/‖ut‖ converges in C1(Ω) to
ϕ+

1 > 0 which implies Part 4. (i). Note in this case there cannot be solutions
with t = t∗+, because of Lemma 3.9.

Let us now consider the limit t →∞. First, if for some sequence tn →∞
we have ‖utn‖/tn → 0, we divide (3.22) by tn, pass to the limit and get a
contradiction. So ‖ut‖ → ∞ as t → ∞. By the monotonicity of ut in t,
minΩ ut < −1 for sufficiently large t.

Assume for some sequence tn → ∞ we have ‖utn‖/tn → ∞. Then we
divide (3.22) by ‖utn‖ and see that utn/‖utn‖ ⇒ ϕ+

1 , which is impossible,
since utn takes negative values and ϕ+

1 > 0.
So there is a sequence tn → ∞ such that utn/‖utn‖ converges in C1(Ω)

to a solution of

F (D2v,Dv, v, x) + λ+
1 v = kϕ+

1 in Ω, v = 0 on ∂Ω, (3.23)

for some k > 0. This problem is the particular case of (2.6) when h = 0. It
is clear that (3.23) has solutions for k ≥ 0 (by Theorem 2.6) and does not
have solutions for k < 0 (by the definition of λ+

1 and Theorem 2.1). Further,
this problem obviously has solutions for k = 0 (in other words, for h = 0 we
always are in the case 4. (ii)) and the minimal solution at k = 0 is u∗ = 0.
Then, by the properties of the curve of solutions we already proved (3.23)
has a unique solution which satisfies v < u∗ = 0, since k > 0.

This means utn/‖utn‖ converges in C1(Ω) to a negative function v, such
that ∂v

∂ν
< 0 on ∂Ω (by (3.23) and Hopf’s lemma). This implies statement 3.

for the subsequence utn . Since ut is monotonous, we have 3. for all ut.
Finally, let us show that t → ut(x) is convex. With the notations from

Lemma 2.1, we note that for each compact interval [t0, t1] ⊂ [t∗+,∞) there
exists a function v ∈ W 2,p(Ω) which is a subsolution of

F (D2u,Du, u, x) + λ+
1 u = tkϕ

+
1 + h in Ω, u = 0 on ∂Ω, (3.24)

and v < kut1 + (1 − k)ut0 , for each k ∈ (0, 1) (we take ut0 = u∗ if t0 = t∗+).
For instance, we can take v to be the negative solution – given by Theorem
2.6 I. – of the problem

F [v] + λ+
1 v = max{t1, 1}ϕ+

1 + max{h, 0} in Ω, u = 0 on ∂Ω,

and then a take a multiple of v by a sufficiently large constant, to ensure that
v < ut1 ≤ kut1 + (1− k)ut0 for each k ∈ (0, 1). Then by Lemma 2.1 and the
usual sub- and supersolution method there exists a solution of (3.24) which
is below kut1 + (1− k)ut0 . By the uniqueness which we already proved, this
solution has to be utk .

Theorem 1.2 is proved. ¤
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4 The case λ > λ−1 . Proof of Theorem 1.5

In this section we prove Theorem 1.5 and some auxiliary results which will
be helpful in our analysis of the resonance phenomena at λ = λ−1 .

We start with some simple preliminary lemmas which will lead us to the
proof of the first part in Theorem 1.5. Our arguments for Lemmas 4.1-4.2
below are similar to those in [7],[25] and [1], but we sketch them here for
completeness. We define the operators

Fτ (D
2u,Du, u, x) = τF (D2u,Du, u, x) + (1− τ)∆u

and we write λ−1 (τ) = λ−1 (Fτ ), for τ ∈ [0, 1]. Note that Fτ satisfies (H0) −
(H3) and, recalling that we work with (2.6), Fτ is proper, since F is proper.

Lemma 4.1 The function τ → λ−1 (τ) is continuous in the interval [0, 1]
and there exists ε̄ > 0 so that there is no eigenvalue of Fτ in the interval
(λ−1 (τ), λ−1 (τ) + ε̄], for τ ∈ [0, 1].

Proof. Let {τn} be a sequence in [0, 1], then it follows by Proposition 4.1
in [25] that the sequence {λ−1 (τn)} is bounded. Then, by a compactness
argument and the simplicity of the eigenvalues, the continuity follows. The
isolation property follows by the same argument as the one used in the proof
of Theorem 1.3 in [25]. ¤

Lemma 4.2 There exists ε > 0 such that for each λ ∈ (λ−1 , λ−1 + ε) and
each n ∈ N there is a closed connected set C(λ, n) ⊂ C(Ω)× [−n, n], with the
property that for all (u, t) ∈ C(λ, n) we have

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω.

Moreover, if we define the projection P : C(Ω)× IR → IR as P(u, t) = t, we
have P(C(λ, n)) = [−n, n].

Proof. For τ ∈ [0, 1], let us define

λ2(τ) = inf{µ > λ−1 (τ) |µ is an eigenvalue of Fτ in Ω}.

Observe that λ2(τ) = +∞ is possible. Then, given λ ∈ (λ−1 , λ−1 + ε̄), by the
previous lemma there exists a continuous function µ : [0, 1] → IR such that
µ(1) = λ, λ−1 (τ) < µ(τ) < λ2(τ) and the equation

Fτ (D
2u,Du, u, x) + µ(τ)u = 0 in Ω, u = 0 on ∂Ω, (4.1)
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has no non-trivial solution, for all τ ∈ [0, 1]. Now we define the operator
G : IR×[0, 1]×C(Ω) → C(Ω), for (t, τ, v) ∈ IR×[0, 1]×C(Ω) as u = G(t, τ, v),
where u is the solution of the equation

Fτ (D
2u, Du, u, x) = −µ(τ)v + tϕ+

1 + h in Ω, u = 0 on ∂Ω. (4.2)

When we restrict the variable t to the interval [−n, n], the operator G be-
comes compact. Moreover, there exists R > 0 such that the Leray-Schauder
degree d(I − G(t, τ, .), BR, 0) is well defined. Indeed, a priori bounds follow
directly from the non-existence property of equation (4.1), in fact, if (4.2)
has a sequence of solutions un = vn with ‖un‖ → ∞ we divide (4.2) by ‖un‖,
pass to the limit and get a contradiction. Then, by the homotopy invariance
of the Leray -Schauder degree, we have

d(I −G(t, 1, ·), BR, 0) = d(I −G(t, 0, ·), BR, 0) = −1.

The last equality is a standard fact, since the operator F0 is the Laplacian.
Thus, by the well-known results of [27] (alternatively, we refer to [13]), see
in particular Corollary 10 in chapter V of that work, the lemma follows. ¤

We will need the following topological result, whose proof is a direct
consequence of Lemma 3.5.2 in [13].

Lemma 4.3 Let R ⊂ C(Ω) × [−n, n] be a compact connected set such that
P(R) = [−n, n]. If R0 = {(u, t) ∈ R | t ∈ [t−, t+]}, with [t−, t+] ⊂ [−n, n]
then there exists a connected component E0 of R0 such that P(E0) = [t−, t+].

Proof of Theorem 1.5 1. The boundedness of SI for each bounded interval
I is trivial – indeed, if we have a sequence of solutions to the problem which
is unbounded in L∞(Ω), we divide each equation by the norm of its solution,
as we have already done a number of times, and we find a solution which
contradicts Theorem 2.2. Recall the regularity result in Theorem 2.5.

For each n ∈ N we define En = C(λ, n) as the connected set given in
Lemma 4.2. Then, by Lemma 4.3, there are closed connected subsets EN

n

of {(u, t) ∈ En | t ∈ [−N, N ]}, for 1 ≤ N ≤ n, such that P(EN
n ) = [−N, N ]

and EN
n ⊂ EN+1

n , for N = 1, 2, ..., n − 1. In order to get the last property,
we proceed step by step, defining EN

n through Lemma 4.3, by decreasing N
starting from n. Now we define the sets EN , for N ∈ N, as follows :

EN = {(u, t) ∈ C(Ω)× R | there exist (u`k
, t`k

) ∈ EN
`k

,

`k ≥ k, ∀k ∈ N, (u`k
, t`k

) → (u, t), as k →∞}.
We notice that EN is closed and P(EN) = [−N, N ]. Since the pairs (u, t) ∈
EN

n are solutions of

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω, t ∈ [−N, N ],
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we see that the set EN is comprised of solutions of these equations, and
consequently it is compact in C1(Ω). Then it is easy to see that for all ε > 0
there exists n0 ∈ N such that EN

n ⊂ B(EN , ε) for all n ≥ n0. Here we denote
by B(U, ε) the ε-neighborhood of the set U . Indeed, if there exists ε > 0
and a sequence `k ≥ k, such that (u`k

, t`k
) ∈ EN

`k
\B(EN , ε), then t`k

and u`k

are bounded, and a subsequence of (u`k
, t`k

) converges to some (u, t) in EN ,
which is a contradiction.

By the convergence property just proved, we see that EN is connected.
In fact, if it is not connected, there exist non-empty closed subsets U, V of
EN such that U ∩ V = ∅ and U ∪ V = EN . By compactness, there exists
ε > 0 such that dist(U, V ) > ε, and then B(U, ε/4) ∩B(V, ε/4) = ∅ which is
impossible, since the connected set EN

n is contained in B(U, ε/4)∪B(V, ε/4)
for n large enough, as stated in the claim above.

We observe that, according to our construction of the sets EN
n and EN ,

we have EN ⊂ EN+1 for all N ∈ N. So, to complete the proof of Part 1. we
just need to define C = C(λ) = ∪N∈NEN , which is clearly a closed connected
set of solutions and P(C) = R. ¤

Before proceeding to the proof of Part 2. of Theorem 1.5, we give a gen-
eralized version of the Antimaxmum Principle for fully nonlinear equations,
recently proved in [1].

Proposition 4.1 Let f ∈ Lp(Ω), p > N , be such that f ≤ 0, f 6≡ 0 in Ω.
1. There is ε0 > 0 (depending on f) such that any solution of the equation

F (D2u,Du, u, x) + λu = kf in Ω, u = 0 on ∂Ω, (4.3)

satisfies u < 0 in Ω, provided λ ∈ (λ−1 , λ−1 + ε0) and k ∈ (0,∞).
2. Equation (4.3) has no solutions if λ = λ−1 and k > 0.

Proof. We first prove statement 2. Suppose there is a solution u of (4.3)
with λ = λ−1 and k > 0. If there exists x0 ∈ Ω such that u(x0) < 0, then by
Theorem 2.1 there exists k0 > 0 such that u = k0ϕ

−
1 , a contradiction with

f 6≡ 0. Therefore u ≥ 0 in Ω and then, by the strong maximum principle,
u > 0 in Ω. The existence of such a function contradicts Theorem 2.1.

Let us now prove statement 1. Suppose there are sequences kn > 0,
λn > λ−1 , λn → λ−1 , and ũn of solutions of (4.3) such that ũn is positive or
zero somewhere in Ω. Then un = ũn/kn has the same property and solves
(4.3) with k = 1. Suppose first that un is bounded, then a subsequence of
un converges uniformly to a solution of (4.3) with λ = λ−1 and k = 1, a
contradiction with the result we already proved in 2. If un is unbounded,
then a subsequence of un/‖un‖ converges in C1(Ω) to the negative function
ϕ−1 , a contradiction as well. ¤
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We now prove that the solutions of our equation are negative for small t
for t below a certain value.

Lemma 4.4 Given R > 0 there are numbers ε > 0 and t̄ such that for all
λ ∈ [λ−1 , λ−1 + ε), t ≤ t̄, and h with ‖h‖Lp(Ω) ≤ R, if u solves the equation

F (D2u,Du, u, x) + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω, (4.4)

then u < 0 in Ω.

Proof. Assuming the result is not true, there are sequences {tn}, {un}, {λn}
and {hn} such that λn ≥ λ−1 , λn → λ−1 , tn → −∞, ‖hn‖Lp ≤ R, un is positive
or zero at a point in Ω and

F (D2un, Dun, un, x) + λnun = tnϕ+
1 + hn in Ω, un = 0 on ∂Ω,

for all n ∈ N. Defining vn = −un/tn, we can easily check that if {vn} is
bounded then a subsequence of it converges to a solution of F (v)+λ−1 v = −ϕ+

1

in Ω, which is a contradiction with part 2. of Proposition 4.1, while if {vn}
is unbounded then a subsequence of vn/‖vn‖ converges in C1(Ω) to ϕ−1 < 0,
a contradiction, since these functions are positive or zero somewhere. ¤
Proof of Theorem 1.5 2. It remains to analyze the asymptotic behavior
of the set S. Take any ut ∈ St, t ∈ R. It is clear that there exist con-
stants C0, T > 0, depending only on F , Ω and h, such that ‖ut‖ ≥ C0|t| if
|t| ≥ T . Indeed, assuming that {t/‖ut‖} is not bounded one easily gets the
contradiction 0 = ±ϕ+

1 , after dividing the equation by t and passing to the
limit.

First, suppose for contradiction that there exists a compact set K ⊂ Ω
and sequences tn → −∞, un ∈ Stn , such that utn(xn) ≥ −c, for some constant
c and some xn ∈ K. Note that by the previous lemma we already know that
utn < 0 in Ω, for large n. Thus, setting vn = utn/‖utn‖, we have ‖vn‖ = 1,
vn < 0 in Ω, vn(xn) → 0 as n →∞, and

F [vn] + λvn = (tn/‖utn‖)ϕ+
1 + h/‖utn‖ in Ω, vn = 0 on ∂Ω.

Now, if tn/‖utn‖ → 0, a subsequence of vn converges to a nontrivial solution
of F [v] + λv = 0, which is a contradiction with λ ∈ (λ−1 , λ−1 + ε). On the
contrary, if tn/‖utn‖ 6→ 0, then a subsequence of vn converges uniformly to
a solution of F (v) + λv = −kϕ+

1 for some k > 0. In addition v(x0) = 0
for some x0 ∈ K, which is a contradiction with the antimaximum principle,
Proposition 4.1, provided ε < ε0(−ϕ+

1 ), with ε0 defined in that proposition.
Second, suppose there is a sequence tn → +∞ such that utn ≤ C, for

some constant C. Then, as above, either vn = utn/‖utn‖ converges to a

24



nontrivial solution of F (v) + λv = 0, a contradiction with Theorem 2.2, or
vn converges to a nonpositive solution of F (v) + λv = kϕ1 > 0, which is
then negative by Hopf’s lemma. This is a contradiction again, here with the
definition of λ−1 and λ > λ−1 . Theorem 1.5 is proved. ¤

5 Resonance at λ = λ−1 . Proof of Theorem 1.4

In this section we study the behavior of the set of solutions of our problem in
the second resonant case, that is, when λ = λ−1 . For this purpose we consider
sequences {λn} with λn ∈ (λ−1 , λ−1 + ε) (everywhere in this section ε = L will
be the number which appears in Theorem 1.5, found in the previous section),
which converge to λ−1 , and we study the asymptotic behavior of the connected
sets C = C(λn) ⊂ S(λn), obtained in Theorem 1.5.

We modify the definition of condition P(s) as follows:

P(s) : There exist sequences {λn}, {hn} and {un} such that λn > λ−1 for
all n, limn→∞ λn = λ−1 , hn → h in Lp(Ω),

F (D2un, Dun, un, x)+λnun = sϕ+
1 +hn in Ω, un = 0 on ∂Ω,

and ‖un‖ is unbounded.

Since no confusion arises with the definition given in Section 3, we keep the
same notation. As before, P(s) is equivalent to

P(s) : There exist sequences {λn}, {hn} and {un} such that λn > λ−1 for all
n, limn→∞ λn = λ−1 , hn → h in Lp(Ω), {un} is a sequence of solutions
of F (D2un, Dun, un, x) + λnun = sϕ+

1 + hn, such that ‖un‖ → ∞, and

un

‖un‖ → ϕ−1 < 0 in C1(Ω).

Then we define, as before,

t∗− = sup{t ∈ R | P(s) for all s < t}. (5.1)

The following lemmas are necessary to give sense to this definition.

Lemma 5.1 P(t̄) implies P(t) for all t < t̄.
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Proof. Assume that there exists t0 < t̄ such that P(t0) is false. Since P(t̄)
holds, there exist sequences {λn}, {hn} and {vn} such that λn > λ−1 for all n,
limn→∞ λn = λ−1 , hn → h in Lp(Ω), the solutions of

F (D2vn, Dvn, vn, x) + λnvn = t̄ϕ+
1 + hn in Ω, vn = 0 on ∂Ω,

satisfy limn→∞ ‖vn‖ = ∞, and vn/‖vn‖ converges to ϕ−1 < 0 in C1(Ω), in
other words vn ≤ knϕ−1 , for some sequence kn →∞. On the other hand, let
{un} be any sequence such that

F (D2un, Dun, un, x) + λnun = t0ϕ
+
1 + hn in Ω, un = 0 on ∂Ω.

Such a sequence exists thanks to Theorem 1.5. Since we are assuming that
P(t0) is false, {‖un‖} is bounded, so a subsequence of {un} converges in
C1(Ω).

Then |un| ≤ C|ϕ−1 | in Ω, by the boundary Lipschitz estimates (recall ϕ−1
has non-zero normal derivative on the boundary, by Hopf’s lemma), so the
above convergence properties of vn imply that for n large ψn = vn − un < 0
in Ω. However, by (H3) we have F [ψn] ≥ F [vn]− F [un], so

F (D2ψn, Dψn, ψn, x) + λnψn ≥ (t̄− t0)ϕ
+
1 > 0 in Ω, ψn = 0 on ∂Ω,

for large n, contradicting the definition of λ−1 , since λn > λ−1 . ¤
Now we prove that t∗− is a real number. We set T = {t ∈ R | P(t)}.

Lemma 5.2 The set T is not empty.

Proof. Assuming the contrary, we find a sequence {tn} such that P(tn) is
false and tn → −∞, which implies the existence of a sequence un satisfying

F (D2un, Dun, un, x) + λ−1 un = tnϕ+
1 + h in Ω, un = 0 on ∂Ω.

This statement follows from Theorem 2.7, through exactly the same ar-
gument as the one used in the proof of Lemma 3.4. Next we see that
vn = −un/tn is unbounded, since the contrary implies the existence of a
solution to F (D2v,Dv, v, x) + λ−1 v = −ϕ+

1 in Ω, v = 0 on ∂Ω, which was
shown to be impossible in Proposition 4.1. Then a subsequence of un/‖un‖
converges in C1(Ω) to a solution of the equation

F (D2w,Dw,w, x) + λ−1 w = 0 in Ω, w = 0 on ∂Ω,

which implies that w = ϕ−1 . We conclude that maxK un → −∞ for each
compact K ⊂ Ω. To complete the proof, let v be the solution of

F (D2v, Dv, v, x) = −h in Ω, v = 0 on ∂Ω.
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Then, for n large, the function ψ = un + v is negative at some point and
satisfies

F (D2ψ,Dψ, ψ, x) + λ−1 ψ ≤ tnϕ
+
1 + λ−1 v in Ω, ψ = 0 on ∂Ω

(we use F [ψ] ≤ F [un] + F [v] which is a consequence of (H0) and (H3)). The
quantity tnϕ+

1 + λ−1 v is strictly negative for large n, so by Theorem 2.1 we
have ψ = kϕ−1 , for some k > 0, which is a contradiction with the strict
inequality F [ψ] + λ−1 ψ < 0. Hence T 6= ∅. ¤

Lemma 5.3 There exists t̄ = t̄(h) ∈ R such that for any t ≥ t̄ we can find
C, δ > 0 such that if ‖h̃− h‖Lp(Ω) < δ, then all solutions to

F (D2u,Du, u, x) + λv = tϕ+
1 + h̃ in Ω, u = 0 on ∂Ω,

with λ ∈ [λ−1 , λ−1 + ε) satisfy ‖u‖ ≤ C. In particular, the set T is bounded
above by t̄, that is, t∗− is finite.

Proof. Assuming the contrary, we may find sequences tn → ∞ as n → ∞,
λ

(m)
n ∈ [λ−1 , λ−1 + ε), h

(m)
n → h in Lp(Ω) as m → ∞, for each fixed n, and

{u(m)
n }, such that

F (D2u(m)
n , Du(m)

n , u(m)
n , x) + λ(m)

n u(m)
n = tnϕ+

1 + h(m)
n in Ω, u(m)

n = 0 on ∂Ω,

and {u(m)
n } is unbounded as m → ∞, for each n. Then, as we have done a

number of times already, we can divide the last equation by ‖u(m)
n ‖ and use

Theorem 2.7, which implies that, up to a subsequence, u
(m)
n /‖u(m)

n ‖ converges
in C1(Ω), as m →∞, to a function ûn 6≡ 0, which solves

F (D2ûn, Dûn, ûn, x) + λnûn = 0 in Ω, ûn = 0 on ∂Ω.

This implies that λn = λ−1 and ûn = ϕ−1 < 0. Hence u
(m)
n ≤ k

(m)
n ϕ−1 , for some

sequence {k(m)
n } such that k

(m)
n →∞ as m →∞.

Next, we remark that we can find (thanks to Theorems 2.3 and 2.5) a
constant C0 = C0(h) such that for any g ∈ Lp(Ω) with ‖g‖Lp(Ω) ≤‖h‖Lp(Ω)+1,
if w is a solution of

F (D2w, Dw, w, x) = g in Ω, g = 0 on ∂Ω, (5.2)

then ‖w‖W 2,p(Ω) ≤ C0. This of course implies w ≥ C̃0ϕ
−
1 , for some C̃0 > 0.

Now, for each n we fix m(n) such that λ
(m(n))
n < λ−1 + 1/n, hn := h

(m(n))
n

satisfies ‖hn − h‖Lp(Ω) ≤ 1/n, and un := u
(m(n))
n < w, for each solution w of

(5.2). So, in particular, un < vn, where vn is the solution of

F (D2vn, Dvn, vn, x) = hn in Ω, vn = 0 on ∂Ω.
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Then, we choose n large enough so that tnϕ+
1 > λ−1 vn, and we see that the

function ψn = un − vn < 0 satisfies

F (D2ψn, Dψn, ψn, x)+λ−1 ψn ≥ tnϕ
+
1 −λ−1 vn > 0 in Ω, ψn = 0 on ∂Ω.

By Theorem 2.1 we find that ψn = ϕ−1 , which contradicts the last strict
inequality. ¤

The next result contains Part 1. in Theorem 1.4.

Proposition 5.1 The equation

F (D2u,Du, u, x) + λ−1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

(i) has at least one solution if t > t∗− ;
(ii) does not have a solution if t < t∗−.

Proof. (i) is proved in exactly the same way as Proposition 3.1 1., using
Theorems 1.5 and 2.7. In order to prove (ii), let t1 ∈ (t, t∗−). By Lemma 5.1
P(t1) holds, then there exist sequences {vn}, {hn} and {λn} such that {vn}
is unbounded, λn > λ−1 , λn → λ−1 , hn → h, vn/‖vn‖ → ϕ−1 in C1(Ω), and

F (D2vn, Dvn, vn, x) + λnvn = t1ϕ
+
1 + hn in Ω, vn = 0 on ∂Ω.

Now, supposing (ii) is false, let u and wn be solutions of

F (D2u,Du, u, x) + λ−1 u = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

F (D2wn, Dwn, w, x) = hn − h in Ω, wn = 0 on ∂Ω.

Notice that wn → 0 in C1(Ω). Then, for large n we have vn < 0, λ−1 vn > λnvn,
vn − wn − u < 0 in Ω, and

F [vn − wn − u] + λ−1 (vn − wn − u) ≥ (t1 − t)ϕ+
1 /2 > 0 in Ω, (5.3)

where we used (H3) which implies F [vn − wn − u] ≥ F [vn] − F [wn] − F [u].
Then, by Theorem 2.1 once more, we have vn − wn − u = knϕ−1 for some
number kn ≥ 0, in contradiction with the strict inequality in (5.3). ¤

The next lemma containts statement 3. in Theorem 1.4.

Lemma 5.4 For each compact interval I ⊂ (t∗−,∞) there exists a constant
C, such that for all λ ∈ [λ−1 , λ−1 + ε) and all t ∈ I, if u is a solution to

F (D2u,Du, u, x) + λv = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

then ‖u‖W 2,p(Ω) ≤ C.
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Proof. Recall we already proved in the previous section that the set of
solutions is bounded for t in a bounded interval, provided λ is away from the
eigenvalue λ−1 . Hence if the statement of Lemma 5.4 is false, then we can
find sequences tn → t0 with t0 > t∗−, λn → λ−1 (λn = λ−1 is allowed), {un}
with ‖un‖ → ∞ and un/‖un‖ → ϕ−1 , such that

F [un]+

(
λn +

1

‖un‖2

)
un = t0ϕ

+
1 +h+(tn−t0)ϕ

+
1 +

1

‖un‖
(

un

‖un‖
)

= t0ϕ
+
1 +hn.

Clearly hn → h in Lp(Ω), so the existence of such a sequence contradicts the
definition of the number t∗− and t0 > t∗−. ¤

Before continuing, we set up some notation. The set of solutions C found
in Theorem 1.5 will be denoted by C(λ), remembering we work with the
equivalent equation (2.6). We define the function Q : C(Ω) × R → R, as
Q(u, t) = ‖u‖ for (u, t) ∈ C(Ω) × R, and we recall that P is the projection
P(u, t) = t. In the proof of Theorem 1.4 the function Q plays a role similar
to that of P in the proof of Theorem 1.5. The following lemma will be needed
later.

Lemma 5.5 Given t1 > t∗−, there exists N0 ∈ N such that for every λ ∈
(λ−1 , λ−1 + ε) and N > N0

N ∈ Q(C(λ)[t1,∞)) ∩Q(C(λ)(−∞,t1]),

that is, for all λ larger than and sufficiently close to λ−1 and all N large we
can find u′, u′′ such that

‖u′‖ = ‖u′′‖ = N, and

F [u′] + λu′ = t′ϕ+
1 + h, F [u′′] + λu′′ = t′′ϕ+

1 + h in Ω,

where t′ ≥ t1 and t′′ ≤ t1.

Proof. Given t1 > t∗−, we let N0 ∈ N be an upper bound of the set C(λ)t1 ,
uniformly in the interval λ ∈ (λ−1 , λ−1 + ε) - such a bound exists by the
previous lemma. The conclusion follows from Theorem 1.5, since the set
C(λ) is connected and the sets C(λ)t contain elements whose norms grow
arbitrarily, as t →∞ and as t → −∞. ¤
Proof of Theorem 1.4. The proof follows an idea similar to the one used
in the proof of Theorem 1.5, but here we take as a parameter the norm of
the solution, instead of t.

Fix t1 > t∗−. We start with a sequence {λn} with λn > λ−1 and λn → λ−1
as n → ∞. Then we look at the connected set of solutions C(λn) given by
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Theorem 1.5, and we take N ∈ N, N > N0, where N0 is the number form
Lemma 5.5.

By an argument similar to the one given in the previous section (using
Lemma 4.3 and Lemma 5.5), we find that for each N = n, n−1, ..., N0+1, N0,
there is a closed connected subset EN

n ⊂ {(u, t) ∈ C(λn) | ‖u‖ ≤ N} such that

Q((EN
n )[t1,∞)) = [N0, N ] and Q((EN

n )(−∞,t1]) = [N0, N ],

for N = n, n − 1, ..., N0. For each n ∈ N we construct the sets EN
n , starting

with N = n and successively going down to N = N0. Thus EN
n ⊂ EN+1

n ,
N = n− 1, ..., N0 + 1, N0. Then we define

EN = {(u, t) ∈ C(Ω)× R | there exists (u`k
, t`k

) ∈ EN
`k

,

`k ≥ k, ∀k ∈ N, (u`k
, t`k

) → (u, t), as k →∞}.

We notice that EN is closed,

Q((EN)[t1,∞)) = [N0, N ] and Q((EN)(−∞,t1]) = [N0, N ].

Since the pairs (u, t) ∈ EN
n are solutions of

F (D2u,Du, u, x) + λnu = tϕ+
1 + h in Ω, u = 0 on ∂Ω,

the bounded in L∞(Ω) set EN is made of solutions of such an equation,
but with λ−1 instead of λn, and consequently EN is compact. By a similar
argument as the one in the proof of Theorem 1.5, we can prove that EN is
connected. Since, according to our construction, we have that EN

n ⊂ EN+1
n

for all n, we see that EN ⊂ EN+1 for all N ∈ N. Thus the set C = ∪N∈NEN

is a closed connected set of solutions and

Q(C[t1,∞)) = [N0,∞) and Q(C[−∞,t1]) = [N0,∞). (5.4)

Next we observe that by the definition of t∗− and (5.4) we have P(C[t1,∞)) =
[t1,∞). On the other hand, by Proposition 5.1 we know that

(t∗−, t1] ⊂ P(C[−∞,t1]) ⊂ [t∗−, t1],

so that we also have Q(C[t∗−,t1]) = [N0,∞). This completes the proof of
statement 2. and the first statement in 5. of Theorem 1.4.

Let us look at the asymptotic behavior of the set of solutions S, as t →∞.
First, it is easily proved that if (ut, t) ∈ S then limt→∞ ‖u‖ = ∞ (if not, we
divide the equation by t and pass to the limit t → ∞, as before). Suppose
now that there is a sequence tn → +∞ such that for some utn ∈ Stn we

30



have utn ≤ C for some constant C. Then, as in the proof of Theorem 1.5 2.,
either vn := utn/‖utn‖ converges to a non-positive solution v of F [v]+λ−1 v =
kϕ+

1 > 0, with v = 0 on ∂Ω, which is negative by Hopf’s lemma, providing
a contradiction with Theorem 2.1, or vn converges to a nontrivial solution of
F [v] + λ−1 v = 0, with v = 0 on ∂Ω. In this case vn converges to ϕ−1 < 0 in
C1(Ω), which implies that for some sequence kn →∞ we have un ≤ −knϕ

+
1

in Ω. Let now w be the solution of F [w] = h in Ω, w = 0 on ∂Ω. Then
by ‖w‖ ≤ C and the Lipschitz estimates we have un − w < 0 in Ω if n is
sufficiently large, so

F [un − w] + λ−1 (un − w) ≥ F [un] + λ−1 un − (F [w] + λ−1 w)

≥ tnϕ
+
1 − λ−1 w.

However, the last quantity is positive if n is sufficiently large, yielding a
contradiction with Theorem 2.1. This gives statement 4 in Theorem 1.4.

Next we see that there is R > 0 so that if (u, t) ∈ S, with t ∈ [t∗−, t1] and
‖u‖∞ ≥ R, then u < 0. In fact, if the contrary is true, then there is a sequence
(un, tn) ∈ S, with tn ∈ [t∗−, t1], ‖un‖∞ → ∞, and such that un is positive or
zero somewhere in Ω. But this is impossible since a subsequence of un/‖un‖
converges in C1(Ω) to ϕ−1 , which is negative. By the same argument we have
maxK un → −∞ for each (un, tn) ∈ S such that ‖un‖ → ∞ and tn ∈ [t∗−, t1].
This completes the proof of statement 5 in Theorem 1.4.

We now turn to the proof of statement 6. Assume the equation

F (D2u,Du, u, x) + λ−1 u = t∗−ϕ+
1 + h in Ω, u = 0 on ∂Ω,

has an unbounded set of solutions, that is St∗− is unbounded. Let u1, u2 ∈ St∗− ,
then there exists R1 > 0 so that whenever u ∈ St∗− and ‖u‖ ≥ R1 we have

u = u1 + k1ϕ
−
1 , for some k1 > 0. In fact, we already know that if ‖u‖ is large

enough then u/‖u‖ is close in C1(Ω) to ϕ−1 and then ψ = u − u1 < 0 in Ω.
Since ψ satisfies

F (D2ψ,Dψ, ψ, x) + λ−1 ψ ≥ 0 in Ω, ψ = 0 on ∂Ω,

Theorem 2.1 implies ψ = k1ϕ
−
1 . In the same way we get u = u2 + k2ϕ

−
1 if

‖u‖ ≥ max{R1, R2}, for some R2 > 0, so u1 − u2 = (k2 − k1)ϕ
−
1 .

Finally we prove that if u + k1ϕ
−
1 and u + k2ϕ

−
1 are in St for some k2 >

k1 > 0, then u+kϕ−1 ∈ St for each k ∈ (k1, k2). This is a simple consequence
of the convexity and the homogeneity of F . Indeed, setting F̃ = F + λ−1 ,

tϕ+
1 + h = F̃ [u∗ + k1ϕ

−
1 ] + (k − k1)F̃ [ϕ−1 ] ≥ F̃ [u∗ + k1ϕ

−
1 + (k − k1)ϕ

−
1 ]

= F̃ [u + kϕ−1 ] = F̃ [u∗ + k2ϕ
−
1 − (k2 − k)ϕ−1 ]

≥ F̃ [u∗ + k2ϕ
−
1 ]− (k2 − k)F̃ [ϕ−1 ] = tϕ+

1 + h.

Theorem 1.4 is proved. ¤
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6 Proof of Theorem 1.6

The proof of Theorem 1.6 relies on an estimate on the difference between
the first eigenvalue of an operator on a domain and a proper subset of the
domain, which was proved in [4] (Theorem 2.4 in that paper) in the context
of general linear operators. We give here a nonlinear version of this result.

Given a smooth bounded domain A ⊂ Ω, we write λ+
1 (A) for the first

eigenvalue of the operator F on A.

Proposition 6.1 Assume (H0)-(H3). Let Γ be a closed set in Ω, such that
|Γ| ≥ α0 > 0. Then there exists a constant α > 0 depending only on
λ, Λ, N, γ, δ, Ω, α0, such that for any smooth subdomain A of Ω \ Γ we have

λ+
1 (A) ≥ λ+

1 (Ω) + α.

The proof of Proposition 6.1 is very similar to the proof of Theorem 2.4 in
[4]. Below we will mention the points where some small changes have to be
made, but before doing that we show how we get the proof of Theorem 1.6,
assuming Proposition 6.1.

Proof of Theorem 1.6. We take d0 = α/2, where α is the number from
Proposition 6.1, with α0 = |Ω|/2. Suppose for contradiction that we have
two different solutions u1 and u2 of (1.1), with F satisfying the hypothesis
of Theorem 1.6. We distinguish two cases.

First, suppose the function w = u1−u2 has a constant sign in Ω, say w ≤ 0
(otherwise we take w = u2−u1). Then (H3) implies F (w) ≥ 0 in Ω and then
w < 0 in Ω, by Hopf’s Lemma. The existence of such a function contradicts
the definition of λ−1 (Ω) and the assumption λ−1 (Ω) < 0, see Theorem 2.1.

Second, if w = u1 − u2 changes sign in Ω, then the sets Ω1 = {x ∈
Ω | u1(x) > u2(x)} and Ω2 = {x ∈ Ω | u2(x) > u1(x)} are not empty. One
of these sets, say Ω1, satisfies |Ω1| ≤ |Ω|/2. Take Ω̃1 to be any connected
component of Ω1 and A to be any smooth subdomain of Ω̃1. Then the choice
of d0, Proposition 6.1 and λ+

1 (Ω) ≥ −d0 imply

λ+
1 (A) ≥ α/2 > 0.

Take a sequence of smooth domains An ⊂ Ω̃1 which converges to Ω̃1. Then
λ+

1 (An) ≥ α/2 > 0, so by applying the ABP inequality (Theorem 2.3) to
F (w) ≥ 0 in An we get

sup
An

w ≤ C sup
∂An

w.

Letting n → ∞ implies w ≤ 0 in Ω̃1, since w = 0 on ∂Ω̃1. This is a
contradiction with the definition of Ω1 6= ∅ and proves Theorem 1.6. ¤
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Proof of Proposition 6.1. We follow the proof of Theorem 2.4 in [4], given
in Section 9 of that paper. We write

F (M, p, u, x) = F (M, p, u, x)− δu + δu =: F0(M, p, u, x) + δu,

so that F0 is a proper operator. The operator F plays the role of L in [4], F0

plays the role of M , δ replaces c, and we let q = 1 + δ, as in [4]. As shown in
[12], the ABP inequality holds for F0, with a constant which depends only
on λ, Λ, γ, δ and diam(Ω).

In what follows we list the results in [4] which lead to Proposition 6.1 and
we only note the changes needed in order to cover the nonlinear case.

Theorem 9.1 in [4] is proved in the same way here, but we have to choose
σ > 0 so that G(D2eσx1 , Deσx1 , eσx1 , x) ≥ 1 – recall G is defined in (H3) –
which is easily seen to be possible, by (H1), and then we use the inequality
F (M −N, p− q, u− v, x) ≤ F (M, p, u, x)−G(N, q, v, x), which follows from
hypothesis (H3).

The proof of Lemma 9.1 in [4] is identical in our situation, as is the proof
of Lemma 9.2, provided we have the concavity of λ+

1 (F0 + δ, Ω) in δ, for any
proper operator F0 satisfying our hypotheses, see below.

Theorems 9.2 and 9.3 from [4] are well-known to hold for strong solutions,
which is actually the only case in which we use them, if the operators in their
statements are replaced by the operator

L[u] = M−
λ,Λ(D2u)− γ|u| − δ|u|,

which appears in the left-hand side of (H1) – simply because L[u] is equal
to a linear operator acting on u, whose coefficients depend on u but their
bounds do not. Extensions of these theorems to viscosity solutions can be
found in [32], [8] and in the appendix of [26].

Corollary 9.1 from [4] is proved identically here. Further, we need to
modify the proof of Proposition 9.3 in [4] in the following way: we take ν to
be the solution of

G(D2ν, Dν, ν, x)− qν = −χΓ in Ω, ν = 0 on ∂Ω,

where Γ is as defined in Proposition 9.3 in [4]. We easily check that G[·]− q·
is proper, G[u]− qu ≤ G[u] ≤ F [u] ≤ 0 in Ω \ Γ,

F [u− tν] ≤ F [u]− tG[ν] ≤ −tG[ν] = −tqν ≤ −tν

in Ω \ Γ, and the rest of the proof of Proposition 9.3 is the same.
Finally, Proposition 6.1 follows from the above in exactly the same way

as Theorem 2.4 in [4] follows from Proposition 9.3 there. ¤
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For completeness we shall briefly sketch the elementary proof of fact that
λ+

1 (F0 + δ, Ω) is concave in δ. Note that we can repeat exactly the same
reasonings as the ones given on pages 50 and 68 of [4], the only difference
being that here we need to have the convexity in z of the operator

F(z)(x) = F0(D
2z + Dz ⊗Dz,Dz, 1, x).

This is the content of the following lemma.

Lemma 6.1 Suppose F = F (M, p, u) satisfies (H0), (H1) and (H3), and let
l : RN →MN(R) be a linear map. Then the function

h(p) := F (l(p) + p⊗ p, p, 1) : RN → R

is convex.

Proof. Suppose F depends only on M . Then (H3) implies F (M)−F (N1)−
F (N2) ≤ F (M −N1 −N2), so for any t ∈ [0, 1] and any p1, p2 ∈ RN

h(tp1 + (1− t)p2)− th(p1)− (1− t)h(p2)
≤ F ((tp1 + (1− t)p2)⊗ (tp1 + (1− t)p2)− tp1 ⊗ p1 − (1− t)p2 ⊗ p2) .

(6.1)
By the ellipticity of F it is enough to show that the argument of F in the last
inequality is a semi-negative definite matrix. Since p ⊗ q is linear in both p
and q, this is trivially seen to be equivalent to the semi-positive definiteness
of

(t− t2)(p1 ⊗ p1 + p2 ⊗ p2 − p1 ⊗ p2 − p2 ⊗ p1),

that is, of (t− t2)((p1−p2)⊗ (p1−p2)), which is of course true, since t ∈ [0, 1]
and the eigenvalues of q ⊗ q are 0, . . . , 0, |q|2, for each q ∈ RN .

If F = F (M, p, u) we have exactly the same reasoning, since in (6.1) we
get F (·, 0, 0). ¤
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