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Introduction

In this article we consider the Dirichlet problem

F (D 2 u, Du, u, x) = f (x) in Ω, u = 0 on Ω, (1.1) 
where the second order differential operator F is of Hamilton-Jacobi-Bellman (HJB) type and Ω ⊂ R N is a bounded domain. These equations -see the book [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF] and the surveys [START_REF] Krylov | Fully nonlinear second order elliptic equations : recent development[END_REF], [START_REF] Soner | Stochastic representations for nonlinear parabolic PDEs[END_REF], [START_REF] Cabre | Elliptic PDEs in probability and geometry[END_REF], as well as [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF] (various other references will be given below) -have been very widely studied because of their connection with the general problem of Optimal Control for Stochastic Differential Equations (SDE). We recall that a powerful approach to this problem is the so-called Dynamic Programming Method, originally due to R. Bellman, which indicates that the optimal cost (value) function of a controlled SDE should be a solution of a PDE like (1.1). More precisely, let us have a stochastic process X t satisfying

dX t = b α t (X t )dt + σ α t (X t )dW t ,
with X 0 = x, for some x ∈ Ω, and the cost function

J(x, α) = E τx 0 f (X t ) exp{ t 0 c αs (X s )ds} dt,
where τ x is the first exit time from Ω of X t , and α t is an index (control) process with values in a set A. Then the optimal cost function v(x) = inf α∈A J(x, α) is such that -v is a solution of (1.1), which is in the form We are going to study this boundary value problem under the following hypotheses, which will be kept throughout the paper : for some constants 0 < λ ≤ Λ, γ ≥ 0, δ ≥ 0, we assume A α (x) := σ α (x) T σ α (x) ∈ C(Ω), λI ≤ A α (x) ≤ ΛI, |b α (x)| ≤ γ, |c α (x)| ≤ δ, for almost all x ∈ Ω and all α ∈ A, and f ∈ L p (Ω), for some p > N . We stress however that all our results are new even for operators with smooth coefficients.

Our main statements on resonance, applied to this setting, imply in particular that for some A, b, c the optimal cost becomes arbitrarily large or small, depending on the function f which stays bounded. We give conditions under which (1.2) is solvable or not, and describe properties of its solutions.

The majority of works on HJB equations concern proper equations, that is, cases when F is monotone in the variable u (c α ≤ 0), in which no resonance phenomena can arise. It was shown in the well-known papers [START_REF] Evans | Classical solutions of fully nonlinear, convex, secondorder elliptic equations[END_REF], [START_REF] Evans | Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators[END_REF] and [START_REF] Lions | Résolution analytique des problèmes de Bellman-Dirichlet[END_REF] that a proper equation of type (1.2) has a unique strong solution, which is classical, if the coefficients are smooth. Uniqueness in the viscosity sense was proved in [START_REF] Jensen | The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations[END_REF], [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] and [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF].

Two of the authors recently showed in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] that existence and uniqueness of viscosity solutions holds for a larger class of operators, including nonproper operators whose principal eigenvalues -defined below -are positive. This had been proved much earlier for HJB operators with smooth coefficients in [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF], through a mix of probabilistic and analytic techniques. Very recently existence, non-existence and multiplicity results for cases when the eigenvalues are negative or have different signs, but are different from zero, appeared in [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF] and [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF].

Thus the only situations which remain completely unstudied are the cases when (1.2) is "at resonance", that is, when one of the principal eigenvalues of F is zero. The present paper is devoted to this problem. We also obtain a number of new results for cases without resonance.

We shall make essential use of the work [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF], where the properties of the eigenvalues are studied. In particular, based on the definition for the linear case in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], it is shown in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] that the numbers

λ + 1 (F, Ω) = sup{λ | Ψ + (F, Ω, λ) = ∅}, λ - 1 (F, Ω) = sup{λ | Ψ -(F, Ω, λ) = ∅},
where the sets Ψ + (F, Ω, λ) and Ψ -(F, Ω, λ) are defined as Ψ ± (F, Ω, λ) = {ψ ∈ C(Ω) | ± (F (D 2 ψ, Dψ, ψ, x) + λψ) ≤ 0, ±ψ > 0 in Ω}, are simple and isolated eigenvalues of F , associated to a positive and a negative eigenfunctions ϕ + 1 , ϕ - 1 ∈ W 2,q (Ω), q < ∞, and that their positivity guarantees the validity of one-sided Alexandrov-Bakelman-Pucci type estimates -see the review in the next section. From the optimal control point of view, λ + 1 can be seen as the fastest exponential rate at which paths can exit the domain, and λ - 1 is the slowest one, we refer to the exact formulae given in equalities ( 30)- [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF] of [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF]. For extensions and related results on eigenvalues for fully nonlinear operators we refer to [START_REF] Ishii | Demi-eigenvalues for uniformly elliptic Isaacs operators[END_REF], [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF], where Isaacs operators are studied, and to [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF], [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF], where more general singular fully nonlinear elliptic operators are considered. When no confusion arises, we write λ ± 1 or λ ± 1 (F ), and we always suppose that λ + 1 < λ - 1 -note it easily follows from the results in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] that λ + 1 = λ - 1 can only happen if all linear operators which appear in (1.2) have the same principal eigenvalues and eigenfunctions. For simplicity, we assume that Ω is regular, in the sense that it satisfies an uniform interior ball condition, even though many of the results can be extended to general bounded domains.

We make the convention that all (in)equalities in the paper are meant to hold in the L p -viscosity sense, as defined and studied in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF]. Note however that it is known that any viscosity solution of (1.2) is in W 2,p (Ω) and that any W 2,p -function which satisfies (1.2) in the viscosity sense is also a strong solution, that is, it satisfies (1.2) a.e. in Ω, see [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF], [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF], [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF], [START_REF] Winter | W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations[END_REF]. All constants in the estimates will be allowed to depend on N, λ, Λ, γ, δ and Ω.

Given a fixed function h ∈ L p (Ω) which is not a multiple of the principal eigenfunction ϕ + 1 , along the paper we write

f = tϕ + 1 + h, t ∈ R, (1.3) 
and consider t as a parameter. We note that all results and proofs below hold without modifications if the function ϕ + 1 in (1.3) is replaced by any other positive function, which vanishes on ∂Ω and whose interior normal derivative on the boundary is strictly positive. We visualize the set S of solutions of (1.2) in the space C(Ω) × R as follows: (u, t) ∈ S if and only if u is a solution of (1.2) with f = tϕ + 1 + h. The following notation will be useful: given a subset

A ⊂ C(Ω) × R and t ∈ R we define A t = {u ∈ C(Ω) | (u, t) ∈ A} and A I = ∪ t∈I A t , if I is an interval.
Our purpose is to describe the set S = {(u t , t) | t ∈ R}. When λ + 1 (F ) > 0 this can be done in a rather precise way, thanks to the results in [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF].

Theorem 1.1 Assume λ + 1 (F ) > 0. Then 1. ([25]) For every t ∈ R equation (1.2) possesses exactly one solution u = u t . In addition, if f = tϕ + 1 + h = 0 and f ≤ (≥)0 then u > (<)0 in Ω. If t < s then u t > u s in Ω.

The set S is a Lipschitz continuous curve such that

t → u t (x) is convex for each x ∈ Ω. There exist numbers t ± = t ± (h) such that if t ≥ t + (t ≤ t -) then u t < (>)0 in Ω. Moreover, for each compact K ⊂⊂ Ω lim t→-∞ min x∈K u t (x) = +∞ and lim t→+∞ max x∈K u t (x) = -∞.
Next, we state our first main theorem, which describes the set S when the first eigenvalue is zero. In this case the set of solutions is again a unique continuous curve, but it exists only on a half-line with respect to t, and becomes unbounded when t is close or equal to a critical number t * + -see Figure 1 below. Note the picture is very different from the one we obtain in the linear case -if L is a linear operator then the Fredholm alternative for Lu + λ 1 (L)u = tϕ 1 (L) + h says this equation has a solution only for one value of t, and then any two solutions differ by a multiple of ϕ 1 (L). 

= {u * + sϕ + 1 | s ≥ 0}.
In case the two eigenvalues have opposite signs, a multiplicity phenomenon occurs. This situation was studied in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF] and we recall it here. Note that in [START_REF] Sirakov | Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon[END_REF] the properties of the two branches were not described ; however by using the results there, our Lemma 2.1 and some topological and degree arguments, like in Sections 3-5, they can be obtained easily. Now we state our second main theorem, which describes properties of the set S when the second eigenvalue is at resonance, that is, when λ - 1 (F ) = 0. Here the analysis is more difficult than in Theorem 1.2, but still the picture is quite clear. 

Theorem 1.3 ([28]) Assume λ + 1 (F ) < 0 < λ - 1 (F ).
Theorem 1.4 Assume λ - 1 (F ) = 0.

The set

C [t * -,t * -+ε) is unbounded in L ∞ (Ω), for all ε > 0; there exists C = C(h) > 0 such that if u ∈ S [t * -,t * -+ε) and u L ∞ (Ω) ≥ C then u < 0 in Ω; if u n ∈ S [t * -,t * -+ε) and u n L ∞ (Ω) → ∞ then max K u n → -∞ for each compact K ⊂ Ω.

If S t *

-is unbounded in L ∞ (Ω) then there exists a function u * such that S t * -= {u * + sϕ - 1 | s ≥ 0}. Both Theorems 1.2 and 1.4 are proved by a careful analysis of the behaviour of the sets of solutions to equations with positive (resp. negative) eigenvalues, when λ + 1 (F ) 0 (resp. λ - 1 (F ) 0). We note that not much is known on solutions of (1.2) when both eigenvalues are negative. Thus, before proving Theorem 1.4, we need to analyze solutions of problems in which λ - 1 (F ) is small and negative. This is the content of the next theorem, which is of clear independent interest.

Theorem 1.5 There exists 0 < L ≤ ∞ such that if λ - 1 (F ) ∈ (-L, 0) then 1. There exists a closed connected set C ⊂ S, such that C t = ∅ for each t ∈ R. Further, S I is bounded in W 2,p (Ω), for each bounded I ⊂ R. 2. Setting α t = inf{sup Ω u | u ∈ S t } and u t (x) = sup{u(x) | u ∈ S t }, we have lim t→+∞ α t = +∞, and lim t→-∞ sup K u t (x) = -∞,
for each K ⊂⊂ Ω, and u t < 0 in Ω for all t below some number t -(h).

The mere existence of solutions to (1.2) when λ - 1 (F ) ∈ (-L, 0) was recently proved in [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF]. Here we describe qualitative properties of the set of solutions.

To summarize, the five theorems above give a global picture of the solutions of (1.2), depending on the values of the eigenvalues with respect to zero. This is shown on the following figure. 

(3) (5) (4)
Figure 1: The number at each graph corresponds to the number of the theorem where the shown situation is described. When λ + 1 crosses 0 the set S curves so that one region of non-existence and one region of multiplicity of solutions appears for t. Similarly when λ - 1 crosses 0 the set S "uncurves" back. In this process, the set S evolves from being "decreasing", when both eigenvalues are positive, to being "increasing", at least for large |t|, when both eigenvalues are negative. Note [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF] and (2.1)-(2.2) are exact, while in (3)- [START_REF] Birindelli | First eigenvalue and maximum principle for fully nonlinear singular operators[END_REF] there may be other solutions, except if Theorem 1.6 below holds.

A number of remarks on questions that are still open are now in order. First, it is clearly very important to give some characterization of the critical numbers t * in terms of F, h, and λ. On submitting this paper we learned of a very recent work by Armstrong [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF], where he studies this question in the case λ = λ + 1 , and proves part 1. of Theorem 1.2. by a different method. More specifically, he proves an interesting minimax formula for λ + 1 (F ), which generalizes the Donsker-Varadhan formula for linear operators to the nonlinear case. In particular, it is proved in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] that

λ + 1 = min µ∈M(Ω) sup u∈C 2 + (Ω) Ω (- F (D 2 u(x), Du(x), u(x), x) u(x) dµ(x).
Further, if M * is the subset of the set of probability measures M, on which this minimum is attained, then for each µ ∈ M * there exists a positive function ϕ µ ∈ L N/(N -1) (Ω) such that dµ = ϕ µ ϕ + 1 dx, and the number t * + from Theorem 1.2 can be written as

t * + = -min µ∈M * Ω hϕ µ dx.
The results in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] and our Theorem 1.2 are complementary to each other, as we describe the set of solutions, while the main theorems in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF] characterize the critical value t * + (h). Next, it is not clear how to distinguish between the two alternatives in statement 4. of Theorem 1.2 (that is, (2.1) and (2.2) on the above figure), for any given operator F . A simple and important example where we have (ii) is the Fucik operator F (u) = ∆u + λ 1 (∆)u + + bu -, indeed if we had (i), the fact that the solutions become positive for t close to t * , eliminates the term in u -, giving a contradiction. A rather simple example of an operator for which both (i) and (ii) can happen (depending on f ) is given in [START_REF] Armstrong | The Dirichlet problem for the Bellman equation at resonance[END_REF].

Naturally, the description of the set S when λ - 1 = 0, in contrast with λ + 1 = 0, is less precise due to the fact that in this situation we only have degree theory at our disposal to get existence of solutions, and that uniqueness of solutions above λ - 1 is not available in general (see however Theorem 1.6 below).

Further, a number of basic questions can be asked about exact multiplicity of solutions of (1.2) when λ + 1 (F ) < 0. When λ - 1 (F ) > 0 this question is a generalization of the famous Lazer-McKenna problem, which concerns the Fucik equation

∆u + bu + = ϕ 1 in Ω, u = 0 on ∂Ω. (1.4) Here F (D 2 u, Du, u) = ∆u + bu + , λ + 1 (F ) = λ 1 -b, λ - 1 (F ) = λ 1 , b = λ - 1 -λ + 1
and λ i are the eigenvalues of the Laplacian. It is known that equation (1.4) has exactly one solution if b < λ 1 , exactly two solutions if b ∈ (λ 1 , λ 2 ), exactly four solutions if b ∈ (λ 2 , λ 3 ) and exactly six solutions if b ∈ (λ 3 , λ 3 + δ), see [START_REF] Solimini | Some remarks on the number of solutions of some nonlinear elliptic problems[END_REF] and the references in that paper. This example suggests that multiplicity of solutions when the two eigenvalues have opposite signs depends on the distance λ - 1 -λ + 1 . We conjecture that there exists a number

C 0 such that if λ + 1 (F ) < 0 < λ - 1 (F ) ≤ λ + 1 (F ) + C 0 then problem (1.
2) has exactly two solutions, one solution or no solution, depending on f .

In the same way it should be asked if uniqueness of solutions holds when λ - 1 (F ) ∈ (-L, 0), for some L > 0. In view of the discussion above one might expect that the answer is affirmative if the two eigenvalues are sufficiently close to each other. This fact constitutes our last main theorem.

Theorem 1.6 There exists a number d 0 > 0 such that if

-d 0 ≤ λ + 1 (F ) ≤ λ - 1 (F ) < 0, then problem (1.
2) has at most one solution.

A consequence of this result is that if both Theorems 1.5 and 1.6 hold, then the sets C of solutions obtained in Theorems 1.4 and 1.5 are continuous curves, like in Theorems 1.1 and 1.2. We remark that d 0 is the difference between λ + 1 (F, Ω ) and λ + 1 (F, Ω), where Ω is some subset of Ω, whose Lebesgue measure is smaller than half the measure of Ω -see Proposition 6.1 and the proof of Theorem 1.6 in Section 6.

The article is organized as follows. In Section 2. we recall some known results which we use repeatedly in our analysis. We also complete the proof of Theorem 1.1. Section 3 is devoted to resonance phenomena at λ + 1 = 0. In Section 4 we analyze the existence and the properties of the set of solutions of (1.2) when λ - 1 < 0. This set serves to obtain the set of solutions at resonance when λ - 1 = 0, in Section 5. Finally, in Section 6 we prove Theorem 1.6. Some notational conventions will be helpful in the sequel. When no confusion arises, we write

F [u] := F (D 2 u, Du, u, x). We reserve the notation • = • L ∞ (Ω)
, while for all other norms we make precise mention to the corresponding space.

Preliminaries

In this section we give, for the reader's convenience, some of the results of the general theory of viscosity solutions of HJB equations, which we use in the sequel. We start by restating the basic assumptions on the operator

F : S N × R N × R × Ω → R.
(H0) F is positively homogeneous of degree 1, that is, for all t ≥ 0 and for all (M, p, u, x)

∈ S N × R N × R × Ω, F (tM, tp, tu, x) = tF (M, p, u,

x).

(H1) There exist γ, δ > 0 such that for all M, N ∈ S N , p, q ∈ R N , u, v ∈ R, and a.e. x ∈ Ω

M - λ,Λ (M -N ) -γ|p -q| -δ|u -v| ≤ F (M, p, u, x) -F (N, q, v, x) ≤ M + λ,Λ (M -N ) + γ|p -q| + δ|u -v|. (H2) F (M, 0, 0, x) is continuous in S N × Ω. (H3) If we denote G(M, p, u, x) = -F (-M, -p, -u, x) then G(M -N, p -q, u -v, x) ≤ F (M, p, u, x) -F (N, q, v, x) ≤ F (M -N, p -q, u -v, x).
Under (H0) the last assumption (H3) is equivalent to the convexity of F in (M, p, u). The simple proof of this fact can be found for instance in Lemma 1.1 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. We recall that Pucci's extremal operators are defined by

M + (M ) = sup A∈A tr(AM ), M - λ,Λ (M ) = inf A∈A tr(AM )
, where A ⊂ S N denotes the set of matrices whose eigenvalues lie in the interval [λ, Λ].

We often use the following results from [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] (Theorems 1.2-1.4 of that paper), which state that the principle eigenvalues are simple and isolated. 

F (D 2 u, Du, u, x) = -λ + 1 u in Ω, u = 0 on ∂Ω, (2.1)
or of one of the problems

F (D 2 u, Du, u, x) ≤ -λ + 1 u in Ω u > 0 in Ω, (2.2) 
F (D 2 u, Du, u, x) ≥ -λ + 1 u in Ω u(x 0 ) > 0, u ≤ 0 on ∂Ω, (2.3)
for some x 0 ∈ Ω. Then u ≡ tϕ + 1 , for some t ∈ R. If a function v ∈ C(Ω) satisfies either (2.1) or the inverse inequalities in (2.2) 

or (2.3), with λ + 1 replaced by λ - 1 , then v ≡ tϕ - 1 for some t ∈ R.

Theorem 2.2 ([25]

) There exists ε 0 > 0 depending on N, λ, Λ, γ, δ, Ω, such that the problem

F (D 2 u, Du, u, x) = -λu in Ω, u = 0 on ∂Ω, ( 2.4 
)

has no solutions u ≡ 0, for λ ∈ (-∞, λ - 1 + ε 0 ) \ {λ + 1 , λ - 1 }.
In the sequel we shall need the following one-sided Alexandrov-Bakelman-Pucci (ABP) estimate, obtained in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] as well. The ABP inequality for proper operators can be found in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] (an ABP inequality for the Pucci operator was first proved in [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF]). We recall that λ + 1 , λ - 1 are bounded above and below by constants which depend only on N, λ, Λ, γ, δ, Ω, and that both principal eigenvalues of any proper operator are positive, see [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF].

Theorem 2.3 ([25]

) Suppose the operator F satisfies (H0) -(H3).

I. If λ - 1 (F, Ω) > 0 then for any u ∈ C(Ω), f ∈ L N (Ω), the inequality F (D 2 u, Du, u, x) ≤ f implies sup Ω u -≤ C(sup ∂Ω u -+ f + L N (Ω) ),
where C depends on N, λ, Λ, γ, δ, Ω, and

1/λ - 1 . II. In addition, if λ + 1 (F, Ω) > 0 then F (D 2 u, Du, u, x) ≥ f implies sup Ω u ≤ C(sup ∂Ω u + + f - L N (Ω) )
.

Hence if λ + 1 (F, Ω) > 0 then the comparison principle holds : if u, v ∈ C(Ω) are such that F [u] ≤ F [v] in Ω, u ≥ v on ∂Ω, and one of u, v is in W 2,N (Ω) then u ≥ v in Ω.
Note this result with f = 0 gives one-sided maximum principles. We also recall the following strong maximum principle or Hopf's lemma, which is a consequence from the results in [START_REF] Bardi | On the strong maximum principle for fully nonlinear degenerate elliptic equations[END_REF] (a simple proof can be found in the appendix of [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF]).

Theorem 2.4 ([3]) Suppose w ∈ C(Ω) is a viscosity solution of M - λ,Λ (D 2 w) -γ|Dw| -δw ≤ 0 in Ω,
and w ≥ 0 in Ω. Then either w ≡ 0 in Ω or w > 0 in Ω and at any point

x 0 ∈ ∂Ω at which w(x 0 ) = 0 we have lim inf t 0 w(x 0 + tν) -w(x 0 ) t > 0,
where ν is the interior normal to ∂Ω at x 0 .

We are going to use the following regularity result. It was proved in this generality in [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF] (interior estimate) and in [START_REF] Winter | W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations[END_REF] (global estimate).

Theorem 2.5 ( [START_REF] Świech | W 1,p -estimates for solutions of fully nonlinear uniformly elliptic equations[END_REF], [START_REF] Winter | W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations[END_REF]) Suppose the operator F satisfies (H0)-(H2) and u is a viscosity solution of

F (D 2 u, Du, u, x) = f in Ω, u = 0 on ∂Ω. Then u ∈ W 2,p (Ω), and u W 2,p (Ω) ≤ C u L ∞ (Ω) + f L p (Ω) ,
where C depends only on N, p, λ, Λ, γ, δ, Ω.

Next we quote the existence result from [START_REF] Lions | Bifurcation and optimal stochastic control[END_REF] and [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF].

Theorem 2.6 ( [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]) Suppose the operator F satisfies (H0) -(H3).

I. If λ - 1 (F, Ω) > 0 then for any f ∈ L p (Ω), p ≥ N , such that f ≥ 0 in Ω, there exists a solution u ∈ W 2,p (Ω) of F (D 2 u, Du, u, x) = f in Ω, u = 0 on ∂Ω, such that u ≤ 0 in Ω. II. In addition, if λ + 1 (F, Ω) > 0 then for any f ∈ L p (Ω), p ≥ N , there exists a unique viscosity solution u ∈ W 2,p (Ω) of F (D 2 u, Du, u, x) = f in Ω, u = 0 on ∂Ω.
The next theorem is a simple consequence of the compact embedding W 2,p (Ω) → C 1,α (Ω), Theorem 2.5, and the convergence properties of viscosity solutions (see Theorem 3.8 in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF]).

Theorem 2.7 Let λ n → λ in R and f n → f in L p (Ω), p > N . Suppose F satisfies (H1) and u n is a solution of F (D 2 u n , Du n , u n , x) + λ n u n = f n in Ω, u n = 0 on ∂Ω. If {u n } is bounded in L ∞ (Ω) then a subsequence of {u n } converges in C 1 (Ω) to a function u, which solves F (D 2 u, Du, u, x) + λu = f in Ω, u = 0 on ∂Ω.
We now give the proof of Theorem 1.1. Proof of Theorem 1.1. Part 1. is a consequence of Theorems 2.3 and 2.6.

Let us prove Part 2. For t ∈ R, let u t be the solution of (1.2) with f as in (1.3), that is, F [u t ] = tϕ + 1 + h, where λ + 1 (F ) > 0. Then u t /t is bounded as t → -∞. Indeed, if this is not the case, there exists a sequence {t n } such that we have t n → -∞ and u t n /t n → ∞, in particular u t n → ∞. Defining ûn = u tn / u tn , we get by (H0)

F (D 2 ûn , Dû n , ûn , x) = t n u tn ϕ + 1 + h u tn in Ω, ûn = 0 on ∂Ω.
The right-hand side of this equation converges to zero in L p (Ω), so ûn converges uniformly to zero, by Theorem 2.7 (note the limit equation F [û] = 0 has only the trivial solution, since λ + 1 (F, Ω) > 0). This contradicts ûn = 1. Thus, by Theorem 2.7, for some sequence t n → -∞, we have that

lim n→∞ u t n -t n = v * in C 1 (Ω), (2.5) 
where v * satisfies

F (D 2 v * , Dv * , v * , x) = -ϕ + 1 in Ω, v * = 0 on ∂Ω.
By Theorems 2.3 and 2.4 we have v * > 0 in Ω and ∂v ∂ν > 0 on ∂Ω. These facts, (2.5), and the monotonicity of u t in t imply the last two statements of Part 2 (the analysis for t → ∞ is similar).

That S is Lipschitz follows from (H3) and Theorem 2.3, applied to

F [u t -u s ] ≥ (t -s)ϕ + 1 and F [u s -u t ] ≥ (s -t)ϕ + 1 .
Finally, the convexity property of the curve is a consequence of the following simple lemma and the comparison principle, Theorem 2.3.

Lemma 2.1 Let t 0 , t 1 ∈ R and t k = kt 1 + (1 -k)t 0 , for k ∈ [0, 1]. Suppose u t i ∈ S t i , i = 0, 1. Then the function ku t 1 + (1 -k)u t 0 is a supersolution of F (D 2 u, Du, u, x) = t k ϕ + 1 + h in Ω, u = 0 on ∂Ω. Proof. Use F [ku t 1 + (1 -k)u t 0 ] ≤ kF [u t 1 ] + (1 -k)F [u t 0 ].

Notation.

In what follows it will be convenient for us to write problem (1.1) in the form

F (D 2 u, Du, u, x) + λu = tϕ 1 (x) + h(x) in Ω, u = 0 on Ω, (2.6) 
where F is supposed to proper (if necessary, we replace F by F -δ and λ by λ + δ), and study its solvability in terms of the value of the parameter λ ∈ R + . For instance, Theorem 1.2 corresponds to λ = λ + 1 , Theorem 1.4 corresponds to λ = λ - 1 , Theorem 1.1 corresponds to λ < λ + 1 , etc.

3 Resonance at λ = λ + 1 . Proof of Theorem 1.2

We first set up some preliminaries. Let {λ n } be a sequence such that λ n < λ + 1 for all n, and lim n→∞ λ n = λ + 1 . We consider the problem

F (D 2 u, Du, u, x) + λ n u = tϕ + 1 + h in Ω, u = 0 on ∂Ω,
and its unique solution u(n, t). In the sequel we shall write u n (t) = u(n, t) and also sometimes u n or u t instead of u(n, t), when one of the parameters is kept fixed. We define

Γ + n = {u n (t) | t ∈ R}. Recall that, by Theorem 1.1, if s < t then u n (t) < u n (s).
We parameterize Γ + n in the following way. We take a reference function ũn = u n ( tn ) ∈ Γ + n , which is arbitrary but fixed for each n ∈ N (later we choose an appropriate sequence {ũ n }), and we define the function

d n : Γ + n → R d n (u) = sign(u -ũn ) u -ũn . (3.7) Lemma 3.1 The function d n : Γ + n → R is a bijection, for each n ∈ N. In addition, d n is (Lipschitz) continuous.
Proof. By (H3) for any t 1 , t 2 ∈ R (say t 1 > t 2 ) we have

F [u n (t 1 ) -u n (t 2 )] + λ n (u n (t 1 ) -u n (t 2 )) ≥ (t 1 -t 2 )ϕ + 1 . (3.8)
The ABP inequality (Theorem 2.3) applies to this inequality -here we use λ n < λ + 1 -so we have

u n (t 1 ) -u n (t 2 ) ≤ C n |t 1 -t 2 |.
If t 1 > t 2 > tn (the argument is the same if t 2 < t 1 < tn ) we get

|d n (u 1 ) -d n (u 2 )| = u t 1 -ũn -u t 2 -ũn ≤ u t 1 -u t 2 ≤ C n |t 1 -t 2 |. If t 1 > tn > t 2 we have |d n (u 1 )-d n (u 2 )| ≤ u t 1 -ũn + u t 2 -ũn ≤ C n (t 1 -tn + tn -t 2 ) = C n |t 1 -t 2 |, which proves the Lipschitz continuity. Assume that d n (u n (t 1 )) = d n (u n (t 2 )), then u n (t 1 ) -ũn = u n (t 2 ) -ũn and u n (t i ) > ũn (or u n (t i ) < ũn ) for i = 1, 2.
On the other hand, if t 1 = t 2 , say t 1 < t 2 , then u n (t 1 ) > u n (t 2 ) and consequently u n (t 1 ) -ũn = u n (t 2 ) -ũn , which is impossible. Thus, d n is one to one. By Part 2. in Theorem 1.1 we see that d n is onto. Now we start the analysis of the resonance at λ = λ + 1 (recall we are working with (2.6)). Given s ∈ R we define the proposition P(s) as follows:

P(s) :

There exist sequences {λ n }, {h n } and {u n } such that λ n < λ + 1 for all n,

lim n→∞ λ n = λ + 1 , h n → h in L p (Ω) as n → ∞, F (D 2 u n , Du n , u n , x) + λ n u n = sϕ + 1 + h n , (3.9)
and u n is unbounded.

By dividing (3.9) by u n , thanks to (H0), Theorem 2.1 and Theorem 2.7, we easily see that this definition is equivalent to

P(s) : There exist sequences {λ n }, {h n }, such that λ n < λ + 1 for all n, λ n → λ + 1 , h n → h in L p (Ω), the solution of F (D 2 u n , Du n , u n , x)+λ n u n = sϕ + 1 +h n satisfies u n → ∞, and u n u n → ϕ + 1 > 0 in C 1 (Ω).
We define t * + = sup{t ∈ R | P(s) for all s < t}.

(3.10)

The next lemmas give meaning to this definition.

Lemma 3.2 Given t ∈ R, P( t) implies P(t) for all t < t.

Proof. Assuming the contrary, there is t 0 < t such that P(t 0 ) is false. This means that for some sequences {λ n }, {h n } as above, the sequence of the solutions of

F (D 2 v n , Dv n , v n , x) + λ n v n = tϕ + 1 + h n in Ω, v n = 0 on ∂Ω.
is unbounded, while the sequence of the solutions of

F (D 2 u n , Du n , u n , x) + λ n u n = t 0 ϕ + 1 + h n in Ω, u n = 0 on ∂Ω, is bounded in L ∞ (Ω)
. By the comparison principle (Theorem 2.3) v n ≤ u n for all n, since t > t 0 and ϕ + 1 > 0. On the other hand, by the one-sided ABP inequality, Theorem 2.3 1. (note λ n is uniformly away from λ - has no solutions for t < t1 .

1 , that is, λ - 1 (F + λ n ) ≥ λ - 1 (F ) -λ + 1 (F ) > 0), the sequence {v n } is bounded below. Thus {v n } is bounded, a contradiction.
Proof. Let v be the solution of the Dirichlet problem

F (D 2 v, Dv, v, x) = -h in Ω, u = 0 on ∂Ω
(this problem is uniquely solvable, by the well-known results on proper equations, or by Theorem 2.6). We are going to show that the statement of the lemma is true with t1

= -1 -λ + 1 sup x∈Ω v(x) ϕ + 1 (x)
.

The last quantity is finite, by Theorems 2.3-2.5. Indeed, if (3.11) has a solution u = u(t) for some t < t1 , we get

F [u + v] + λ + 1 (u + v) ≤ F [u] + F [v] + λ + 1 u + λ + 1 v ≤ tϕ + 1 + λ + 1 v ≤ -ϕ + 1 < 0, (3.12) 
where we have used

F [u + v] ≤ F [u] + F [v]
, which follows from (H3). Since we have λ -

1 (F + λ + 1 , Ω) = λ - 1 -λ + 1 > 0, Theorem 2.3 1
. again applies and yields u + v > 0 in Ω. We can now use Theorem 2.1 and conclude that u + v is a multiple of ϕ + 1 , which contradicts the strict inequality in (3.12).

Lemma 3.4

The set T = {t ∈ R | P(t)} is not empty.

Proof. Assuming the contrary, we find sequences {t n }, {u m n }, such that 

P(t n ) is false, t n → -∞ as n → ∞, u m n satisfies F (D 2 u m n , Du m n , u m n , x)+(λ + 1 -1/m)u m n = t n ϕ + 1 +h in Ω, u m n = 0
F (D 2 u n , Du n , u n , x) + λ n u n = tϕ + 1 + h n in Ω, u n = 0 on ∂Ω.
(we recall this problem has a unique solution, since λ n < λ + 1 and comparison holds). We need to show

{u n } is bounded in L ∞ (Ω), if t is large enough.
First, Theorem 2.3 I. implies that u n is bounded below independently of n (we recall once again that λ -

1 (F + λ n ) ≥ λ - 1 -λ + 1 > 0). Next, let v n be the solution of the Dirichlet problem F (D 2 v n , Dv n , v n , x) = min{h n , 0} ≤ 0 in Ω, v = 0 on ∂Ω.
Then v n ≥ 0 in Ω, by the maximum principle, {v n } is bounded in C 1 (Ω), by Theorems 2.3 and 2.5, and 

F [v n ] + λ n v n ≤ min{h n , 0} + λ + 1 v n ≤ h n + tϕ + 1 = F [u n ] + λ n u n , provided t > λ + 1 sup x∈Ω,n∈N v n (x) ϕ + 1 (x) . ( 3 
F (D 2 u n , Du n , u n , x) + λ n u n = t 1 ϕ + 1 + h n in Ω, u n = 0 on ∂Ω is such that u n ≥ k n ϕ + 1 for some k n → ∞.
Let now w n be the solution of

F (D 2 w n , Dw n , w n , x) = h n -h in Ω, u n = 0 on ∂Ω (3.16)
By Theorems 2.3 and 2.5 we know that (up to a subsequence) w n → 0 in C 1 (Ω). Hence, by the boundary Lipschtiz estimates (see Theorem 2.5, or Proposition 4.9 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]) applied to (3.14), (3.16), we have

u + w n ≤ Cdist(x, ∂Ω), which implies u n -w n -u > 0
for n sufficiently large. Since w n → 0 and λ n → λ + 1 we also have

t 1 ϕ + 1 -2λ + 1 |w n | > tϕ + 1 and |u| ≤ t 1 -t 2(λ + 1 -λ n ) ϕ + 1 in Ω. However (H3) implies F [u n -w n -u] ≥ F [u n ] -F [w n ] -F [u], so F [u n -w n -u] + λ n (u n -w n -u) ≥ (t 1 -t)ϕ + 1 -λ + 1 |w n | + (λ + 1 -λ n )u ≥ 0.
Then the maximum principle (Theorem 2.3) gives u n -w n -u ≤ 0, a contradiction.

Next we prove the uniqueness of solutions above t * + . In order to do this, we need the following simple result on convex functions. Lemma 3.6 Let f : R n → R be positively homogeneous of degree one and convex. If for some u, v ∈ R n and for some τ > 0 we have

f (u + τ v) = f (u) + τ f (v) (3.17)
then (3.17) holds for all τ ≥ 0.

Proof. Using (3.17) and the homogeneity of f we find that

f (λ 0 u + (1 -λ 0 )v) = λ 0 f (u) + (1 -λ 0 )f (v), with λ 0 = 1/(1 + τ ). If there is λ ∈ (λ 0 , 1) such that f (λu + (1 -λ)v) < λf (u) + (1 -λ)f (v) (3.18)
we take θ = 1 -λ 0 /λ ∈ (0, 1), that is, (1 -θ)λ = λ 0 , and notice that

λ 0 f (u) + (1 -λ 0 )f (v) = f (λ 0 u + (1 -λ 0 )v) = f (θv + (1 -θ)(λu + (1 -λ)v)) ≤ θf (v) + (1 -θ)f (λu + (1 -λ)v) < (1 -λ 0 )f (v) + λ 0 f (u),
which is a contradiction. If there is λ ∈ (0, λ 0 ) such that (3.18) holds, we proceed similarly. Thus,

f (λu + (1 -λ)v) = λf (u) + (1 -λ)f (v), for all λ ∈ [0, 1]
. From here we get the conclusion, taking λ = 1/(1 + t).

Proposition 3.2 1. If t > t * + and u 1 , u 2 satisfy F (D 2 u i , Du i , u i , x) + λ + 1 u i = tϕ + 1 + h in Ω, u i = 0 on ∂Ω, i = 1, 2, then u 1 = u 2 .
2. If t = t * + and u 1 , u 2 are as in 1. then u 1 = u 2 + sϕ 1 , for some s ∈ R.

Proof. Suppose u 1 = u 2 , then we may assume there exists x 0 ∈ Ω such that u 1 (x 0 ) > u 2 (x 0 ). By (H3) we have F [u 1 -u 2 ] + λ + 1 (u 1 -u 2 ) ≥ 0, so by Theorem 2.1 there exists τ > 0 such that u 1 -u 2 = τ ϕ + 1 . This implies andx ∈ Ω is fixed. By hypotheses (H0) and (H3) the function f is positively homogeneous of degree one and convex in X. Therefore we can use Lemma 3.6 to conclude that (3.19) holds for every τ > 0.

F [u 1 + τ ϕ + 1 ] = F [u 1 ] + τ F [ϕ + 1 ] a.e. in Ω (3.19) (note u 1 , ϕ + 1 ∈ W 2,N (Ω)). Consider the function f (X) = F (X, x) where X = (M, p, u) ∈ S N ×R N ×R = R N 2 +N +1 ,
We obtain that for every n ∈ N the function

v n = u 1 + nϕ + 1 satisfies F (D 2 v n , Dv n , v n , x) + λ + 1 v n = tϕ + 1 + h in Ω, u i = 0 on ∂Ω. It follows that F [v n ] + λ + 1 - 1 n 2 v n = tϕ + 1 + h - 1 n 2 u 1 - 1 n ϕ + 1 =: tϕ + 1 + h n in Ω. Note h n → h in L p (Ω)
. However this is impossible if t > t * + , by the definition of t * + , since v n is unbounded, which means P(t) holds. Now we study the behaviour of the branch Γ + n as n → ∞. Let ũ be the unique solution (given by Proposition 3.1) of

F (D 2 ũ, Dũ, ũ, x) + λ + 1 ũ = (1 + t * + )ϕ + 1 + h in Ω, ũ = 0 on ∂Ω,
and set

d(u) = sign(u -ũ) u -ũ . Lemma 3.7 If u i and t i , i = 1, 2, are such that d(u 1 ) = d(u 2 )
and

F (D 2 u i , Du i , u i , x) + λ + 1 u i = t i ϕ + 1 + h in Ω, u i = 0 on ∂Ω, for i = 1, 2, then t 1 = t 2 and u 1 = u 2 . Proof. By Proposition 3.2 u 1 = u 2 implies t 1 = t 2 . If t 1 = t 2 (say t 1 > t 2 ), F [u 1 -u 2 ] + λ + 1 (u 1 -u 2 ) ≥ (t 1 -t 2 )ϕ + 1 > 0 in Ω, u 1 -u 2 = 0 on ∂Ω.
Either there exists

x 0 ∈ Ω such that u 1 (x 0 ) > u 2 (x 0 ) or u 1 ≤ u 2 in Ω.
In the first case, Theorem 2.1 implies the existence of τ > 0 such that u 1 -u 2 = τ ϕ + 1 so that u 1 > u 2 in Ω. In the second case, by the strong maximum principle, we have that u 1 = u 2 (excluded by t 1 = t 2 ) or u 1 < u 2 in Ω. Thus, if u 1 = u 2 , then either u 1 > u 2 or u 1 < u 2 in Ω, and in both cases d(u 1 ) = d(u 2 ), completing the proof of the lemma.

We recall (Lemma 3.1) that the set Γ + n can be re-parameterized as a curve, by using the function d n . In the definition of d n we used the arbitrary function ũn , which we choose now as the unique solution of

F (D 2 ũn , Dũ n , ũn , x) + λ n ũn = (1 + t * + )ϕ + 1 + h in Ω, ũn = 0 on ∂Ω.
By the definition of t * + { ũn } is bounded, so by Theorem 2.7 and the uniqueness property proved in Proposition 3.2 we find that ũn → ũ, where ũ is as above, the unique solution of

F (D 2 ũ, Dũ, ũ, x) + λ + 1 ũ = (1 + t * + )ϕ + 1 + h in Ω, ũ = 0 on ∂Ω.
By Lemma 3.7, for fixed d ∈ R the following system in (u, t)

F (D 2 u, Du, u, x) + λ n u = tϕ + 1 + h in Ω, u = 0 on ∂Ω, d n (u) = d (3.20) d(u) ≥ d(u *
) are solutions of (3.22) with t = t * + , which is the situation described in Part 4. (ii). In the second case u t / u t converges in C 1 (Ω) to ϕ + 1 > 0 which implies Part 4. (i). Note in this case there cannot be solutions with t = t * + , because of Lemma 3.9. Let us now consider the limit t → ∞. First, if for some sequence t n → ∞ we have u tn /t n → 0, we divide (3.22) by t n , pass to the limit and get a contradiction. So u t → ∞ as t → ∞. By the monotonicity of u t in t, min Ω u t < -1 for sufficiently large t.

Assume for some sequence t n → ∞ we have u t n /t n → ∞. Then we divide (3.22) by u t n and see that u t n / u t n ⇒ ϕ + 1 , which is impossible, since u t n takes negative values and ϕ + 1 > 0. So there is a sequence t n → ∞ such that u tn / u tn converges in C 1 (Ω) to a solution of

F (D 2 v, Dv, v, x) + λ + 1 v = kϕ + 1 in Ω, v = 0 on ∂Ω, (3.23) 
for some k > 0. This problem is the particular case of (2.6) when h = 0. It is clear that (3.23) has solutions for k ≥ 0 (by Theorem 2.6) and does not have solutions for k < 0 (by the definition of λ + 1 and Theorem 2.1). Further, this problem obviously has solutions for k = 0 (in other words, for h = 0 we always are in the case 4. (ii)) and the minimal solution at k = 0 is u * = 0. Then, by the properties of the curve of solutions we already proved (3.23) has a unique solution which satisfies v < u * = 0, since k > 0.

This means u tn / u tn converges in C 1 (Ω) to a negative function v, such that ∂v ∂ν < 0 on ∂Ω (by (3.23) and Hopf's lemma). This implies statement 3. for the subsequence u t n . Since u t is monotonous, we have 3. for all u t .

Finally, let us show that t → u t (x) is convex. With the notations from Lemma 2.1, we note that for each compact interval [t

0 , t 1 ] ⊂ [t * + , ∞) there exists a function v ∈ W 2,p (Ω) which is a subsolution of F (D 2 u, Du, u, x) + λ + 1 u = t k ϕ + 1 + h in Ω, u = 0 on ∂Ω, ( 3.24) 
and v < ku

t 1 + (1 -k)u t 0 , for each k ∈ (0, 1) (we take u t 0 = u * if t 0 = t * + )
. For instance, we can take v to be the negative solution -given by Theorem 2.6 I. -of the problem

F [v] + λ + 1 v = max{t 1 , 1}ϕ + 1 + max{h, 0} in Ω, u = 0 on ∂Ω,
and then a take a multiple of v by a sufficiently large constant, to ensure that v < u t 1 ≤ ku t 1 + (1 -k)u t 0 for each k ∈ (0, 1). Then by Lemma 2.1 and the usual sub-and supersolution method there exists a solution of (3.24) which is below ku t 1 + (1 -k)u t 0 . By the uniqueness which we already proved, this solution has to be u t k . Theorem 1.2 is proved.

has no non-trivial solution, for all τ ∈ [0, 1]. Now we define the operator

G : IR×[0, 1]×C(Ω) → C(Ω), for (t, τ, v) ∈ IR×[0, 1]×C(Ω) as u = G(t, τ, v),
where u is the solution of the equation

F τ (D 2 u, Du, u, x) = -µ(τ )v + tϕ + 1 + h in Ω, u = 0 on ∂Ω. (4.2)
When we restrict the variable t to the interval [-n, n], the operator G becomes compact. Moreover, there exists R > 0 such that the Leray-Schauder degree d(I -G(t, τ, .), B R , 0) is well defined. Indeed, a priori bounds follow directly from the non-existence property of equation (4.1), in fact, if (4.2) has a sequence of solutions u n = v n with u n → ∞ we divide (4.2) by u n , pass to the limit and get a contradiction. Then, by the homotopy invariance of the Leray -Schauder degree, we have

d(I -G(t, 1, •), B R , 0) = d(I -G(t, 0, •), B R , 0) = -1.
The last equality is a standard fact, since the operator F 0 is the Laplacian. Thus, by the well-known results of [START_REF] Rabinowitz | Théorie du degré topologique et applications à des problèmes aux limites non-linéaires[END_REF] (alternatively, we refer to [START_REF] Chang | Methods in Nonlinear Analysis[END_REF]), see in particular Corollary 10 in chapter V of that work, the lemma follows.

We will need the following topological result, whose proof is a direct consequence of Lemma 3.5.2 in [START_REF] Chang | Methods in Nonlinear Analysis[END_REF].

Lemma 4.3 Let R ⊂ C(Ω) × [-n, n] be a compact connected set such that P(R) = [-n, n]. If R 0 = {(u, t) ∈ R | t ∈ [t -, t + ]}, with [t -, t + ] ⊂ [-n, n] then there exists a connected component E 0 of R 0 such that P(E 0 ) = [t -, t + ].
Proof of Theorem 1.5 1. The boundedness of S I for each bounded interval I is trivial -indeed, if we have a sequence of solutions to the problem which is unbounded in L ∞ (Ω), we divide each equation by the norm of its solution, as we have already done a number of times, and we find a solution which contradicts Theorem 2.2. Recall the regularity result in Theorem 2.5.

For each n ∈ N we define E n = C(λ, n) as the connected set given in Lemma 4.2. Then, by Lemma 4.3, there are closed connected subsets

E N n of {(u, t) ∈ E n | t ∈ [-N, N ]}, for 1 ≤ N ≤ n, such that P(E N n ) = [-N, N ] and E N n ⊂ E N +1 n , for N = 1, 2, ..., n -1.
In order to get the last property, we proceed step by step, defining E N n through Lemma 4.3, by decreasing N starting from n. Now we define the sets E N , for N ∈ N, as follows :

E N = {(u, t) ∈ C(Ω) × R | there exist (u k , t k ) ∈ E N k , k ≥ k, ∀k ∈ N, (u k , t k ) → (u, t), as k → ∞}. We notice that E N is closed and P(E N ) = [-N, N ]. Since the pairs (u, t) ∈ E N n are solutions of F (D 2 u, Du, u, x) + λu = tϕ + 1 + h in Ω, u = 0 on ∂Ω, t ∈ [-N, N ],
we see that the set E N is comprised of solutions of these equations, and consequently it is compact in C 1 (Ω). Then it is easy to see that for all ε > 0 there exists n 0 ∈ N such that E N n ⊂ B(E N , ε) for all n ≥ n 0 . Here we denote by B(U, ε) the ε-neighborhood of the set U . Indeed, if there exists ε > 0 and a sequence k ≥ k, such that (u k , t k ) ∈ E N k \ B(E N , ε), then t k and u k are bounded, and a subsequence of (u k , t k ) converges to some (u, t) in E N , which is a contradiction.

By the convergence property just proved, we see that E N is connected. In fact, if it is not connected, there exist non-empty closed subsets U, V of E N such that U ∩ V = ∅ and U ∪ V = E N . By compactness, there exists ε > 0 such that dist(U, V ) > ε, and then B(U, ε/4) ∩ B(V, ε/4) = ∅ which is impossible, since the connected set E N n is contained in B(U, ε/4) ∪ B(V, ε/4) for n large enough, as stated in the claim above.

We observe that, according to our construction of the sets E N n and E N , we have E N ⊂ E N +1 for all N ∈ N. So, to complete the proof of Part 1. we just need to define C = C(λ) = ∪ N ∈N E N , which is clearly a closed connected set of solutions and P(C) = R.

Before proceeding to the proof of Part 2. of Theorem 1.5, we give a generalized version of the Antimaxmum Principle for fully nonlinear equations, recently proved in [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF].

Proposition 4.1 Let f ∈ L p (Ω), p > N , be such that f ≤ 0, f ≡ 0 in Ω.
1. There is ε 0 > 0 (depending on f ) such that any solution of the equation

F (D 2 u, Du, u, x) + λu = kf in Ω, u = 0 on ∂Ω, (4.3) satisfies u < 0 in Ω, provided λ ∈ (λ - 1 , λ - 1 + ε 0 ) and k ∈ (0, ∞). 2. Equation (4.3) has no solutions if λ = λ - 1 and k > 0.
Proof. We first prove statement 2. Suppose there is a solution u of (4.3) with λ = λ - 1 and k > 0. If there exists x 0 ∈ Ω such that u(x 0 ) < 0, then by Theorem 2.1 there exists k 0 > 0 such that u = k 0 ϕ - 1 , a contradiction with f ≡ 0. Therefore u ≥ 0 in Ω and then, by the strong maximum principle, u > 0 in Ω. The existence of such a function contradicts Theorem 2.1.

Let us now prove statement 1. Suppose there are sequences

k n > 0, λ n > λ - 1 , λ n → λ - 1 ,
and ũn of solutions of (4.3) such that ũn is positive or zero somewhere in Ω. Then u n = ũn /k n has the same property and solves (4.3) with k = 1. Suppose first that u n is bounded, then a subsequence of u n converges uniformly to a solution of (4.3) with λ = λ - 1 and k = 1, a contradiction with the result we already proved in 2. If u n is unbounded, then a subsequence of u n / u n converges in C 1 (Ω) to the negative function ϕ - 1 , a contradiction as well.

nontrivial solution of F (v) + λv = 0, a contradiction with Theorem 2.2, or v n converges to a nonpositive solution of F (v) + λv = kϕ 1 > 0, which is then negative by Hopf's lemma. This is a contradiction again, here with the definition of λ - 1 and λ > λ - 1 . Theorem 1.5 is proved.

5 Resonance at λ = λ - 1 . Proof of Theorem 1.4

In this section we study the behavior of the set of solutions of our problem in the second resonant case, that is, when λ = λ - 1 . For this purpose we consider sequences {λ n } with λ n ∈ (λ - 1 , λ - 1 + ε) (everywhere in this section ε = L will be the number which appears in Theorem 1.5, found in the previous section), which converge to λ - 1 , and we study the asymptotic behavior of the connected sets C = C(λ n ) ⊂ S(λ n ), obtained in Theorem 1.5.

We modify the definition of condition P(s) as follows:

P(s) : There exist sequences {λ n }, {h n } and {u n } such that λ n > λ - 1 for all n, lim n→∞ λ n = λ - 1 , h n → h in L p (Ω), F (D 2 u n , Du n , u n , x) + λ n u n = sϕ + 1 + h n in Ω, u n = 0 on ∂Ω,
and u n is unbounded.

Since no confusion arises with the definition given in Section 3, we keep the same notation. As before, P(s) is equivalent to

P(s) :

There exist sequences {λ n }, {h n } and {u n } such that

λ n > λ - 1 for all n, lim n→∞ λ n = λ - 1 , h n → h in L p (Ω), {u n } is a sequence of solutions of F (D 2 u n , Du n , u n , x) + λ n u n = sϕ + 1 + h n , such that u n → ∞, and u n u n → ϕ - 1 < 0 in C 1 (Ω).
Then we define, as before, t * -= sup{t ∈ R | P(s) for all s < t}.

(5.1)

The following lemmas are necessary to give sense to this definition.

Lemma 5.1 P( t) implies P(t) for all t < t.

6 Proof of Theorem 1.6

The proof of Theorem 1.6 relies on an estimate on the difference between the first eigenvalue of an operator on a domain and a proper subset of the domain, which was proved in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] (Theorem 2.4 in that paper) in the context of general linear operators. We give here a nonlinear version of this result. Given a smooth bounded domain A ⊂ Ω, we write λ + 1 (A) for the first eigenvalue of the operator F on A. Proposition 6.1 Assume (H0)-(H3). Let Γ be a closed set in Ω, such that |Γ| ≥ α 0 > 0. Then there exists a constant α > 0 depending only on λ, Λ, N, γ, δ, Ω, α 0 , such that for any smooth subdomain A of Ω \ Γ we have

λ + 1 (A) ≥ λ + 1 (Ω) + α.
The proof of Proposition 6.1 is very similar to the proof of Theorem 2.4 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. Below we will mention the points where some small changes have to be made, but before doing that we show how we get the proof of Theorem 1.6, assuming Proposition 6.1.

Proof of Theorem 1.6. We take d 0 = α/2, where α is the number from Proposition 6.1, with α 0 = |Ω|/2. Suppose for contradiction that we have two different solutions u 1 and u 2 of (1.1), with F satisfying the hypothesis of Theorem 1.6. We distinguish two cases.

First, suppose the function w = u 1 -u 2 has a constant sign in Ω, say w ≤ 0 (otherwise we take w = u 2 -u 1 ). Then (H3) implies F (w) ≥ 0 in Ω and then w < 0 in Ω, by Hopf's Lemma. The existence of such a function contradicts the definition of λ - 1 (Ω) and the assumption λ - 1 (Ω) < 0, see Theorem 2.1. Second, if w = u 1 -u 2 changes sign in Ω, then the sets Ω

1 = {x ∈ Ω | u 1 (x) > u 2 (x)} and Ω 2 = {x ∈ Ω | u 2 (x) > u 1 (x)}
are not empty. One of these sets, say Ω 1 , satisfies |Ω 1 | ≤ |Ω|/2. Take Ω1 to be any connected component of Ω 1 and A to be any smooth subdomain of Ω1 . Then the choice of d 0 , Proposition 6.1 and λ + 1 (Ω) ≥ -d 0 imply

λ + 1 (A) ≥ α/2 > 0.
Take a sequence of smooth domains A n ⊂ Ω1 which converges to Ω1 . Then λ + 1 (A n ) ≥ α/2 > 0, so by applying the ABP inequality (Theorem 2.3) to F (w) ≥ 0 in A n we get sup

A n w ≤ C sup ∂A n w.
Letting n → ∞ implies w ≤ 0 in Ω1 , since w = 0 on ∂ Ω1 . This is a contradiction with the definition of Ω 1 = ∅ and proves Theorem 1.6.

Proof of Proposition 6.1. We follow the proof of Theorem 2.4 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], given in Section 9 of that paper. We write F (M, p, u, x) = F (M, p, u, x) -δu + δu =: F 0 (M, p, u, x) + δu, so that F 0 is a proper operator. The operator F plays the role of L in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], F 0 plays the role of M , δ replaces c, and we let q = 1 + δ, as in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. As shown in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF], the ABP inequality holds for F 0 , with a constant which depends only on λ, Λ, γ, δ and diam(Ω).

In what follows we list the results in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] which lead to Proposition 6.1 and we only note the changes needed in order to cover the nonlinear case.

Theorem 9.1 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] is proved in the same way here, but we have to choose σ > 0 so that G(D 2 e σx 1 , De σx 1 , e σx 1 , x) ≥ 1 -recall G is defined in (H3)which is easily seen to be possible, by (H1), and then we use the inequality F (M -N, p -q, u -v, x) ≤ F (M, p, u, x) -G(N, q, v, x), which follows from hypothesis (H3).

The proof of Lemma 9.1 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] is identical in our situation, as is the proof of Lemma 9.2, provided we have the concavity of λ + 1 (F 0 + δ, Ω) in δ, for any proper operator F 0 satisfying our hypotheses, see below.

Theorems 9.2 and 9.3 from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] are well-known to hold for strong solutions, which is actually the only case in which we use them, if the operators in their statements are replaced by the operator

L[u] = M - λ,Λ (D 2 u) -γ|u| -δ|u|,
which appears in the left-hand side of (H1) -simply because L[u] is equal to a linear operator acting on u, whose coefficients depend on u but their bounds do not. Extensions of these theorems to viscosity solutions can be found in [START_REF] Wang | On the regularity theory of fully nonlinear parabolic equations: I[END_REF], [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] and in the appendix of [START_REF] Quaas | Existence and non-existence results for fully nonlinear elliptic systems[END_REF]. Corollary 9.1 from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] is proved identically here. Further, we need to modify the proof of Proposition 9.3 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] in the following way: we take ν to be the solution of

G(D 2 ν, Dν, ν, x) -qν = -χ Γ in Ω, ν = 0 on ∂Ω,
where Γ is as defined in Proposition 9.3 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. We easily check that G

[•] -q• is proper, G[u] -qu ≤ G[u] ≤ F [u] ≤ 0 in Ω \ Γ, F [u -tν] ≤ F [u] -tG[ν] ≤ -tG[ν] = -tqν ≤ -tν
in Ω \ Γ, and the rest of the proof of Proposition 9.3 is the same. Finally, Proposition 6.1 follows from the above in exactly the same way as Theorem 2.4 in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] follows from Proposition 9.3 there.

For completeness we shall briefly sketch the elementary proof of fact that λ + 1 (F 0 + δ, Ω) is concave in δ. Note that we can repeat exactly the same reasonings as the ones given on pages 50 and 68 of [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], the only difference being that here we need to have the convexity in z of the operator F(z)(x) = F 0 (D 2 z + Dz ⊗ Dz, Dz, 1, x). This is the content of the following lemma. Proof. Suppose F depends only on M . Then (H3) implies F (M ) -F (N 1 ) -F (N 2 ) ≤ F (M -N 1 -N 2 ), so for any t ∈ [0, 1] and any

p 1 , p 2 ∈ R N h(tp 1 + (1 -t)p 2 ) -th(p 1 ) -(1 -t)h(p 2 ) ≤ F ((tp 1 + (1 -t)p 2 ) ⊗ (tp 1 + (1 -t)p 2 ) -tp 1 ⊗ p 1 -(1 -t)p 2 ⊗ p 2 ) .
(6.1) By the ellipticity of F it is enough to show that the argument of F in the last inequality is a semi-negative definite matrix. Since p ⊗ q is linear in both p and q, this is trivially seen to be equivalent to the semi-positive definiteness of (t -t 2 )(p 1 ⊗ p 1 + p 2 ⊗ p 2 -p 1 ⊗ p 2 -p 2 ⊗ p 1 ), that is, of (t -t 2 )((p 1 -p 2 ) ⊗ (p 1 -p 2 )), which is of course true, since t ∈ [0, 1] and the eigenvalues of q ⊗ q are 0, . . . , 0, |q| 2 , for each q ∈ R N . If F = F (M, p, u) we have exactly the same reasoning, since in (6.1) we get F (•, 0, 0). UFR SEGMI Université de Paris 10, 92001 Nanterre Cedex, France, and CAMS, EHESS 54 bd. Raspail 75006 Paris, France e-mail : sirakov@ehess.fr

  sup α∈A {tr(A α (x)D 2 u) + b α (x).Du + c α (x)u} = f (x) in Ω u = 0 on ∂Ω. (1.2)

(

  

  Theorem 2.1 ([25]) Assume F satisfies (H0) -(H3) and there exists a viscosity solution u ∈ C(Ω) of

Lemma 3 . 3

 33 There exists a real number t1 = t1 (h), such that the problemF (D 2 u, Du, u, x) + λ + 1 u = tϕ + 1 + h in Ω, u = 0 on ∂Ω,(3.11) 

Lemma 6 . 1

 61 Suppose F = F (M, p, u) satisfies (H0), (H1) and (H3), and let l : R N → M N (R) be a linear map. Then the function h(p) := F (l(p) + p ⊗ p, p, 1) : R N → R is convex.

  If we denote αt = inf{sup Ω u | u ∈ S t }, we have lim t→+∞ α t = +∞.

	Then there exists t * -= t * -(h) such that
	1. If t < t * -then there is no solution of (1.2).
	2. There is a closed connected set C ⊂ S, such that C t = ∅ for all t > t * -.
	3. The set S I is bounded in W 2,p (Ω), for each compact I ⊂ (t * -, ∞).
	4.

  on ∂Ω, for each n, and {u m n } is bounded in L ∞ (Ω) as m → ∞. Hence, by Theorem 2.7, u m n converges as m → ∞ (up to a subsequence), for each fixed n, to a function u n which satisfies (3.11) with t = t n . This and the previous lemma give a contradiction, when t n is sufficiently small. The set T is bounded above, that is, t * + is a real number.

	Lemma 3.5 Proof. Let λ n	λ + 1 , h

n → h in L p (Ω), and let u n = u n (t) be such that

  .13) By the comparison principle u n ≤ v n , hence u n is bounded above independently of n. So P(t) is false if (3.13) holds. Proof. 1. Given a sequence {λ n } such that λ n < λ + 1 for all n ∈ N and λ n → λ + 1 as n → ∞, there is a sequence {u n } such that F (D 2 u n , Du n , u n , x)+λ n u n = tϕ + 1 +h in Ω, u n = 0 on ∂Ω. (3.15) Then t > t * implies {u n } is bounded, so by Theorem 2.7 {u n } converges, up to a subsequence, to a function u satisfying (3.14). 2. Suppose for contradiction (3.14) has a solution u for some t < t * + . Fix t 1 ∈ (t, t * + ). Then P(t 1 ) holds, so for some sequences λ n λ + 1 , h n → h, the sequence of solutions u n of

	The following two propositions give existence and uniqueness of solutions
	to our problem at resonance, provided t > t * + .	
	Proposition 3.1 1. If t > t * + then the equation	
	F (D 2 u, Du, u, x) + λ + 1 u = tϕ + 1 + h in Ω,	u = 0 on ∂Ω, (3.14)
	possesses at least one solution.	
	2. If t < t	

* + then (3.14) has no solutions.
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has a unique solution (u n , t n ) in C(Ω) × R. The sequence {u n } is bounded, since u n -ũn = |d| and {ũ n } is bounded. Hence {t n } is also bounded (if not, u n /t n → 0, so by passage to the limit F [0] = ϕ + 1 ). Then subsequences of {u n } and {t n } converge to a function u = u(d) and a number t = t(d), which satisfy We define Γ + = {u(d) | d ∈ R}. The last lemma allows us to say that Γ + is actually a continuous curve, the pointwise limit of the curves {Γ + n }.

Lemma 3.9 If t 1 > t 2 ≥ t * + then any two solutions of

are such that u 1 < u 2 in Ω.

Proof. We already showed in the proof of Lemma 3.7 that either u 1 > u 2 or u 1 < u 2 in Ω. Since the curve Γ + is the limit of Γ + n which are strictly decreasing in t, u 1 > u 2 is impossible.

Proof of Theorem 1.2. The set of solutions is {(u(d), t(d)) | d ∈ R}, as the above discussion shows. Part 1. of the Theorem was proved in Proposition 3.1. The first two statements of Part 2. follow from Proposition 3.2 and Lemma 3.9.

For t > t * , let u t be the solution of

By Lemma 3.9 u t is strictly decreasing in t.

When t → t * + two cases may occur : either u t is bounded or u t → ∞. In the first case the monotonous sequence u t converges in C 1 (Ω) to a solution u * of (3.22) with t = t * + . Then by Proposition 3.2 all solutions u ∈ Γ + with 4 The case λ > λ - 1 . Proof of Theorem 1.5

In this section we prove Theorem 1.5 and some auxiliary results which will be helpful in our analysis of the resonance phenomena at λ = λ - 1 . We start with some simple preliminary lemmas which will lead us to the proof of the first part in Theorem 1.5. Our arguments for Lemmas 4.1-4.2 below are similar to those in [START_REF] Busca | Nonlinear eigenvalues and bifurcation problems for Pucci's operators[END_REF], [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] and [START_REF] Armstrong | Principal eigenvalues and an anti-maximum principle for nonlinear elliptic equations[END_REF], but we sketch them here for completeness. We define the operators

. Note that F τ satisfies (H0) -(H3) and, recalling that we work with (2.6), F τ is proper, since F is proper.

Proof. Let {τ n } be a sequence in [0, 1], then it follows by Proposition 4.1 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF] that the sequence {λ - 1 (τ n )} is bounded. Then, by a compactness argument and the simplicity of the eigenvalues, the continuity follows. The isolation property follows by the same argument as the one used in the proof of Theorem 1.3 in [START_REF] Quaas | Principal eigenvalues and the Dirichlet poblem for fully nonlinear elliptic operators[END_REF]. Lemma 4.2 There exists ε > 0 such that for each λ ∈ (λ - 1 , λ - 1 + ε) and each n ∈ N there is a closed connected set C(λ, n) ⊂ C(Ω) × [-n, n], with the property that for all (u, t) ∈ C(λ, n) we have

Moreover, if we define the projection P : C(Ω) × IR → IR as P(u, t) = t, we have

Observe that λ 2 (τ ) = +∞ is possible. Then, given λ ∈ (λ - 1 , λ - 1 + ε), by the previous lemma there exists a continuous function µ : [0, 1] → IR such that µ(1) = λ, λ - 1 (τ ) < µ(τ ) < λ 2 (τ ) and the equation

We now prove that the solutions of our equation are negative for small t for t below a certain value. Lemma 4.4 Given R > 0 there are numbers ε > 0 and t such that for all λ ∈ [λ - 1 , λ - 1 + ε), t ≤ t, and h with h L p (Ω) ≤ R, if u solves the equation

)

Proof. Assuming the result is not true, there are sequences

in Ω, which is a contradiction with part 2. of Proposition 4.1, while if {v n } is unbounded then a subsequence of v n / v n converges in C 1 (Ω) to ϕ - 1 < 0, a contradiction, since these functions are positive or zero somewhere.

Proof of Theorem 1.5 2. It remains to analyze the asymptotic behavior of the set S. Take any u t ∈ S t , t ∈ R. It is clear that there exist constants C 0 , T > 0, depending only on F , Ω and h, such that u t ≥ C 0 |t| if |t| ≥ T . Indeed, assuming that {t/ u t } is not bounded one easily gets the contradiction 0 = ±ϕ + 1 , after dividing the equation by t and passing to the limit.

First, suppose for contradiction that there exists a compact set K ⊂ Ω and sequences t n → -∞, u n ∈ S t n , such that u t n (x n ) ≥ -c, for some constant c and some x n ∈ K. Note that by the previous lemma we already know that u tn < 0 in Ω, for large n. Thus, setting v n = u tn / u tn , we have

1 for some k > 0. In addition v(x 0 ) = 0 for some x 0 ∈ K, which is a contradiction with the antimaximum principle, Proposition 4.1, provided ε < ε 0 (-ϕ + 1 ), with ε 0 defined in that proposition. Second, suppose there is a sequence t n → +∞ such that u tn ≤ C, for some constant C. Then, as above, either v n = u tn / u tn converges to a Proof. Assume that there exists t 0 < t such that P(t 0 ) is false. Since P( t) holds, there exist sequences {λ n }, {h n } and {v n } such that λ n > λ - 1 for all n,

On the other hand, let {u n } be any sequence such that

Such a sequence exists thanks to Theorem 1.5. Since we are assuming that 

for large n, contradicting the definition of λ - 1 , since λ n > λ - 1 . Now we prove that t * -is a real number. We set T = {t ∈ R | P(t)}. Lemma 5.2 The set T is not empty.

Proof. Assuming the contrary, we find a sequence {t n } such that P(t n ) is false and t n → -∞, which implies the existence of a sequence u n satisfying

This statement follows from Theorem 2.7, through exactly the same argument as the one used in the proof of Lemma 3.4. Next we see that v n = -u n /t n is unbounded, since the contrary implies the existence of a solution to

in Ω, v = 0 on ∂Ω, which was shown to be impossible in Proposition 4.1. Then a subsequence of u n / u n converges in C 1 (Ω) to a solution of the equation

which implies that w = ϕ - 1 . We conclude that max K u n → -∞ for each compact K ⊂ Ω. To complete the proof, let v be the solution of

Then, for n large, the function ψ = u n + v is negative at some point and satisfies

which is a consequence of (H0) and (H3)). The quantity t n ϕ + 1 + λ - 1 v is strictly negative for large n, so by Theorem 2.1 we have ψ = kϕ - 1 , for some k > 0, which is a contradiction with the strict inequality

In particular, the set T is bounded above by t, that is, t * -is finite. Proof. Assuming the contrary, we may find sequences This implies that λ n = λ - 1 and ûn = ϕ - 1 < 0. Hence u

Next, we remark that we can find (thanks to Theorems 2.3 and 2.5) a constant C 0 = C 0 (h) such that for any g ∈ L p (Ω) with

then w W 2,p (Ω) ≤ C 0 . This of course implies w ≥ C0 ϕ - 1 , for some C0 > 0. Now, for each n we fix m(n) such that λ

< w, for each solution w of (5.2). So, in particular, u n < v n , where v n is the solution of

Then, we choose n large enough so that t n ϕ + 1 > λ - 1 v n , and we see that the function

By Theorem 2.1 we find that ψ n = ϕ - 1 , which contradicts the last strict inequality.

The next result contains Part 1. in Theorem 1.4. 

Proposition 5.1 The equation

Now, supposing (ii) is false, let u and w n be solutions of

Notice that w n → 0 in C 1 (Ω). Then, for large n we have

where we used (H3) which implies

Then, by Theorem 2.1 once more, we have v n -w n -u = k n ϕ - 1 for some number k n ≥ 0, in contradiction with the strict inequality in (5.3).

The next lemma containts statement 3. in Theorem 1.4.

Lemma 5.4 For each compact interval

Proof. Recall we already proved in the previous section that the set of solutions is bounded for t in a bounded interval, provided λ is away from the eigenvalue λ - 1 . Hence if the statement of Lemma 5.4 is false, then we can find sequences

Clearly h n → h in L p (Ω), so the existence of such a sequence contradicts the definition of the number t * -and t 0 > t * -. Before continuing, we set up some notation. The set of solutions C found in Theorem 1.5 will be denoted by C(λ), remembering we work with the equivalent equation (2.6). We define the function

and we recall that P is the projection P(u, t) = t. In the proof of Theorem 1.4 the function Q plays a role similar to that of P in the proof of Theorem 1.5. The following lemma will be needed later.

that is, for all λ larger than and sufficiently close to λ - 1 and all N large we can find u , u such that u = u = N, and

-such a bound exists by the previous lemma. The conclusion follows from Theorem 1.5, since the set C(λ) is connected and the sets C(λ) t contain elements whose norms grow arbitrarily, as t → ∞ and as t → -∞.

Proof of Theorem 1.4. The proof follows an idea similar to the one used in the proof of Theorem 1.5, but here we take as a parameter the norm of the solution, instead of t.

Fix t 1 > t * -. We start with a sequence {λ n } with λ n > λ - 1 and λ n → λ -

as n → ∞. Then we look at the connected set of solutions C(λ n ) given by 29 Theorem 1.5, and we take N ∈ N, N > N 0 , where N 0 is the number form Lemma 5.5. By an argument similar to the one given in the previous section (using Lemma 4.3 and Lemma 5.5), we find that for each N = n, n-1, ..., N 0 +1, N 0 , there is a closed connected subset

for N = n, n -1, ..., N 0 . For each n ∈ N we construct the sets E N n , starting with N = n and successively going down to N = N 0 . Thus

Since the pairs (u, t) ∈ E N n are solutions of

the bounded in L ∞ (Ω) set E N is made of solutions of such an equation, but with λ - 1 instead of λ n , and consequently E N is compact. By a similar argument as the one in the proof of Theorem 1.5, we can prove that E N is connected. Since, according to our construction, we have that

n for all n, we see that E N ⊂ E N +1 for all N ∈ N. Thus the set C = ∪ N ∈N E N is a closed connected set of solutions and

Next we observe that by the definition of t * -and (5.4) we have

On the other hand, by Proposition 5.1 we know that

so that we also have

This completes the proof of statement 2. and the first statement in 5. of Theorem 1.4.

Let us look at the asymptotic behavior of the set of solutions S, as t → ∞. First, it is easily proved that if (u t , t) ∈ S then lim t→∞ u = ∞ (if not, we divide the equation by t and pass to the limit t → ∞, as before). Suppose now that there is a sequence t n → +∞ such that for some u tn ∈ S tn we have u tn ≤ C for some constant C. Then, as in the proof of Theorem 1.5 2., either v n := u tn / u tn converges to a non-positive solution v of F

1 > 0, with v = 0 on ∂Ω, which is negative by Hopf's lemma, providing a contradiction with Theorem 2.1, or v n converges to a nontrivial solution of

in Ω. Let now w be the solution of F [w] = h in Ω, w = 0 on ∂Ω. Then by w ≤ C and the Lipschitz estimates we have u n -w < 0 in Ω if n is sufficiently large, so

However, the last quantity is positive if n is sufficiently large, yielding a contradiction with Theorem 2.1. This gives statement 4 in Theorem 1. [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF].

Next we see that there is R > 0 so that if (u, t) ∈ S, with t ∈ [t * -, t 1 ] and u ∞ ≥ R, then u < 0. In fact, if the contrary is true, then there is a sequence (u n , t n ) ∈ S, with t n ∈ [t * -, t 1 ], u n ∞ → ∞, and such that u n is positive or zero somewhere in Ω. But this is impossible since a subsequence of u n / u n converges in C 1 (Ω) to ϕ - 1 , which is negative. By the same argument we have max K u n → -∞ for each (u n , t n ) ∈ S such that u n → ∞ and t n ∈ [t * -, t 1 ]. This completes the proof of statement 5 in Theorem 1.4.

We now turn to the proof of statement 6. Assume the equation F (D 2 u, Du, u, x) + λ - 1 u = t * -ϕ + 1 + h in Ω, u = 0 on ∂Ω, has an unbounded set of solutions, that is S t * -is unbounded. Let u 1 , u 2 ∈ S t * -, then there exists R 1 > 0 so that whenever u ∈ S t * -and u ≥ R 1 we have u = u 1 + k 1 ϕ - 1 , for some k 1 > 0. In fact, we already know that if u is large enough then u/ u is close in C 1 (Ω) to ϕ - 1 and then ψ = u -u 1 < 0 in Ω. Since ψ satisfies F (D 2 ψ, Dψ, ψ, x) + λ - 1 ψ ≥ 0 in Ω, ψ = 0 on ∂Ω, Theorem 2.1 implies ψ = k 1 ϕ - 1 . In the same way we get u = u 2 + k 2 ϕ - 1 if u ≥ max{R 1 , R 2 }, for some R 2 > 0, so u 1 -u 2 = (k 2 -k 1 )ϕ - 1 . Finally we prove that if u + k 1 ϕ - 1 and u + k 2 ϕ - 1 are in S t for some k 2 > k 1 > 0, then u + kϕ - 1 ∈ S t for each k ∈ (k 1 , k 2 ). This is a simple consequence of the convexity and the homogeneity of F . Indeed, setting F = F + λ -