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Some estimates and maximum principles for
weakly coupled systems of elliptic PDE

Boyan SIRAKOV1

UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France

and CAMS, EHESS, 54 bd Raspail, 75270 Paris Cedex 06, France

1 Introduction

In this paper we discuss maximum principles and Harnack type estimates for
systems of linear elliptic PDE’s of second order





L1u1 + c11(x)u1 + c12(x)u2 + . . . + c1n(x)un = f1(x)
L2u2 + c21(x)u1 + c22(x)u2 + . . . + c2n(x)un = f2(x)

. . .

Lnun + cn1(x)u1 + cn2(x)u2 + . . . + cnn(x)un = fn(x)

(1)

given in a bounded domain Ω ⊂ R
N ; n, N ≥ 1. Here L1, . . . , Ln are supposed

to be uniformly elliptic operators in general non-divergence form

Lk =
N∑

i,j=1

ak
ij(x)

∂2

∂xi∂xj

+
N∑

i=1

bk
i (x)

∂

∂xi

. (2)

with λ|ξ|2 ≤
∑

aijξiξj ≤ Λ|ξ|2, ξ ∈ R
N , for some 0 < λ ≤ Λ.

Studying such systems is an object of ever increasing interest in recent
years. The most important reason is that whenever one wants to study a
nonlinear system of elliptic PDE’s (such systems are abundant in all areas
of applications) a first step often is gaining some knowledge on its linearized
system, which is in the form (1). Further, many higher-order equations - like
(−∆)mu = f(x), ∆2u + β∆u = f(x), are particular cases of (1). Some prob-
lems in probability theory, namely in the study of infinitesimal generators of
diffusion processes with jumps also lead to system (1).

So it is very natural to ask whether known results for linear elliptic PDE’s
extend to systems like (1). Here we shall be interested in the possibility of
obtaining a generalized maximum principle (often referred to as Alexandrov-
Bakelman-Pucci, ABP inequality) and a Harnack inequality for (1). In the
scalar case these estimates play a fundamental role in the existence and
regularity theory - see for instance GT, Chapters 8 and 9.

1e-mail : sirakov@ehess.fr
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Unfortunately, and as is well known, such estimates do not hold for all
systems of type (1). One needs in general the additional assumption that the
system has a (quasi-)monotonicity property, also called cooperativeness (this
term comes from biology, where models in population dynamics for species
which cooperate with each other lead to quasimonotone systems). We recall
that system (1) is cooperative provided for all indices i, j ∈ {1, . . . , n},

(H0) i 6= j implies cij ≥ 0 a.e. in Ω.

This condition is rather restrictive, but many important systems do satisfy it.
For instance the higher order equations that we quoted above are equivalent
to cooperative systems, the problems in probability and their applications to
mathematical finance lead to cooperative systems. Further, whenever one has
a nonlinear system like, say, −∆u1 = g1(u1, u2), −∆u2 = g2(u1, u2), its lin-
earization is cooperative if gi is non-decreasing in uj, i 6= j. A simple example
is provided by the widely studied Lane-Emden system −∆u = |v|pv,−∆v =
|u|qu. Another example is the system −∆ui = −λiui + (ci1u

2
1 + ci2u

2
2)ui,

i = 1, 2, which represents the stationary states of coupled Schrodinger sys-
tems, modeling some phenomena in nonlinear optics and low temperatures
physics (these systems are an object of large interest recently).

Some time ago in [2] J. Busca and the author proved an ABP inequality
and a Harnack inequality for cooperative systems of type (1). These results
apply to rather more general systems than (1) (namely, to systems of fully
nonlinear equations of Hamilton-Jacobi-Bellman-Isaac type) but their proofs
are rather lengthy, involved and, in particular, rely on the difficult theory of
LN -viscosity solutions of fully nonlinear PDE, developed in the last twenty
years. We have often been asked whether simpler proofs could be found, at
least for linear systems.

This is the first goal of the present work – to give elementary and shorter
proofs of the results in [2] in the linear case, which use only the standard
theory of scalar linear PDE, as developed for instance in Chapter 9 of [8].
These new proofs, apart from being of course interesting in their own right,
permit to wrap up within the classical framework the theory of solvability of
several types of nonlinear systems, recently developed in [6], [7], [14] (these
papers used in an essential way Theorems 1-3 below).

Further, the proofs we give here permit to us to improve the results in
[2] by allowing the system to have unbounded coefficients with (optimal)
Lebesgue integrability. Namely, we suppose that

(Hp) cij, fi ∈ LN(Ω), bk
i ∈ Lp(Ω), i, j, k ∈ {1, . . . , n}.

Let µ be an upper bound for the Lp-norms of bk
i , and ν be an upper bound

for the LN -norms of cij. We are going to prove the ABP inequality under
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(HN) and the Harnack inequality under (Hp), for some p > N - these are the
hypotheses under which these results are known for scalar equations.

We shall also discuss some explicit conditions for a system to satisfy the
maximum principle.

Setting C(x) = (cij(x))n
i,j=1, we write (1) in the form

LU + CU = F,

with L = diag(L1, . . . , Ln), U = (u1, . . . , un)T , F = (f1, . . . , fn)T . For any
vector U ∈ R

n we set U = max{u1, . . . , un}, U = min{u1, . . . , un}, U± =
(u±

1 , . . . , u±
n ), U = U+ + U−. All through the paper we consider strong

solutions of (1), that is, functions ui ∈ W
2,N
loc (Ω) which satisfy (1) a.e. in Ω.

All (in)equalities between vectors are understood to hold component-wise.
We are going to use the following hypothesis.

(HΨ) there exists a function Ψ = (ψ1, . . . , ψn) ∈ W
2,p
loc (Ω, Rn)∩C(Ω, Rn), for

some p > N, such that LΨ + CΨ ≤ 0 in Ω and Ψ ≥ (1, . . . , 1) in Ω.

Theorem 1 (ABP estimate) If (H0), (HN), (HΨ) hold and U is such that
LU + CU ≥ −F in Ω, then

sup
Ω

U ≤ max
Ω

Ψ

(
sup
∂Ω

(U)+ + C‖F
+
‖LN (Ω)

)
. (3)

The constant C depends on n,N, λ, Λ, µ, ν, ‖Ψ‖C1(Ω), and |Ω|.

Remark. Note (3) with F = 0 gives a maximum principle for L + C.
We turn to the Harnack inequality for non-negative solutions of (1). We

shall limit ourselves here to the case of a fully coupled system - that is, a
system which cannot be divided into two subsystems one of which does not
depend on the other (extensions to more general systems are then not difficult
to get, see Sections 8 and 9 of [2]).

Definition 1.1 A matrix C(x) = (cij(x))n
i,j=1 , which satisfies (H0), is called

irreducible in Ω, and the system LU + CU = F is called fully coupled in Ω,
provided for any non-empty sets I, J ⊂ {1, . . . , n} such that I ∩ J = ∅ and
I ∪ J = {1, . . . , n}, there exist i0 ∈ I and j0 ∈ J for which

meas{x ∈ Ω | ci0j0(x) > 0} > 0. (4)

For simplicity, when (4) holds we write ci0j0 6≡ 0 in Ω. Hence we can fix
ρ > 0 such that the sets {x ∈ BR | ci0j0(x) ≥ ρ} have positive measures. Let
ω > 0 be a lower bound for these measures.
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Theorem 2 (Harnack inequality) Suppose (H0), (Hp) are satisfied, for
some p > N , and let U ≥ 0 be a solution of (1) in Ω. Let B2R ⊂ Ω be
a ball with radius 2R. Assume (1) is fully coupled. Then

sup
BR

U ≤ C

(
inf
BR

U + R‖F‖LN (B2R)

)
, (5)

where C depends on n, N, λ, Λ, µR, νR2, ρ, ω.

A large discussion on the importance of these estimates, extensions, coun-
terexamples and applications can be found in [2] (we refer in particular to
Sections 1, 3, 8, 10-15 of that paper). Here we only recall the following
fundamental consequence of Theorems 1 and 2.

Theorem 3 (i) Suppose (H0) holds and ak
ij ∈ C(Ω), bk

i , cij ∈ L∞(Ω), for all
i, j, k = 1, . . . , n. Set ν = maxi,j{‖bi‖L∞(Ω), ‖cij‖L∞(Ω)}. The following are
equivalent :

(a) Condition (HΨ) holds.

(b) the operator L + C satisfies the maximum principle in Ω, that is, if
LU + CU ≤ 0 in Ω and U ≥ 0 on ∂Ω, then U ≥ 0 in Ω.

(c) for any F ∈ LN(Ω) and any solution U of LU + CU ≥ −F there holds

sup
Ω

U ≤ C

(
sup
∂Ω

(U)+ + ‖F
+
‖LN (Ω)

)
,

where C depends only on n,N, λ, Λ, ν and |Ω|.

(ii) Under any of (a), (b), (c) in (i), if Ω satisfies an uniform exterior
cone condition, then for any F ∈ Lp(Ω), p ≥ N , there exists a unique solution
U ∈ W

2,p
loc (Ω) ∩ C(Ω) of LU + CU = F in Ω, U = 0 on ∂Ω. We have

‖U‖W 2,p(Ω) ≤ C‖F‖Lp(Ω), C depends on n, N, λ, Λ, µ, ν, Ω.

The not difficult (once we have ABP and Harnack inequalities) proof of
Theorem 3 is given in Sections 13 and 14 of [2] (see also the remarks in Section
3.1 of [14], in particular Theorem 7 there). The proof is based on results
of existence and properties of a principal eigenvalue of a matrix operator.
The fact that (a) implies (b) was proved in [5], the implication (b) ⇒ (a)
was proved in [13] for systems with regular coefficients, and (a) ⇒ (ii) was
established in [15], in the fully coupled case.

The most important statements in Theorem 3 are the facts that the max-
imum principle implies a quantitative estimate of how it fails for systems
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having a right-hand side with the wrong sign, an a priori bound for the
solutions of the Dirichlet problem, and the unique solvability of this problem.

We are going to close this introduction with a review of the available ex-
plicit criteria for a quasimonotone system to satisfy the maximum principle.
First, (HΨ) of course holds if C(x)V ≤ 0 a.e. in Ω, for some constant positive
vector V . Second, the maximum principle is equivalent to the positivity of
the principal eigenvalue of the system (or eigenvalues, if the system is not
fully coupled). The results in [1] and their extensions in [2] give lower bounds
for the eigenvalue in terms of the coefficients of Li and the domain, which can
be used to verify the condition of positivity of the eigenvalue. For instance,
Proposition 14.1 in [2] shows that the maximum principle holds for domains
with sufficiently small measure. Further, it was shown in [2] that the max-
imum principle is verified if either the matrix (supΩ cij)i,j is semi-negative
definite or the operators L1, . . . , Ln coincide and C(x) is semi-negative defi-
nite a.e. in Ω (and an example was given showing that this last hypothesis
is not enough if the operators are different). Finally, it was shown in [4] that
the maximum principle holds provided the operators coincide, can be written
in divergence form, the matrix C is constant and verifies C < λ1(L1)I (in the
sense that C − λ1(L1)I is negative definite). By combining our arguments
here with a reasoning from [14], we can extend this to an arbitrary operator
and a nonconstant matrix satisfying (supΩ cij)i,j < λ(L1)I.

Proposition 1.1 Under the hypotheses of Theorem 3, set C := (supΩ cij)i,j.
Suppose also L1 ≡ . . . ≡ Ln and let λ1 = λ1(L1) be the principal eigenvalue
of the linear operator L1 (as defined in [1]). If C < λ1I then the operator
L + C satisfies the maximum principle in Ω, as in Theorem 3 (i).

2 Proof of Theorem 1

We recall the following fundamental generalized maximum principle, due to
Alexandrov and Bakelman, obtained independently by Pucci. It is Theorem
9.1 in [8].

Theorem 4 (ABP inequality) Let c ≤ 0. For any f ∈ LN(Ω) and any
solution u of Liu + c(x)u ≥ −f there holds

sup
Ω

u ≤ sup
∂Ω

u+ + CABP‖f
+‖LN (Ω),

where CABP = C|Ω|1/N and C depends only on n, N, λ, Λ, µ and |Ω|.
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Remark. In classical form the constant CABP depends on the diameter of Ω.
The fact that it can be replaced by the volume of Ω (and in fact an even
more precise quantity, describing the ”thickness” of Ω) is proved in [1], [3],
see also [17] for more recent results.

As a simple computation on page 571 of [2] shows, it is sufficient to prove
the result under the following condition:

n∑

j=1

cij(x) ≤ 0 a.e. in Ω, for every i ∈ {1, . . . , n}. (6)

Note this is another way of saying (HΨ) is verified with Ψ ≡ (1, . . . , 1). So
in the following we assume that (6) is satisfied.

We take vi to be the solution of the problem

{
Livi + ciivi = cii in Ω

vi = 0 on ∂Ω.

Since cii ≤ −
∑

i 6=j cij ≤ 0 (by (6) and (H0)) this problem has an unique so-
lution, such that vi ≥ 0 in Ω, by the maximum principle for scalar equations.

Note if cii ≡ 0 then by (6) and (H0) we have cij ≡ 0 for all j, so the i-th
inequality in the system is scalar, and Theorem 4 applies to it. Hence we can
suppose cii 6≡ 0 for all i.

Lemma 2.1 There exists a number δ > 0, depending on N, λ, Λ, µ, ν, |Ω|,
such that

0 ≤ vi ≤ 1 − δ in Ω, i = 1, . . . , n.

Proof. We note that the function zi = 1 − vi satisfies Lizi + ciizi = 0 in Ω,
zi = 1 on ∂Ω, so zi ≥ 0 in Ω, by the maximum principle. By the strong
maximum principle (Theorem 3.5 in [8]) zi > 0 in Ω.

We set zi = g(zi) := z−α
i , where α > 0 is a positive number to be chosen

later. Since g is a smooth convex function, it is simple to check that

Lizi ≥ g′(zi)Lizi

(this is the classical Kato inequality). Hence we get

Lizi ≥ αciizi in Ω,

and zi = 1 on ∂Ω. So by Theorem 4 we have

sup
Ω

zi ≤ 1 + ανCABP sup
Ω

zi.

6



Choosing α = (2νCABP )−1 we obtain zi ≤ 2 in Ω, that is,

vi = 1 − zi ≤ 1 − 2−1/α in Ω,

which proves the lemma. ¤

Next, take wi to be the solution of
{

Liwi = −f+
i in Ω

wi = 0 on ∂Ω.

By Theorem 4 we have

sup
Ω

wi ≤ CABP‖max
1≤i≤n

f+
i ‖LN (Ω), (7)

and w ≥ 0 in Ω, by the maximum principle.

Proof of Theorem 1. Replacing ui by ũi = ui − sup∂Ω(U)+ we see that we
can suppose ui ≤ 0 on ∂Ω for each i (note ũi satisfies the same inequality as
ui, because of (6)). Let M = supΩ U = supi,Ω ui be the quantity we want to
estimate. We have, by (6) and (H0),

Liui + ciiui ≥ −fi −
∑

i6=j

cij(x)uj

≥ −fi − M
∑

i6=j

cij(x)

≥ −fi + Mcii(x) in Ω.

Consider the function hi = wi + Mvi. It satisfies hi = 0 ≥ ui on ∂Ω and

Lihi + ciihi = −f+
i + ciiwi + Mcii ≤ −fi + Mcii,

since cii ≤ 0, wi ≥ 0. So by the maximum principle ui ≤ hi in Ω, for all i.
This implies, by Lemma 2.1 and (7), that

M ≤ CABP‖max
1≤i≤n

f+
i ‖LN (Ω) + M(1 − δ),

from which Theorem 1 follows. ¤

3 Proof of Theorem 2

As usual, the proof of the Harnack inequality is divided into two half-Harnack
inequalities (the so-called local maximum principle for subsolutions and weak
Harnack inequality for supersolutions), each of which is important in itself.

In what follows C will denote a positive constant which may change from
line to line, and which depends only on the appropriate quantities.
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Proposition 3.1 (local maximum principle) Suppose (H0), (Hp) hold, for
some p > N , and let U be a solution of LU + CU ≥ −F in Ω. Let B2R ⊂ Ω
be a ball with radius 2R. Then for each p > 0 we have

sup
BR

U ≤ C

(
1

|B2R|

∫

B2R

|U
+
|p + R‖f‖LN (B2R)

)
, (8)

where C depends on p, N, λ, Λ, µR, νR2.

Proposition 3.2 (weak Harnack inequality) Suppose (H0), (Hp) hold, for
some p > N , and let U ≥ 0 be a solution of LU + CU ≥ −F in Ω. Let
B2R ⊂ Ω be a ball with radius 2R. Assume (1) is fully coupled. Then there
exists a number p = p(n,N, λ, Λ, µR, νR2) such that

1

|B2R|

∫

B2R

|U
+
|p ≤ C

(
inf
BR

U + R‖f‖LN (B2R)

)
, (9)

where C depends on n, N, λ, Λ, µR, νR2, ρ, ω.

For the scalar case these theorems can be found in [8], for operators with
bounded coefficients, and in [16], [10], [9], for operators with only Lebesgue
integrable coefficients. Putting them together gives the full Harnack inequal-
ity.

3.1 Proof of Proposition 3.1

So we have a solution of

Liui ≥ −fi −
∑

j

cijuj ≥ −f+
i − ciiui −

∑

i6=j

ciju
+
j

and we want to show (8). The idea of the proof is to find a regular approxi-

mation for U
+

and a linear operator to which Theorem 9.20 of [8] applies.
We introduce the real function

hε(t) =

{
(t4 + ε4)1/4 − ε if t ≥ 0

0 if t ≤ 0.

It is very simple to check that hε ∈ C2(R), hε is convex, and has the
following properties

0 ≤ h′
ε(t) < 1, h′

ε(t) → 1 for all t > 0, (10)

‖th′
ε(t) − hε(t)‖L∞(R) ≤ ε, ‖t+ − hε(t)‖L∞(R) ≤ ε. (11)
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Again, since hε is convex, the Kato inequality gives L(hε(u)) ≥ h′
ε(u)Lu,

for each linear elliptic operator of our type and for each u ∈ W 2,N . So we
obtain

Li(hε(ui)) ≥ h′
ε(ui)(−f+

i −ciiui−
∑

i6=j

ciju
+
j ) ≥ −fi,ε−ciihε(ui)−

∑

i 6=j

cijhε(uj),

where we have used (10), (11), and have noted fi,ε = f+
i + ε

∑
j cij. In the

sequel we shall in general denote with fi,ε any function which converges to
f+

i in LN(B2R) as ε → 0.

We have proved that the nonnegative vector Ũ = (hε(u1), . . . , hε(un)),
ũi = hε(ui), satisfies the same system as U , with fi replaced by fi,ε. We now
set

w = wε =
1

2
(hε(ũ1 − ũ2) + hε(ũ2 − ũ1) + ũ1 + ũ2) .

We easily see that w ≥ 0 is in W 2,N(B2R) and

‖w − max{u+
1 , u+

2 }‖L∞(B2R) ≤ ε + ‖w − max{ũ1, ũ2}‖L∞(B2R) ≤ 2ε. (12)

We now fix a second order operator L whose coefficients admit the same
bounds as those of L1, L2, and such that Lw ≥ L1w and Lw ≥ L2w in Ω
(such an operator is easy to construct, see for instance Lemma 4.1 (b) in [2]).
Note the coefficients of L depend on w but the respective bounds on these
coefficients are still λ, Λ, µ, ν.

By applying the Kato inequality again we obtain

Lw ≥ Liw ≥ 1
2
(h′

ε(ũ1 − ũ2)(Liũ1 − Liũ2)
+h′

ε(ũ2 − ũ1)(Liũ2 − Liũ1) + Liũ1 + Liũ2)

a.e. in B2R, i = 1, 2. Note that, since ũ1, ũ2 are in W 2,N(B2R), we have
Liũ1 = Liũ2 almost everywhere on the set {ũ1 = ũ2}. Hence a.e. on the set
{ũ1 ≥ ũ2} we have, by the definition of hε and (10),

Lw ≥
1

2
(1 + h′

ε(ũ1 − ũ2)) L1ũ1 +
1

2
(1 − h′

ε(ũ1 − ũ2)) L1ũ2

≥
1

2
(1 + h′

ε(ũ1 − ũ2)) L1ũ1 +
1

2
(1 − h′

ε(ũ1 − ũ2)) L1ũ1|{ũ1=ũ2} + ωε

≥ L1ũ1 + ωε

≥ −f+
1,ε − c11ũ1 − c12ũ2 + ωε

≥ −f+
1,ε − max{c+

11, c12}max{ũ1, ũ2} + ωε

≥ −f+
1,ε − max{c+

11, c12}(w + ε) + ωε

9



(recall (12)), where we have denoted

ωε =

{
1
2
(1 − h′

ε(ũ1 − ũ2)) L1ũ2 on {ũ1 > ũ2}
0 elsewhere .

By (10) and the Lebesgue dominated convergence theorem we have ωε → 0
in LN(B2R) as ε → 0.

We repeat the same argument, replacing L1 by L2 and {ũ1 ≥ ũ2} by
{ũ1 ≤ ũ2}, and we finally obtain

Lw ≥ −fε − c(x)w

a.e. in B2R, where c = max{c+
11, c12, c21, c

+
22} and fε = max{f1,ε, f2,ε}+εc−ωε,

so fε → f in B2R. Now Theorem 9.20 in [8] (or its extension to operators
with unbounded coefficients in [16]) applies to this inequality and gives

sup
BR

w ≤ C

(
1

|B2R|

∫

B2R

wp + R‖fε‖LN (B2R)

)
,

where C depends on p,N, λ, Λ, µR, νR2. So if n = 2 we let ε tend to zero
and finish the proof, using (12).

If n = 3 we repeat the above argument, replacing ũ1, ũ2 by w, ũ3 and
L1, L2 by L,L3. So doing the same procedure n − 1 times we obtain Propo-
sition 3.1. ¤

3.2 Proof of Proposition 3.2

Now we have a nonnegative solution of Liui +
∑

j cijuj ≤ fi and we want to
show (9). We are going to use the argument of [2], which simplifies greatly
in the linear case.

Up to a change of coordinates we can suppose that R = 1. By (H0)
we have Liui + ciiui ≤ fi for each i, so applying the scalar weak Harnack
inequality (Theorem 9.22 in [8], see also [16], [10] for the case of unbounded
coefficients2) we obtain

1

|B2|

∫

B2

|U
+
|p ≤ C

(
max
1≤i≤n

inf
B2

ui + ‖f‖LN (B2)

)
.

Hence it only remains to show that

max
1≤i≤n

inf
B2

ui ≤ C( min
1≤i≤n

inf
B1

ui + ‖f‖LN (B2)). (13)

2Recently, Koike and Swiech obtained the Harnack inequality in an even more general
context, see [9]
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Recall that the system is supposed to be fully coupled. It is easy to see
that this implies that there exists a permutation {j1, . . . , jn} of {1, . . . , n}
such that ckjk

6≡ 0 in B1.
We are going to show that for each k = 1, . . . , n, we have

inf
B(1+(k−1)/n)

uk ≥ inf
B(1+k/n)

ujk
− C‖f‖LN (B2),

from which the desired inequality (13) easily follows. Say k = 1. Note if
infB(1+1/n)

uj1 = 0 there is nothing to prove, so we can suppose this quantity
is positive.

Let w be the solution of the Dirichlet problem

−L1w + c−11w = ( inf
B(1+1/n)

uj1)c1j1(x) in B(1+1/n),

and w = 0 on ∂B(1+1/n). The function w is a solution of a problem whose
right-hand side is nonnegative everywhere (so w is positive), and larger than
the positive constant ρ(infB(1+1/n)

uj1) on a set of measure ω > 0. By applying
a (deep) theorem by Krylov – Theorem 12 on page 129 in [12], or Theorem
9.2 of [1], an easier to read proof of this result is given in the Appendix of
[11] – we get

inf
B1

w ≥ C−1ρ( inf
B(1+1/n)

uj1).

On the other hand L1u1 + c11u1 + c1j1uj1 ≤ f1 implies

L1(w − u1) − c−11(w − u1) ≥ −( inf
B(1+1/n)

uj1)c1j1(x) − f1 + c1j1(x)uj1 ≥ −f1

in B(1+1/n). Since w − u1 ≤ 0 on ∂B(1+1/n) the ABP inequality (Theorem 4)
gives

sup
B(1+1/n)

(w − u1) ≤ C‖f1‖LN (B1+1/n),

which implies infB1 u1 ≥ infB1 w − C‖f1‖LN (B(1+1/n)), and we conclude. ¤

3.3 Proof of Proposition 1.1

First, the operator L+C satisfies the maximum principle in Ω. This is proved
exactly by the same argument as the one on page 123 of [14] - we only have
to take for the function ψ there the vector (φ1, . . . , φ1), where φ1 is the first
eigenfunction of L1 in a slightly larger domain Ω′ ⋑ Ω, such that we still have
λ1(L1, Ω

′)I > C. Let us briefly recall this reasoning. We replace ui by vi =

φ1ui, and see that V satisfies L̃V +(C −λ(L1, Ω
′)I)V ≥ 0, for some modified

operator L̃, of the same type as L. Then we evaluate the i-th inequation in
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this system at a point of positive maximum of vi (removing from the system
the equations with indices j for which vj is nonpositive in Ω), and see that
the vector W0 of positive maxima of ui satisfies (C − λ(L1, Ω

′)I)W0 ≥ 0.
Multiplying this inequality by W0 we obtain W0 = 0.

Let U be a vector function such that LU + CU ≥ 0 in Ω and U ≤ 0 on
∂Ω. We set hε(U) = (hε(u1), . . . , hε(un)) ≥ 0, where hε is the function from
the proof of Proposition 3.1. Then by (10), (11) and the Kato inequality we
have

Lhε(U) + Chε(U) ≥ h′
ε(U)LU + Chε(U) ≥ C(−h′

ε(U)U + hε(U)) ≥ −ε‖C‖,

and hε(U) = 0 on ∂Ω. Since L + C satisfies the maximum principle, by
Theorem 3 it also satisfies the ABP inequality, which implies

sup hε(U) ≤ Cε.

Letting ε → 0 gives U+ = 0 in Ω, which is what we wanted to prove.

Remark. Note the above quoted argument in [14] was carried out under the
hypothesis C ≺ λ1(L1)I, defined by

C ≺ λ1(L1)I ⇐⇒ ∀V ∈ R
n :

{
CV ≥ λ1(L1)V
V ≥ 0

implies V = 0.

In general this is a weaker hypothesis than C < λ1(L1)I but in this particular
situation these two turn out to be equivalent.

Lemma 3.1 If C is a constant cooperative matrix, then C ≺ λI is equivalent
to C < λI.

Note this lemma strongly depends on the cooperativity of C and on the
direction of the inequalities - for instance, it is not true that λI ≺ C implies

λI < C – take for example C =

(
0 2λ
2λ 0

)
. That is why the other results

in [14] cannot be stated using the relation ”<” between matrices.
Proof of Lemma 3.1. It is obvious that C < λI implies C ≺ λI. So let us
show the contrary.

By our hypotheses the matrix B = λI − C satisfies the assumptions of
Lemma 2.3 in [4], so by this lemma the positive definiteness of B follows from
the implication

BX > 0 ⇒ X > 0, for all X ∈ R
n.

Suppose this is wrong, that is, there exists Y ∈ R
n such that BY < 0 and

Y 6< 0.

12



If Yi = 0 for some i then the i-th equation in BY < 0 and bij ≤ 0 for
i 6= j imply that yj > 0 for some j. This and Y 6< 0 imply that Y + is not
the zero vector.

We are going to show that BY + ≤ 0 - this is then a contradiction with
0 ≺ B. Let us suppose n = 2 for simplicity (the argument is exactly the same
for any n). Say y1 > 0. If y2 ≥ 0 we are done. If y2 ≤ 0 we have b12y2 ≥ 0
(by the cooperativity of B) so the first line of BY < 0 gives b11y1 < 0. This
inequality together with b12y1 ≤ 0 (again by the cooperativity) gives exactly
BY + ≤ 0. ¤
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