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Introduction

In this paper we discuss maximum principles and Harnack type estimates for systems of linear elliptic PDE's of second order

       L 1 u 1 + c 11 (x)u 1 + c 12 (x)u 2 + . . . + c 1n (x)u n = f 1 (x) L 2 u 2 + c 21 (x)u 1 + c 22 (x)u 2 + . . . + c 2n (x)u n = f 2 (x) . . . L n u n + c n1 (x)u 1 + c n2 (x)u 2 + . . . + c nn (x)u n = f n (x) (1)
given in a bounded domain Ω ⊂ R N ; n, N ≥ 1. Here L 1 , . . . , L n are supposed to be uniformly elliptic operators in general non-divergence form

L k = N i,j=1 a k ij (x) ∂ 2 ∂x i ∂x j + N i=1 b k i (x) ∂ ∂x i . ( 2 
)
with λ|ξ| 2 ≤ a ij ξ i ξ j ≤ Λ|ξ| 2 , ξ ∈ R N , for some 0 < λ ≤ Λ.

Studying such systems is an object of ever increasing interest in recent years. The most important reason is that whenever one wants to study a nonlinear system of elliptic PDE's (such systems are abundant in all areas of applications) a first step often is gaining some knowledge on its linearized system, which is in the form [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. Further, many higher-order equations -like (-∆) m u = f (x), ∆ 2 u + β∆u = f (x), are particular cases of [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. Some problems in probability theory, namely in the study of infinitesimal generators of diffusion processes with jumps also lead to system [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF].

So it is very natural to ask whether known results for linear elliptic PDE's extend to systems like [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. Here we shall be interested in the possibility of obtaining a generalized maximum principle (often referred to as Alexandrov-Bakelman-Pucci, ABP inequality) and a Harnack inequality for [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. In the scalar case these estimates play a fundamental role in the existence and regularity theory -see for instance GT, Chapters 8 and 9.

1 e-mail : sirakov@ehess.fr 1 Unfortunately, and as is well known, such estimates do not hold for all systems of type [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. One needs in general the additional assumption that the system has a (quasi-)monotonicity property, also called cooperativeness (this term comes from biology, where models in population dynamics for species which cooperate with each other lead to quasimonotone systems). We recall that system (1) is cooperative provided for all indices i, j ∈ {1, . . . , n},

(H 0 ) i = j implies c ij ≥ 0 a.e. in Ω.
This condition is rather restrictive, but many important systems do satisfy it.

For instance the higher order equations that we quoted above are equivalent to cooperative systems, the problems in probability and their applications to mathematical finance lead to cooperative systems. Further, whenever one has a nonlinear system like, say, -∆u

1 = g 1 (u 1 , u 2 ), -∆u 2 = g 2 (u 1 , u 2 ), its lin- earization is cooperative if g i is non-decreasing in u j , i = j.
A simple example is provided by the widely studied Lane-Emden system -∆u = |v| p v, -∆v = |u| q u. Another example is the system

-∆u i = -λ i u i + (c i1 u 2 1 + c i2 u 2 2 )u i , i = 1, 2,
which represents the stationary states of coupled Schrodinger systems, modeling some phenomena in nonlinear optics and low temperatures physics (these systems are an object of large interest recently). Some time ago in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] J. Busca and the author proved an ABP inequality and a Harnack inequality for cooperative systems of type [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]. These results apply to rather more general systems than (1) (namely, to systems of fully nonlinear equations of Hamilton-Jacobi-Bellman-Isaac type) but their proofs are rather lengthy, involved and, in particular, rely on the difficult theory of L N -viscosity solutions of fully nonlinear PDE, developed in the last twenty years. We have often been asked whether simpler proofs could be found, at least for linear systems. This is the first goal of the present work -to give elementary and shorter proofs of the results in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] in the linear case, which use only the standard theory of scalar linear PDE, as developed for instance in Chapter 9 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. These new proofs, apart from being of course interesting in their own right, permit to wrap up within the classical framework the theory of solvability of several types of nonlinear systems, recently developed in [START_REF] De Figueiredo | Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems[END_REF], [START_REF] De Figueiredo | On the Ambrosetti-Prodi problem avec power growth nonlinearity[END_REF], [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF] (these papers used in an essential way Theorems 1-3 below).

Further, the proofs we give here permit to us to improve the results in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] by allowing the system to have unbounded coefficients with (optimal) Lebesgue integrability. Namely, we suppose that

(H p ) c ij , f i ∈ L N (Ω), b k i ∈ L p (Ω), i, j, k ∈ {1, .
. . , n}. Let µ be an upper bound for the L p -norms of b k i , and ν be an upper bound for the L N -norms of c ij . We are going to prove the ABP inequality under 2 (H N ) and the Harnack inequality under (H p ), for some p > N -these are the hypotheses under which these results are known for scalar equations.

We shall also discuss some explicit conditions for a system to satisfy the maximum principle.

Setting C(x) = (c ij (x)) n i,j=1 , we write (1) in the form

LU + CU = F, with L = diag(L 1 , . . . , L n ), U = (u 1 , . . . , u n ) T , F = (f 1 , . . . , f n ) T . For any vector U ∈ R n we set U = max{u 1 , . . . , u n }, U = min{u 1 , . . . , u n }, U ± = (u ± 1 , . . . , u ± n ), U = U + + U -.
All through the paper we consider strong solutions of (1), that is, functions u i ∈ W 2,N loc (Ω) which satisfy (1) a.e. in Ω. All (in)equalities between vectors are understood to hold component-wise.

We are going to use the following hypothesis.

(H Ψ ) there exists a function Ψ = (ψ 1 , . . . , ψ n ) ∈ W 2,p loc (Ω, R n ) ∩ C(Ω, R n ), for some p > N, such that LΨ + CΨ ≤ 0 in Ω and Ψ ≥ (1, . . . , 1) in Ω. Theorem 1 (ABP estimate) If (H 0 ), (H N ), (H Ψ ) hold and U is such that LU + CU ≥ -F in Ω, then sup Ω U ≤ max Ω Ψ sup ∂Ω (U ) + + C F + L N (Ω) .
(

) 3 
The constant C depends on n, N, λ, Λ, µ, ν, Ψ C 1 (Ω) , and |Ω|.

Remark. Note (3) with F = 0 gives a maximum principle for L + C. We turn to the Harnack inequality for non-negative solutions of (1). We shall limit ourselves here to the case of a fully coupled system -that is, a system which cannot be divided into two subsystems one of which does not depend on the other (extensions to more general systems are then not difficult to get, see Sections 8 and 9 of [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]).

Definition 1.1 A matrix C(x) = (c ij (x)) n i,j=1
, which satisfies (H 0 ), is called irreducible in Ω, and the system LU + CU = F is called fully coupled in Ω, provided for any non-empty sets I, J ⊂ {1, . . . , n} such that I ∩ J = ∅ and I ∪ J = {1, . . . , n}, there exist i 0 ∈ I and j 0 ∈ J for which

meas{x ∈ Ω | c i 0 j 0 (x) > 0} > 0. ( 4 
)
For simplicity, when (4) holds we write c i 0 j 0 ≡ 0 in Ω. Hence we can fix ρ > 0 such that the sets {x ∈ B R | c i 0 j 0 (x) ≥ ρ} have positive measures. Let ω > 0 be a lower bound for these measures.

Theorem 2 (Harnack inequality) Suppose (H 0 ), (H p ) are satisfied, for some p > N , and let U ≥ 0 be a solution of [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] in Ω. Let B 2R ⊂ Ω be a ball with radius 2R. Assume ( 1) is fully coupled. Then

sup B R U ≤ C inf B R U + R F L N (B 2R ) , (5) 
where C depends on n, N, λ, Λ, µR, νR 2 , ρ, ω.

A large discussion on the importance of these estimates, extensions, counterexamples and applications can be found in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] (we refer in particular to Sections 1, 3, 8, 10-15 of that paper). Here we only recall the following fundamental consequence of Theorems 1 and 2.

Theorem 3 (i) Suppose (H 0 ) holds and a k ij ∈ C(Ω), b k i , c ij ∈ L ∞ (Ω), for all i, j, k = 1, . . . , n. Set ν = max i,j { b i L ∞ (Ω) , c ij L ∞ (Ω) }. The following are equivalent : (a) Condition (H Ψ ) holds. (b) the operator L + C satisfies the maximum principle in Ω, that is, if LU + CU ≤ 0 in Ω and U ≥ 0 on ∂Ω, then U ≥ 0 in Ω.
(c) for any F ∈ L N (Ω) and any solution U of LU + CU ≥ -F there holds

sup Ω U ≤ C sup ∂Ω (U ) + + F + L N (Ω) ,
where C depends only on n, N, λ, Λ, ν and |Ω|.

(ii) Under any of (a), (b), (c) in (i), if Ω satisfies an uniform exterior cone condition, then for any F ∈ L p (Ω), p ≥ N , there exists a unique solution

U ∈ W 2,p loc (Ω) ∩ C(Ω) of LU + CU = F in Ω, U = 0 on ∂Ω. We have U W 2,p (Ω) ≤ C F L p (Ω) , C depends on n, N, λ, Λ, µ, ν, Ω.
The not difficult (once we have ABP and Harnack inequalities) proof of Theorem 3 is given in Sections 13 and 14 of [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] (see also the remarks in Section 3.1 of [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF], in particular Theorem 7 there). The proof is based on results of existence and properties of a principal eigenvalue of a matrix operator. The fact that (a) implies (b) was proved in [START_REF] De Figueiredo | Maximum principles for cooperative elliptic systems[END_REF], the implication (b) ⇒ (a) was proved in [START_REF] Lopez-Gomez | The maximum principle for cooperative weakly coupled elliptic systems and some applications[END_REF] for systems with regular coefficients, and (a) ⇒ (ii) was established in [START_REF] Sweers | Strong positivity in C(Ω) for elliptic systems[END_REF], in the fully coupled case.

The most important statements in Theorem 3 are the facts that the maximum principle implies a quantitative estimate of how it fails for systems having a right-hand side with the wrong sign, an a priori bound for the solutions of the Dirichlet problem, and the unique solvability of this problem.

We are going to close this introduction with a review of the available explicit criteria for a quasimonotone system to satisfy the maximum principle. First, (H Ψ ) of course holds if C(x)V ≤ 0 a.e. in Ω, for some constant positive vector V . Second, the maximum principle is equivalent to the positivity of the principal eigenvalue of the system (or eigenvalues, if the system is not fully coupled). The results in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF] and their extensions in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] give lower bounds for the eigenvalue in terms of the coefficients of L i and the domain, which can be used to verify the condition of positivity of the eigenvalue. For instance, Proposition 14.1 in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] shows that the maximum principle holds for domains with sufficiently small measure. Further, it was shown in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] that the maximum principle is verified if either the matrix (sup Ω c ij ) i,j is semi-negative definite or the operators L 1 , . . . , L n coincide and C(x) is semi-negative definite a.e. in Ω (and an example was given showing that this last hypothesis is not enough if the operators are different). Finally, it was shown in [START_REF] De Figueiredo | Maximum principles for linear elliptic systems[END_REF] that the maximum principle holds provided the operators coincide, can be written in divergence form, the matrix C is constant and verifies C < λ 1 (L 1 )I (in the sense that Cλ 1 (L 1 )I is negative definite). By combining our arguments here with a reasoning from [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF], we can extend this to an arbitrary operator and a nonconstant matrix satisfying (sup Ω c ij ) i,j < λ(L 1 )I. Proposition 1.1 Under the hypotheses of Theorem 3, set C := (sup Ω c ij ) i,j . Suppose also L 1 ≡ . . . ≡ L n and let λ 1 = λ 1 (L 1 ) be the principal eigenvalue of the linear operator L 1 (as defined in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF]). If C < λ 1 I then the operator L + C satisfies the maximum principle in Ω, as in Theorem 3 (i).

Proof of Theorem 1

We recall the following fundamental generalized maximum principle, due to Alexandrov and Bakelman, obtained independently by Pucci. It is Theorem 9.1 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF].

Theorem 4 (ABP inequality) Let c ≤ 0. For any f ∈ L N (Ω) and any solution u of L i u + c(x)u ≥ -f there holds

sup Ω u ≤ sup ∂Ω u + + C ABP f + L N (Ω) ,
where C ABP = C|Ω| 1/N and C depends only on n, N, λ, Λ, µ and |Ω|.

Remark. In classical form the constant C ABP depends on the diameter of Ω. The fact that it can be replaced by the volume of Ω (and in fact an even more precise quantity, describing the "thickness" of Ω) is proved in [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], [START_REF] Cabre | On the ABP estimate and the reversed Hölder inequality for solutions of elliptic and parabolic problems[END_REF], see also [START_REF] Vitolo | On the maximum principle for complete second-order elliptic operators in general domains[END_REF] for more recent results. As a simple computation on page 571 of [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF] shows, it is sufficient to prove the result under the following condition: 

Note this is another way of saying (H Ψ ) is verified with Ψ ≡ (1, . . . , 1). So in the following we assume that ( 6) is satisfied. We take v i to be the solution of the problem 6) and (H 0 )) this problem has an unique solution, such that v i ≥ 0 in Ω, by the maximum principle for scalar equations. Note if c ii ≡ 0 then by ( 6) and (H 0 ) we have c ij ≡ 0 for all j, so the i-th inequality in the system is scalar, and Theorem 4 applies to it. Hence we can suppose c ii ≡ 0 for all i.

L i v i + c ii v i = c ii in Ω v i = 0 on ∂Ω. Since c ii ≤ -i c ij ≤ 0 (by (
Lemma 2.1 There exists a number δ > 0, depending on N, λ, Λ, µ, ν, |Ω|, such that

0 ≤ v i ≤ 1 -δ in Ω, i = 1, . . . , n.
Proof. We note that the function z i = 1v i satisfies L i z i + c ii z i = 0 in Ω, z i = 1 on ∂Ω, so z i ≥ 0 in Ω, by the maximum principle. By the strong maximum principle (Theorem 3.5 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) z i > 0 in Ω. We set z i = g(z i ) := z -α i , where α > 0 is a positive number to be chosen later. Since g is a smooth convex function, it is simple to check that

L i z i ≥ g ′ (z i )L i z i
(this is the classical Kato inequality). Hence we get

L i z i ≥ αc ii z i in Ω,
and z i = 1 on ∂Ω. So by Theorem 4 we have sup

Ω z i ≤ 1 + ανC ABP sup Ω z i .
Choosing α = (2νC ABP ) -1 we obtain z i ≤ 2 in Ω, that is,

v i = 1 -z i ≤ 1 -2 -1/α in Ω,
which proves the lemma.

Next, take w i to be the solution of

L i w i = -f + i in Ω w i = 0 on ∂Ω.
By Theorem 4 we have sup

Ω w i ≤ C ABP max 1≤i≤n f + i L N (Ω) , (7) 
and w ≥ 0 in Ω, by the maximum principle.

Proof of Theorem 1. Replacing u i by u i = u isup ∂Ω (U ) + we see that we can suppose u i ≤ 0 on ∂Ω for each i (note u i satisfies the same inequality as u i , because of ( 6)). Let M = sup Ω U = sup i,Ω u i be the quantity we want to estimate. We have, by ( 6) and (H 0 ),

L i u i + c ii u i ≥ -f i - i =j c ij (x)u j ≥ -f i -M i =j c ij (x) ≥ -f i + M c ii (x) in Ω.
Consider the function h i = w i + M v i . It satisfies h i = 0 ≥ u i on ∂Ω and

L i h i + c ii h i = -f + i + c ii w i + M c ii ≤ -f i + M c ii , since c ii ≤ 0, w i ≥ 0.
So by the maximum principle u i ≤ h i in Ω, for all i. This implies, by Lemma 2.1 and ( 7), that

M ≤ C ABP max 1≤i≤n f + i L N (Ω) + M (1 -δ),
from which Theorem 1 follows.

Proof of Theorem 2

As usual, the proof of the Harnack inequality is divided into two half-Harnack inequalities (the so-called local maximum principle for subsolutions and weak Harnack inequality for supersolutions), each of which is important in itself.

In what follows C will denote a positive constant which may change from line to line, and which depends only on the appropriate quantities. Proposition 3.1 (local maximum principle) Suppose (H 0 ), (H p ) hold, for some p > N , and let U be a solution of LU + CU ≥ -F in Ω. Let B 2R ⊂ Ω be a ball with radius 2R. Then for each p > 0 we have

sup B R U ≤ C 1 |B 2R | B 2R |U + | p + R f L N (B 2R ) , (8) 
where C depends on p, N, λ, Λ, µR, νR 2 .

Proposition 3.2 (weak Harnack inequality) Suppose (H 0 ), (H p ) hold, for some p > N , and let U ≥ 0 be a solution of LU + CU ≥ -F in Ω. Let B 2R ⊂ Ω be a ball with radius 2R. Assume ( 1) is fully coupled. Then there exists a number p = p(n, N, λ, Λ, µR, νR 2 ) such that

1 |B 2R | B 2R |U + | p ≤ C inf B R U + R f L N (B 2R ) , (9) 
where C depends on n, N, λ, Λ, µR, νR 2 , ρ, ω.

For the scalar case these theorems can be found in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], for operators with bounded coefficients, and in [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF], [START_REF] Ladizhenskaya | A survey of results on solvability of boundary-value problems for uniformly elliptic and parabolic quasilinear equations[END_REF], [START_REF] Koike | Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients[END_REF], for operators with only Lebesgue integrable coefficients. Putting them together gives the full Harnack inequality.

Proof of Proposition 3.1

So we have a solution of

L i u i ≥ -f i - j c ij u j ≥ -f + i -c ii u i - i =j c ij u + j
and we want to show [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. The idea of the proof is to find a regular approximation for U + and a linear operator to which Theorem 9.20 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] applies.

We introduce the real function

h ε (t) = (t 4 + ε 4 ) 1/4 -ε if t ≥ 0 0 if t ≤ 0.
It is very simple to check that h ε ∈ C 2 (R), h ε is convex, and has the following properties

0 ≤ h ′ ε (t) < 1, h ′ ε (t) → 1 for all t > 0, ( 10 
)
th ′ ε (t) -h ε (t) L ∞ (R) ≤ ε, t + -h ε (t) L ∞ (R) ≤ ε. (11) 
Again, since h ε is convex, the Kato inequality gives L(h ε (u)) ≥ h ′ ε (u)Lu, for each linear elliptic operator of our type and for each u ∈ W 2,N . So we obtain

L i (h ε (u i )) ≥ h ′ ε (u i )(-f + i -c ii u i - i =j c ij u + j ) ≥ -f i,ε -c ii h ε (u i )- i =j c ij h ε (u j ),
where we have used [START_REF] Ladizhenskaya | A survey of results on solvability of boundary-value problems for uniformly elliptic and parabolic quasilinear equations[END_REF], [START_REF] Quaas | Existence and non-existence results for fully nonlinear elliptic systems[END_REF], and have noted

f i,ε = f + i + ε j c ij .
In the sequel we shall in general denote with f i,ε any function which converges to

f + i in L N (B 2R ) as ε → 0.
We have proved that the nonnegative vector U = (h ε (u 1 ), . . . , h ε (u n )), u i = h ε (u i ), satisfies the same system as U , with f i replaced by f i,ε . We now set

w = w ε = 1 2 (h ε ( u 1 -u 2 ) + h ε ( u 2 -u 1 ) + u 1 + u 2 ) .
We easily see that w ≥ 0 is in W 2,N (B 2R ) and

w -max{u + 1 , u + 2 } L ∞ (B 2R ) ≤ ε + w -max{ u 1 , u 2 } L ∞ (B 2R ) ≤ 2ε. ( 12 
)
We now fix a second order operator L whose coefficients admit the same bounds as those of L 1 , L 2 , and such that Lw ≥ L 1 w and Lw ≥ L 2 w in Ω (such an operator is easy to construct, see for instance Lemma 4.1 (b) in [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF]). Note the coefficients of L depend on w but the respective bounds on these coefficients are still λ, Λ, µ, ν.

By applying the Kato inequality again we obtain

Lw ≥ L i w ≥ 1 2 (h ′ ε ( u 1 -u 2 )(L i u 1 -L i u 2 ) +h ′ ε ( u 2 -u 1 )(L i u 2 -L i u 1 ) + L i u 1 + L i u 2 )
a.e. in B 2R , i = 1, 2. Note that, since u 1 , u 2 are in W 2,N (B 2R ), we have L i u 1 = L i u 2 almost everywhere on the set { u 1 = u 2 }. Hence a.e. on the set { u 1 ≥ u 2 } we have, by the definition of h ε and (10),

Lw ≥ 1 2 (1 + h ′ ε ( u 1 -u 2 )) L 1 u 1 + 1 2 (1 -h ′ ε ( u 1 -u 2 )) L 1 u 2 ≥ 1 2 (1 + h ′ ε ( u 1 -u 2 )) L 1 u 1 + 1 2 (1 -h ′ ε ( u 1 -u 2 )) L 1 u 1 | { u 1 = u 2 } + ω ε ≥ L 1 u 1 + ω ε ≥ -f + 1,ε -c 11 u 1 -c 12 u 2 + ω ε ≥ -f + 1,ε -max{c + 11 , c 12 } max{ u 1 , u 2 } + ω ε ≥ -f + 1,ε -max{c + 11 , c 12 }(w + ε) + ω ε (recall (12)
), where we have denoted

ω ε = 1 2 (1 -h ′ ε ( u 1 -u 2 )) L 1 u 2 on { u 1 > u 2 } 0 elsewhere .
By [START_REF] Ladizhenskaya | A survey of results on solvability of boundary-value problems for uniformly elliptic and parabolic quasilinear equations[END_REF] and the Lebesgue dominated convergence theorem we have ω ε → 0 in L N (B 2R ) as ε → 0. We repeat the same argument, replacing L 1 by L 2 and { u 1 ≥ u 2 } by { u 1 ≤ u 2 }, and we finally obtain [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] (or its extension to operators with unbounded coefficients in [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF]) applies to this inequality and gives sup

Lw ≥ -f ε -c(x)w a.e. in B 2R , where c = max{c + 11 , c 12 , c 21 , c + 22 } and f ε = max{f 1,ε , f 2,ε }+εc-ω ε , so f ε → f in B 2R . Now Theorem 9.20 in
B R w ≤ C 1 |B 2R | B 2R w p + R f ε L N (B 2R ) ,
where C depends on p, N, λ, Λ, µR, νR2 . So if n = 2 we let ε tend to zero and finish the proof, using [START_REF] Krylov | Nonlinear elliptic and parabolic equations of second order[END_REF].

If n = 3 we repeat the above argument, replacing u 1 , u 2 by w, u 3 and L 1 , L 2 by L, L 3 . So doing the same procedure n -1 times we obtain Proposition 3.1.

Proof of Proposition 3.2

Now we have a nonnegative solution of L i u i + j c ij u j ≤ f i and we want to show [START_REF] Koike | Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients[END_REF]. We are going to use the argument of [START_REF] Busca | Harnack type estimates for nonlinear elliptic systems and applications[END_REF], which simplifies greatly in the linear case.

Up to a change of coordinates we can suppose that R = 1. By (H 0 ) we have L i u i + c ii u i ≤ f i for each i, so applying the scalar weak Harnack inequality (Theorem 9.22 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF], see also [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF], [START_REF] Ladizhenskaya | A survey of results on solvability of boundary-value problems for uniformly elliptic and parabolic quasilinear equations[END_REF] for the case of unbounded coefficients 2 ) we obtain

1 |B 2 | B 2 |U + | p ≤ C max 1≤i≤n inf B 2 u i + f L N (B 2 ) .
Hence it only remains to show that max

1≤i≤n inf B 2 u i ≤ C( min 1≤i≤n inf B 1 u i + f L N (B 2 ) ). ( 13 
)
If Y i = 0 for some i then the i-th equation in BY < 0 and b ij ≤ 0 for i = j imply that y j > 0 for some j. This and Y < 0 imply that Y + is not the zero vector.

We are going to show that BY + ≤ 0 -this is then a contradiction with 0 ≺ B. Let us suppose n = 2 for simplicity (the argument is exactly the same for any n). Say y 1 > 0. If y 2 ≥ 0 we are done. If y 2 ≤ 0 we have b 12 y 2 ≥ 0 (by the cooperativity of B) so the first line of BY < 0 gives b 11 y 1 < 0. This inequality together with b 12 y 1 ≤ 0 (again by the cooperativity) gives exactly BY + ≤ 0.

c

  ij (x) ≤ 0 a.e. in Ω, for every i ∈ {1, . . . , n}.

Recently, Koike and Swiech obtained the Harnack inequality in an even more general context, see[START_REF] Koike | Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients[END_REF] 

Recall that the system is supposed to be fully coupled. It is easy to see that this implies that there exists a permutation {j 1 , . . . , j n } of {1, . . . , n} such that c kj k ≡ 0 in B 1 .

We are going to show that for each k = 1, . . . , n, we have inf

from which the desired inequality (13) easily follows. Say k = 1. Note if inf B (1+1/n) u j 1 = 0 there is nothing to prove, so we can suppose this quantity is positive.

Let w be the solution of the Dirichlet problem

and w = 0 on ∂B (1+1/n) . The function w is a solution of a problem whose right-hand side is nonnegative everywhere (so w is positive), and larger than the positive constant ρ(inf B (1+1/n) u j 1 ) on a set of measure ω > 0. By applying a (deep) theorem by Krylov -Theorem 12 on page 129 in [START_REF] Krylov | Nonlinear elliptic and parabolic equations of second order[END_REF], or Theorem 9.2 of [START_REF] Berestycki | The principal eigenvalue and maximum principle for second order elliptic operators in general domains[END_REF], an easier to read proof of this result is given in the Appendix of [START_REF] Quaas | Existence and non-existence results for fully nonlinear elliptic systems[END_REF] -we get inf

On the other hand

gives sup

, and we conclude.

Proof of Proposition 1.1

First, the operator L+C satisfies the maximum principle in Ω. This is proved exactly by the same argument as the one on page 123 of [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF] -we only have to take for the function ψ there the vector (φ 1 , . . . , φ 1 ), where φ 1 is the first eigenfunction of L 1 in a slightly larger domain Ω ′ ⋑ Ω, such that we still have

Let us briefly recall this reasoning. We replace u i by v i = φ 1 u i , and see that V satisfies LV + (Cλ(L 1 , Ω ′ )I)V ≥ 0, for some modified operator L, of the same type as L. Then we evaluate the i-th inequation in this system at a point of positive maximum of v i (removing from the system the equations with indices j for which v j is nonpositive in Ω), and see that the vector W 0 of positive maxima of u i satisfies (Cλ(L 1 , Ω ′ )I)W 0 ≥ 0. Multiplying this inequality by W 0 we obtain W 0 = 0. Let U be a vector function such that LU + CU ≥ 0 in Ω and U ≤ 0 on ∂Ω. We set h ε (U ) = (h ε (u 1 ), . . . , h ε (u n )) ≥ 0, where h ε is the function from the proof of Proposition 3.1. Then by [START_REF] Ladizhenskaya | A survey of results on solvability of boundary-value problems for uniformly elliptic and parabolic quasilinear equations[END_REF], [START_REF] Quaas | Existence and non-existence results for fully nonlinear elliptic systems[END_REF] and the Kato inequality we have

and h ε (U ) = 0 on ∂Ω. Since L + C satisfies the maximum principle, by Theorem 3 it also satisfies the ABP inequality, which implies

Letting ε → 0 gives U + = 0 in Ω, which is what we wanted to prove.

Remark. Note the above quoted argument in [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF] was carried out under the hypothesis C ≺ λ 1 (L 1 )I, defined by

In general this is a weaker hypothesis than C < λ 1 (L 1 )I but in this particular situation these two turn out to be equivalent.

Note this lemma strongly depends on the cooperativity of C and on the direction of the inequalities -for instance, it is not true that λI ≺ C implies λI < C -take for example C = 0 2λ 2λ 0 . That is why the other results in [START_REF] Sirakov | Existence and a priori bounds for higher order elliptic equations[END_REF] cannot be stated using the relation "<" between matrices.

Proof of Lemma 3.1. It is obvious that C < λI implies C ≺ λI. So let us show the contrary. By our hypotheses the matrix B = λI -C satisfies the assumptions of Lemma 2.3 in [START_REF] De Figueiredo | Maximum principles for linear elliptic systems[END_REF], so by this lemma the positive definiteness of B follows from the implication BX > 0 ⇒ X > 0, for all X ∈ R n .

Suppose this is wrong, that is, there exists Y ∈ R n such that BY < 0 and Y < 0.