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Abstract

A neural network based strategy for detection of feedstock variations in a continuous
pulp digester is presented. A feedforward two-layer perceptron network is trained to
detect and isolate unmeasured variations in the feedstock. Training and validation
data sets are generated using a rigorous first principles model. The most important
issue discussed here is the design of the data set required to train the artificial
neural network. Efficiency and limitation of such an approach are demonstrated

using simulations.
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1 Introduction

The pulp and paper industry forms a large and important sector of the chem-
ical process industry. During the period 1996-1998 alone, planned capital in-
vestments including expansion of existing facilities exceeded US$10 billion.
This highlights the capital-intensive nature of this industry and the corre-
sponding demand for higher safety and reliability (Leung, Romagnoli, & Bi-
garan, 2001). In the meantime, practical implementation of advanced indus-
trial control systems, like model predictive control (MPC), requires a watchdog
to diagnose the cause of performance degradation. Therefore, early detection
of such problems enables the engineer to undertake remedial action including
retuning the controller if necessary.

Over the past two decades, a number of approaches for fault detection and
diagnosis have been proposed. These myriad techniques (Dash, & Venkata-
subramanian, 2000) have been classified and summarized in several reviews
and publications. Notable reviews include: observer based methods (Garcia,
& Frank, 1997), parameter estimation and knowledge based systems (Pat-
ton, Chen, & Nielsen, 1995); knowledge based systems (Sharif, & Grosvenor,
1998); and fuzzy logic methods (Isermann, 1998). More recently, Venkatasub-
ramanian (Venkatasubramanian, 2001, Venkatasubramanian, Rengaswamy, &
Kavuri, 2003, Venkatasubramanian, Rengaswamy, Kewen, & Kavuri, 2003a,
2003b) presented a global perspective on these disparate methods. Among
these methods, neural networks have very useful properties including the abil-

ity to handle nonlinear behavior and tolerance to noise.
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In this work, preliminary results for a neural network-based software sensor
to infer unmeasured variations (referred to as faults) in the feedstock of an
industrial pulp digester are presented. This software sensor is developed to
predict time-varying model parameters (Qi, Zhou, Liu, & Yuan, 1999, Molga,
& Cherbaski, 1999, Porru, Aragonese, Baratti, & Servida, 2000) that affect
model-based control performance. The data set required for the neural net-
work creation is usually obtained from plant data experiments. However, in
this work, the use of a fundamental model to generate data for unmeasured
variables is advocated. A related study is described in (Adal, Bakal, S6nmez,
Fakory, & Tsaoi, 1997) where a fundamental model was used to create training
data for a neural network. Additional motivation for the use of this approach
is that it represents a non-parametric approach.

Various methods exist for the design of the data set considered in this paper:

e Random selection where no clear criterion is applied. This is the most com-
mon method in the literature.

e Kohonen self-organizing map (Oja, & Kohonen, 1999) is a clustering method
mapping high-dimensional data sets into a space of lower dimension, while
preserving the topology (i.e. the spatial relationships) of the data set as best
as possible.

e Kennard and Stone design (Kennard, & Stone, 1969) is based on uniform
spaced objects over the space. Such an algorithm starts with two most
distant objects as members of the data set. Next, all other objects’ distances
to the first two objects are calculated. The object, which is selected as the
next one to join the data set, is the one that has the largest minimal distance
to all previously selected objects. The algorithm repeats the selection by

comparing all distances of candidates to the already selected objects until



a certain predefined number of objects have been found.

e D-optimal design (Carlson, 1992) aims to minimize the generalized variance
of the parameter estimates.

e Full or fractional factorial design (Montgomery, 1997) where combinations
between discrete levels are accounted for. Full factorial design contains all
the possible combinations of the selected settings of the experimental fac-
tors, so that a 2-level full factorial design requires 2" experiments (n being
the number of factors). One way to accomplish a smaller number of exper-
iments, when treating the same number of factors, is the use of fractional
factorial design. This operation leads to a partial loss of information, since it
might be impossible to discriminate between the effects or the interactions

of the effects.

In (Wu et al., 1996), a case study provides a detailed comparison of random
selection, Kohonen self-organizing map, Kennard and Stone design and D-
optimal design. None of these methods has a distinct advantage over the other
methods. Therefore, given the large size of the problem and the simplicity of
the approaches, a fractional factorial design method (Zhang, & Subbarayan,
2002, Briceno, El-Mounayri, & Mukhopadhyay, 2002) combined with random
selection is applied here for the data set generation.

The main focus of this paper deals with a method to construct, from the
digester model, the data set required for the training phase. This paper is
organized as follows: first, the problem is described and the fundamental model
is briefly introduced. Next, three designs of the training subset of the neural
network are discussed. Finally, efficiency, limitations and robustness for the
use of each neural network, resulting from the different training subsets, are

described.



2 Fault set definition

A continuous digester is a large vertical tubular reactor in which wood chips
are converted to wood pulp for papermaking (see schematic in Figure 1).
White liquor (aqueous solution of effective alkali and hydrosulfide) strips the
presteamed porous wood chips of lignin, freeing the wood fibers. The delig-
nification reaction takes place in the digester section referred to as the cook
zone. In this section, both the chips and liquor flow cocurrently. At the end of
the cook zone, spent liquor is extracted for chemical recovery. The chips, how-
ever, continue their downward flow in the wash zone, composed by modified
continuous cooking (MCC) zone and extended modified continuous cooking
(EMCC) zone, where they encounter weak liquor flowing countercurrently.
The wood pulp is finally extracted at the outlet of the EMCC. Control of the
pulp quality, characterized by Kappa number, is the key control objective.
Faults addressed in this work were identified through discussions with a mill
partner. They mainly deal with variations of the naturally occurring feedstock

properties and are summarized below:

e variation in moisture content of the wood chips fed to the chip bin,

e unmeasured density of each of the 5 wood chip components: a) high reactiv-
ity lignin; b) low reactivity lignin; c¢) cellulose; d) galactoglucomman; and
e) araboxylan,

e unmeasured density of each of the 2 white liquor species: a) effective alkali

(EA); and b) hydrosulfide (HS).

Moisture content is measured infrequently (in some cases, once per day). No

known measurements exist for the 5 wood components. However, these are



accounted for in the fundamental model. Wood, being a naturally occurring
raw material, exhibits wide stochastic variability in moisture content as well
as composition. Upsets in the upstream liquor recovery section are often man-
ifested as changes in white liquor densities. Each of the eight previously men-
tioned faults adversely affect control of the endpoint Kappa number. Indeed, it
has been previously determined (Wisnewski, & Doyle III, 1998) that stochas-
tic variations of the feedstock has a significant impact on the Kappa number
at the outlet of the digester, even under advanced process control. Therefore,
there is a need to estimate these stochastic variations in order to improve
closed-loop performance. From a control theoretic point of view, these faults
can also be interpreted as unmeasured. Within this framework, identification
of these disturbances will enable use of a feedforward scheme for disturbance
rejection based on "soft sensor" predictions. However, in the current work, the
changes of the eight feedstock quality descriptors are considered as faults and

the aim is to estimate their magnitude.

3 Continuous pulp digester model

The first step in the construction of a neural network model is the development,
of a suitable data set, which is randomly split into a training subset and
a validation subset. However, no measurements exist for seven of the eight
quality descriptors (see fault summary list above). To circumvent this problem,
a rigorous first principles model is employed to create the necessary data
set. For modeling purposes, the digester is approximated as a series of 150
continuous stirred tank reactors. The first principles model consists of mass

balances for the non-porous solid and the free liquor components and energy



transfer between the 2 phases within each reactor. Sufficient degrees of freedom
exist to tune the model to match mill behavior. For modeling assumptions and
a description of the conservation laws, the reader is referred to (Wisnewski,
Doyle ITI, & Kayihan, 1997). The fundamental process model is simulated

using Matlab (Doyle III, & Kayihan, 1999) and is used as the "plant".

4 Artificial neural network design

The feedforward multilayer backpropagation artificial neural network can be
viewed as a nonlinear autoregressive model with external inputs (Su, Mc Avoy,
& Werbos, 1992). An overview of training methodologies is presented by Hush
and Horne, 1993. In this work, a backpropagation network is trained such that
the neural network outputs reconstruct the behavior of a selection of faults
among the eight faults discussed previously. A sensitivity analysis reveals that,
among all the sensors actually available at the plant, two are important here:
measures of EA and HS content in the liquor at the upper extract of the di-
gester (Fig. 1) are the most useful for detecting the cause of changes in the
Kappa number. Hence, both of these will be selected to infer the magnitudes
of the eight quality descriptors that affect the Kappa number.

Network inputs consisted of EA and HS measurements over a fixed, past re-
ceding horizon, thereby, enabling process dynamics to be incorporated. The
original data set generated from the fundamental model is split into training
and validation sets. The hidden layer consists of a fixed number of sigmoidal
nodes (selected by trial and error). Henrique, Lima, and Seborg, 2000 discuss
node pruning techniques based on orthogonal least squares, which yield par-

simonious models. During the training, the network weights and biases are



adjusted such that the sum of the squared errors (SSE) during prediction
is minimized by the backpropagation algorithm. Under these conditions, it
is necessary to stop training once an overfit is indicated. A commonly used
method to identify overfit is cross-validation: the weights and biases based on
the training subset are applied to the validation subset to evaluate the perfor-
mance in terms of the SSE. Typically, the SSE for the training set decreases
with the number of iterations and levels off to a constant value when a local
minimum is obtained. In an overfit situation, the SSE for the validation first
decreases but finally increases, whereas the SSE for the training is decreasing.
When the SSE of the validation subset increases, the algorithm is overfitting
the training data. In this work, the training procedure is stopped when the
SSE of the validation subset starts to increase while the SSE of the training
subset is still decreasing.

A key issue addressed in this paper is the initial design of the original data
set: which set of behaviors of the eight faults have to be simulated? Here, use
of large data sets for training requires large computational time along with
the resulting increase in model complexity 2. On the other hand, using a small
and non-representative data set for training leads to poor validation results.

The following procedure is used to build the neural network:

e choose the variation set that describes the combination of the n selected
faults that appear during the plant simulation using factorial design and
random selection,

e given this variation set, build the related data set using the set of plant

simulations,

2 With a 800MHz PC, 3000 simulations of 12 hours can be accomplished in 24 hours

using IETek model v1.0 and Matlab.



e split the data set randomly into training subset and validation subset,

e train the neural network: the network inputs consist of upper extract EA
and HS content measurements over a past horizon. The horizon is chosen to
be 18 hours (with sample time of 1 hour), which is long enough to capture

the dynamic behavior of the digester. Thus, the neural network inputs are:

EA(t) ... EA(t — 18) HS(t) ... HS(t — 18)

The network outputs consist of the n faults which are shifted in time by
the evident delay (from the digester inlet to the upper extract) of 4 hours.

Thus, the network outputs are:

fault,(t — 22) ... fault,(t — 22)

The number of nodes is adjusted by trial and error for each data set.

In the next three sections, three different strategies are discussed for a sys-

tematic bottom-up approach for the variation set design.

5 Simple data set design

As a first attempt, faults were introduced in the plant simulator as a com-
bination of initial steps variation for each of the ny = 8 feedstock quality
descriptors previously described. In order to avoid computation of an exces-
sive number of simulations, the variation set is designed via fractional factorial

design as follows:

e Each of the fault magnitude can take n, values different from the nominal

value (referred to as 100%).



e When more than one fault occurs, all of their magnitudes are the same.

Although these assumptions are restrictive, a large number of n,, x 2™/ = 2048
simulations need to be computed. The magnitudes of the faults range between
92% and 108% with a step of 2%. It is noted that such a full-factorial design
method may not be practical if the number of faults is large or for a finer
resolution of changes in their magnitudes. In such cases, one may use optimal
factorial designs as discussed in (Wu et al., 1996). Each case is simulated for
a 12h duration (therefore, a large set is involved in this simple data set de-
sign). This duration is sufficient for faults to be completely manifested in the
residual EA and HS density measurements at the upper extract. A network
with 8 nodes yielded the best results during the validation phase. Detection
of the normalized unmeasured density variations are shown, in the validation
subset, for the moisture content (Fig. 2a), the cellulose density (Fig. 2b), the
araboxylan density (Fig. 3a) and the HS density (Fig. 3b). The evident delay
in detection after the step changes is due to the time needed for transport
of the feed from the top of the digester to the extraction screen. For these 4
faults, after small transient errors, the static error is small and the neural net-
work behaves efficiently. Large prediction errors were observed for detection
of changes in high reactivity lignin, low reactivity lignin, effective alkali and
galactoglucomann. These results demonstrate that some variations in feed-
stock (moisture content, cellulose density and also, to a certain extent, the
araboxylan density and the HS density) may be inferred using a neural net-
work with the selected inputs (EA and HS at extraction screen). These results
will be used to reduce the size of the data set in the next two data set designs.
Testing the neural network in regions outside the data set (with uncorrelated

variations for the magnitude of each of the eight faults) shows poor detection
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ability for all 8 faults including the 4 faults that were previously reconstructed
correctly. Detection of variations in moisture content and cellulose density by
the artificial neural network outside the training region are shown in Fig. 4a
and Fig. 4b, respectively. These results are very poor and the neural network
is not able to estimate correctly the fault magnitudes as done previously. This
underlines the drawback of poor extrapolation capabilities of the neural net-
work. The poor results can be attributed to the current training subset that

covers the different operating conditions very sparsely.

6 Reduced data set design

Despite selecting a coarse resolution of variations in the fault variables (2%
changes) in the previous section, the large dimension of the input space (dy-
namic description of 8 faults) caused the data set to be large. Moreover, it
did not capture all possible system behaviors since, among all possible varia-
tions, only step variations were assumed in the fault scenario. In this section,
a new variation set is constructed. In the new design, a finer resolution of
1% step changes is employed. Based on results of the previous section, our
attention is restricted to three of the four faults that could be detected by the
EA and HS measurements at the upper extract. The three faults selected are
moisture content, cellulose and HS densities (i.e., the ones that gave the most
promising results in the previous simulations). This reduction of the number
of faults aims to reduce the data set size involved to yield reasonable computa-
tion times. In order to avoid computational burden during the neural network

training, the variation set is designed as follows:

e each fault magnitudes can take different values about their nominal value.
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e when more than one of the faults occur, any combination of their magnitudes

are allowed.

Thus, each magnitude can take any value between 94% and 106% with a step of
1% (i-e., n, = 13). With a full factorial design, this leads to the computation of
ny! = 2197 simulations to build the data set. 7 nodes were used in the hidden
layer of this neural network. The use of this neural network shows enhanced
performance in the trained region. The performance outside data set, i.e., in
more realistic cases, is now discussed. In the first run, the variation set is
defined with the same bounds as in the training, namely [94%, 106%], but
the discrete step size is now changed to 0.02% instead of the 1% chosen in the
training set. After relatively small transient errors, it is seen (e.g. Fig. 5 for the
HS density) that the network is able to track such step changes. The transient
errors are obviously still present due to the abrupt changes at the top of the
digester but the static errors are quite small. As discussed previously, the delay
is unavoidable since it takes finite time for the feed to reach the extraction
screen. In the second run, the step variations in the interval [94%, 106%| with
a discrete step of 1% are extended to all 8 initial faults described previously.
The results in the previous section showed that 4 of these 8 faults were not
detectable. However, all of these 8 faults still have an impact on the other
neural network responses (e.g. Fig. 6 for the HS density) resulting in static
errors during prediction by the neural network. It is also of interest to study
the sensitivity of the network outputs to the typical manipulated variables
(MVs) since the neural network will be used in the control strategy where the
MVs affect the EA and HS measurement used in the neural network. Three
such candidate MVs are considered (see Fig. 1 for their respective location on

the plant):

12



e chip flowrate in the digester,
e liquor flowrate at upper extract,

e cook temperature.

Simulations show that the neural network responses are affected by these MV
changes. As an example, Fig. 7 depicts the inferred HS density when a step
increase in the upper extract flowrate has been introduced as a step variation
from 100% to 103% with a simultaneous step variation in HS concentration. Fi-
nally, the design of the variation set for this second neural network shows that
a sufficiently discretized variation set can lead to good interpolation results
for untrained situations. However, the MVs must also be taken into account
in the variation set, hence, producing a larger training subset. This will lead
to the next training subset design for a new neural network that will be more

robust with respect to MV variations.

7 Robust data set design

The design of a third data set is now described for detection of the moisture
content, cellulose, araboxylan and HS density variations. For each of these 4
faults, the same procedure is used and is described here. A variation set is
constructed including the relevant fault and the 3 MVs introduced previously.
In order to reduce the time needed for the calculation of the data set, the
magnitude of each of the n; = 4 parameters is allowed to take n, = 9 different
values rather than 13 as in the previous case. Therefore, with a full factorial
design, ny’ = 6561 different simulations, where changes in the variation set
are still implemented as step function, have to be performed. The number of

simulations to run is therefore 3 times higher than previously, hence increasing
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the computational burden. Of these simulations, 2000 runs were chosen ran-
domly to create the training subset. 11 nodes were used in the neural network.
As expected, the neural network performs well during generalization. The ex-
tension to regions outside the data set, where the MV changes are filtered
through a first order transfer function (Fig. 8) rather than a step change as
in the variation set, leads to promising results. Similar observations are made
for detection of variations in the moisture content (Fig. 9). Transient errors
exist but the final tracking of the variation is effective. One can see that the
deviation from steady state after 8 days in the cook temperature (Fig. 8) does
not affect appreciably the neural network response (Fig. 9). A simulation in
another region outside the data set allows verification of robustness of the
neural network predictions. A periodic fault for HS is introduced as a pulse
train (Fig. 10). In the meantime, each of the seven other faults are sequentially
introduced as a pulse: the first fault of this sequence is the change in moisture
content (Fig. 11a) and, following the order of the list given in the fault set
definition section, it ends with the change in EA density (Fig. 11b). After
transient errors, it is seen that the neural network rejects these disturbances
(Fig. 10) except for the moisture content (the first fault) and the cellulose
density (the fourth fault): in theses cases, a static error exists after the addi-
tional fault occurs. Since these 2 faults may be inferred using a similar neural
network, the output of the two related neural networks can be combined to the
actual neural networks output to correct such errors. Otherwise, after tran-
sients due to the introduction of each fault, the expected value is found with

good accuracy.
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8 Conclusions

An approach for the evaluation of the magnitude in the variations of the
feedstock properties in a pulp digester has been presented. Based on a first
principles model, a neural network approach has been used to build an infer-
ence of some of the unmeasured variations from the 2 measurements available
at the upper extract in the digester. As relatively few plant measurements are
available for the necessary training sequence, the design of the data set based
on the plant simulator has been discussed.

The main contribution in this paper is a description of the selection of the
data set. Given the large volumes of data necessary for the design of the neu-
ral network to detect feedstock variations, a systematic bottom-up approach
was used. Thus, a very simple data set was initially designed. Even without
the MVs at this stage, it was clear from this design that it was not possible
to detect changes in 4 out of the 8 proposed faults. Also, it became clear that
2% changes in inputs is too coarse and that the network does not work well
with smaller changes in inputs. In the next design, the magnitudes of changes
were reduced to 1%, and the results in figure 5 reveal the improvement. The
next level of sophistication involved studying the impact of MVs and this was
addressed in the robust data set design. A relatively small data set has been
built to avoid numerical problems during the training phase of the neural net-
work. Unfortunately, a small data set did not cover every process behavior
based on the fault situations. Among the infrequent moisture measurement,
and the 7 unmeasured feedstock properties, one may estimate the magnitude
of the moisture content, the cellulose density and also to a certain extent, the

araboxylan density and the HS density.
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Future developments will address improvement of the robustness by feeding
the current responses in cascaded neural networks to correct the errors. The
current approach should be evaluated with realistic changes in moisture and
feedstock properties and in a control structure with data obtained from an
actual mill. In order to decrease the size of the training subset, one should
explore dimension reduction methods before training phase such as PCA or
independent component analysis (ICA). In (Li, & Wang, 2002), after reduc-
tion through ICA, signals featuring dynamic behavior were reconstructed with
good accuracy. Future work will address the use of this model-based sensor
to update the corresponding model parameters used in the model predictive

control strategy in order to improve closed-loop performance.
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Figure

Legend

1 Schematic of a chemical pulp digester

2 Moisture content (a) and cellulose density (b): normalized variations introduced (solid)
and response of the first neural network (dashed) used in the validation subset.

3 Araboxylan density (a) and HS density (b): normalized variations introduced (solid) and
response of the first neural network (dashed) used in the validation subset.

4 Moisture content (a) and cellulose density (b): normalized variations introduced (solid)
and response of the first neural network (dashed) used outside the data set.

5 HS density: normalized variations introduced (solid) and response of the second neural
network (dashed) used outside the data set.

6 HS density: normalized variations introduced (solid) and response of the second neural
network (dashed) used outside the data set.

7 HS density: normalized variations introduced (solid) and response of the second neural
network (dashed) used outside the data set with an initial step increase in upper extract
flowrate.

8 Faults introduced for the third neural network used outside the data set: (a) normalized
chips flow rate, (b) cook temperature deviation.

9 Moisture: normalized variations introduced (solid) and response of the third neural net-
work (dashed) used outside the data set.

10 HS: normalized variations periodically introduced (solid) and response of the third neural
network (dashed) used outside the data set.

11

First and last fault of the 7 fault seqisnce combined to the HS periodic fault: moisture

content (a) and EA density (b) for the third neural network used outside the data set.
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