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ABSTRACT

We present a method for 3D surface segmentation based on

watershed cuts computed on local curvatures. The segmen-

tation algorithm is applied to artwork database classification

by mean of a search engine based on 3D region descriptor

bags. The comparison with a search engine based on global

descriptors clearly shows an improvement of performances.

Index Terms— 3D surface segmentation, watershed cut,

3D descriptors, region bags, artwork database, indexing.

1. INTRODUCTION

Partial shape matching and detection of self-similarities are

some of the most active tasks in the context of 3D mesh in-

dexing and retrieval. For instance, [1] present the “saliency”

of a region computed from its relative size and some curva-

ture measures, and use it for partial shape matching and shape

alignment. Another recent work covers the identification of

most distinctive parts of an object seen as a mesh database

item: not only the local shape properties of a region are con-

sidered, but also how consistent they are with other instances

of the same class and how different from objects of other

classes, leading to a definition of regions distinctive, not dis-

tinctive, or in the middle for each mesh of the database [2, 3].

Some other approaches are based on the decomposition of

3D models and are well suited for CAD or simple shape ob-

jects, shape descriptors are then computed for each part of the

model and compared in order to classify the database [4].

We present here a first application of the watershed cuts,

a recently introduced framework [5, 6], to the segmentation

of 3D surfaces and show how these segmentations combined

with an appropriate use of 3D shape region descriptors and

a search engine based on region descriptor bags improve in-

dexing and retrieval task. This will be applied to a 3D model

database dedicated to various artworks: greek vases, terracota

gallo-roman figurines, moulds, fragments, etc.

2. 3D SURFACE SEGMENTATION

The 3D surface segmentation algorithm is based on the local

curvature estimation, followed by a watershed process pro-

viding a partition of the 3D surface.

2.1. Local curvature computation

The normal curvature κn of a surface in some direction is the

reciprocal of the radius of the circle that best approximates

a normal slice of surface in that direction. The normal cur-

vature can be expressed as κn = κ1s
2 + κ2t

2 where κ1 and

κ2 are the principal curvatures and (s, t) are the principal di-

rections, which are the directions where the normal curvature

reaches its minimum and maximum. The principal curvatures

are computed thanks to the Trimesh algorithm [7].

As the curvature map will be used to partition the surface

by using the watershed operator, a single scalar function is

desired. From (κ1, κ2) we compute the mean curvature H =
(κ1 +κ2)/2 and we use Hinv = (1/π)(arctan (−H)+π/2)
which behaves like the inverse of the mean curvature H and

takes always positive values. It gives high values to concave

zones and low values to convex zones. For manufactured

objects, we consider the max curvature max(κ2

1
, κ2

2
), which

gives high values on both convex and concave zones. The max

curvature has also high values on zones that are flat in one di-

rection, and convex or concave in the other. These zones are

commonly the edges that divide planes of an object, as the

division between the roof and the doors of a car. In fig. 1 are

depicted the values of these scalar functions in gray scale for

the sculpture left. Low values are black, while great values

are white.

2.2. Watershed and filtering

2.2.1. Watershed cuts

In recent papers [5, 6], we investigate the watersheds in a

framework different from the one of vertex-weighted graphs:

we consider a graph whose edges are weighted by a cost func-

tion. A watershed of a topographic surface may be thought of

as a separating line-set on which a drop of water can flow

down toward several minima. Following this intuitive idea,

we introduce in [5] the definition of watershed cuts in edge-

weighted graphs. We establish the consistency (with respect

to characterizations of the catchment basins and dividing lines)



(a) (b) (c)

Fig. 1. Curvature scalar functions: (a) 3D object; (b) max

curvature; (c) inverse curvature.

of watershed cuts, prove their optimality (in terms of mini-

mum spanning forests) and propose efficient linear algorithms

to compute them. As far as we know, the framework of edge-

weighted graphs is the only generic discrete framerwork in

which all these properties hold true. In particular, it is the first

framework in which the drop of water principle is used as a

definition for watershed and in which this principle leads to

fast algorithms and an optimality theorem.

2.2.2. Watershed cuts on curvature meshes

Watershed cuts can be extended [8] to simplicial complexes,

and especially manifold-like meshes. Consider a 3D surface

mesh M (composed of triangles, sides of triangles and points)

so that for any side e in M there is exactly one pair of trian-

gles (g, h) such that e ∈ g and e ∈ h. We build a graph with

one vertex for each triangle of M and an edge connecting two

vertices if the corresponding triangles share a side (fig. 2(b)).

(a) (b) (c)

Fig. 2. (a) A triangle mesh. (b) Segmentation on edges of the

graph (in bold). (c) Segmentation on the mesh.

To compute a watershed cut, we need a map on the edges.

Let e be any side of a triangle in M and (x, y) the pair of

points such that e = {x, y}. As described in section 2.1, we

have computed the curvature values in each point of the mesh.

Then we will compute for each e in M the mean of κ1 and κ2

at x and y. Considering then the scalar curvature functions

explained above (section 2.1), we obtain then a map from the

set of edges of the graph E into R that we denote by F , that

will represent the curvature between each two adjacent trian-

gles of the mesh. With such a map, we can compute a water-

shed cut that leads to a mesh segmentation. The cuts are thus

performed on edges of the mesh, leading to a more accurate

segmentation: the borders of the regions are constituted by

sides of the meshes (in bold in fig. 2(c)).

2.2.3. Filtering

In order to classify artwork meshes, we are interested in parti-

tionning a mesh into its most significant regions. Due to high

number of minima the watershed cut produces a strong over

segmentation. Hence, the need to filter the map F so that

the watershed cut is guaranteed to produce exactly the needed

regions. In mathematical morphology, a powerfull tool to

solve this problem consists of using the component tree [9]

to ”remove” from F the ”less significant” minima, according

to some criterion such as the height, area and volume of the

regions or a combination of them.

3. SEARCH AND RETRIEVAL

An object retrieval system must satisfy two main requirements:

an effective data representation and an effective classification

strategy. SVMs are state-of-the-art large margin classifiers

which have demonstrated remarkable performances in object

recognition. We use local features computed on regions for

the object representation and we summarized them into bags

on which we applied a SVM classification through specific

kernels.

3.1. Local feature computation

In a previous work [10], we demonstrated the use of some

different 3D descriptors computed on whole 3D models: Ex-

tended Gaussian Images (EGI) and Complex Extended Gaus-

sian Images (CEGI), as well as 1D and 2D cord histograms.

Thus we computed these features for each 3D surface region

of the model instead of computing them on the global model.

Finally, the set of descriptors available for each region is as

follows: (i) EGI, (ii) CEGI, (iii) 1D and 2D cord histograms.

3.2. Surface region bags

After the region feature computation, each object i is repre-

sented by a bag Bi = {bri}r of region descriptors bri. bri

represents one of the feature histograms. As the input space is

constituted of bags (that is to say of sets of unordered vectors)

of variable size, these bags must be mapped into a Hilbert

space in order to use a linear classifier such as SVM. This can

be achieved thanks to a kernel function. Several kernel func-

tions have been recently proposed, for example in [11] and

modified in [12] by:

K(Bi, Bj) =





∑

bri∈Bi

∑

bsj∈Bj

(k (bri, bsj))
q





1

q



where k is the minor kernel measuring the similarity between

regions (we used a triangular minor kernel).

4. RESULTS

4.1. Segmentation results

We show on figure 3 some results of the 3D surface segmenta-

tion: (a) is computed on a CAD-design object and is the result

of a watershed cut on a M curvature map; (b-d) are the results

on three different figurines of the EROS-3D database, which

mainly contains terracota figurines and vases, including frag-

ments and moulds. The chess piece segmentation seems to be

accurate, the frontiers clearly separate the different elemen-

tary shapes composing the model. The segmentation algo-

rithm applied to real 3D models allows to identify some spe-

cific parts of the models (baby heads, legs, arms, coiffures)

which are characteristic of the statues.

(a) (b) (c) (d)

Fig. 3. Segmentation of (a) an artificial object (chess piece)

and (b-d) several figurines of the EROS-3D database.

4.2. 3D model classification

We computed region features for the 700 models of the EROS-

3D database. EGI where computed leading to 32 (“EGI:1”)

and 128 (“EGI:2”) bin histograms, CEGI are 64 (“CEGI:1”)

and 256 (“CEGI:2”) bin histograms; 1D cords are 384 bin

histograms, and 2D cords 256 bin histograms. We performed

the classification tests using the following protocol: for each

model belonging to a category, we launched the search en-

gine and computed the Mean Average Precision (MAP) value

after 25 model annotations (the search engine shows the user

some models to be annotated either as belonging to the same

category than the query or not, and a new search is performed

taking into account the user annotations); the MAP value for a

given category is the mean value of the MAP of all queries be-

longing to this category. Figure 4 shows the MAP values for

various feature vectors, either computed on the whole model

(green bars) or on surface regions (yellow bars).

Figure 4 shows a real improvement of classification per-

formances when using region attributes, especially EGI and
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Fig. 4. Comparison of classification results for the EROS-

3D database, using EGI, CEGI, or Cord feature vectors: (a)

whole database; (b) mother divinity category; (c) Venus statue

category, including fragments of statue and moulds.



CEGI. Moreover, EGI and CEGI features give better results

than Cord features when computed on regions. The local

computation of EGI and CEGI dramatically improves the reco-

gnition, especially for categories including full objects, frag-

ments and moulds (cf. fig. 4(c) — “Venus statue” category

contains statues, moulds and fragments such as heads, trunks,

etc.) On the opposite, cord features, which are computed

in reference to the center of the model (which differs when

considering the whole statue or a fragment) do not lead to

better performances. Figure 5 shows the results using only

CEGI features for different specific categories: the perfor-

mance gain clearly appears to be larger and significant when

the searched category is specific (mother divinity with only

one child) or when the category contains not only full models

but also parts or fragments.
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Fig. 5. Comparison of classification results on the EROS-3D

database, using CEGI feature vectors for different categories.

5. CONCLUSION

In this paper, we have shown how the surface segmentation of

3D models and a region bag classification engine could help

to perform a fine classification of 3D model databases, includ-

ing real world complex objects as well as parts of them. We

have developed a segmentation framework based on curvature

computation and watershed cuts on curvature meshes, which

give accurate results. The search engine, based on region bags

and some well-known feature vectors, allow the classification

of various categories in an artwork database: for instance, it

let it possible to recognize “sub-categories” such as divini-

ties with one child or two children, or divinities carrying their

child on left or right arm.
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