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Abstract

The present work describes experimental results of pentane pool boiling, simplified to the 

cases of boiling on a single or on two adjacent nucleation sites. Bubbles growths have been 

recorded by a high speed camera under various wall superheat conditions. Bubble volume has 

been plotted as a function of time, and an experimental growth law has been proposed. 

Oscillations were observed during growth, showing the interaction of one bubble with the 

preceding bubble released from the same nucleation site. Lateral coalescence has been 

visualised and the images have brought to the fore the capillary effects on the distortion of the 

interface.

Keyword: bubble growth, pool boiling, coalescence

Nomenclature

A ratio of the height of the gravity centre to the equivalent radius: A = hcg / Req

hcg height of the centre of gravity (m)

P pressure (Pa)

R1, R2 main curvature radii of an interface (m)

Req equivalent radius of a bubble (m)

T temperature (K)

* Manuscript
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Tsat saturation temperature (K)

Twall wall temperature (K)

t time (s)

td bubble growth time (s)

t' non-dimensional time: t' = t/td

V volume (m
3
)

Vd bubble departure volume (m
3
)

V' non-dimensional volume: V' = V/Vd

1. Introduction

Boiling has received much attention for decades because of the many technological 

applications in which this phenomenon is involved. It still remains as one of the major 

research topics because of the high number and the variety of scales of the physical 

mechanisms involved. Modelling boiling requires many hypotheses whose validity can not 

always be assessed. This results in a large number of different models, often with corrective 

factors. The results predicted by these models are sometimes far from the experimental 

results. Experiments in boiling also receive their share of difficulties. Phenomena are fast, 

bubbles interact, scales are multiple, material properties are not always well defined, 

especially the wall roughness, and physical parameters are hard to measure in fluids. Boiling 

needs to be simplified in order to identify the role of the different mechanisms involved.

Among the recent works on single bubble nucleate boiling, Golobic et al. [1] determined 

experimentally the transient wall temperature distributions under growing bubbles on a thin 

heated foil. They found that the temperature distribution under the bubble is first a peaked-

distribution, and then shifts to a crater-distribution. Moreover, they did not observed any large 
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thermal influence area around the bubble. Cheng and Burkhardt [2] suggested a method for 

bubble identification and tracking when recording boiling. This method allows studying 

single bubbles while boiling on a natural surface. Van der Geld [3] theoretically predicted the 

dynamic contact angle of a truncated spherical bubble growing on a heated surface. This angle 

can lead to the determination of the detachment volume. Di Marco et al. [4] experimentally 

measured the rising velocity of bubble after detachment, showing gaps in the available 

models, and Vasquez et al. [5] compared three measurement techniques for the determination 

of the bubble size at detachment.

Several analytical models describing bubble growth have been developed during the last 

decades. Among the first models was the theory of Bosnjakovic and Jakob, which is 

explained by Zuber [6]. The bubble was assumed to be spherical and at saturation temperature

in a homogeneous superheated liquid. The heat transfer was driven by conduction through the 

thermal boundary layer, resulting to a bubble growth model giving Req  t
0.5

. The 0.5 

exponent was obtained by integration of the transient conduction equation in the boundary 

layer. Many authors developed other models since then. They successively complicated the 

system description or the assumptions, and gave more or less weight to the different heat 

transfer mechanisms involved. Plesset and Zwick [7] considered the bubble as a sphere 

tangent to a wall in a homogeneous superheated liquid, with a thin thermal boundary layer 

around the bubble. Scriven [8] had a similar model including convective heat diffusion in the 

liquid instead of assuming a thin boundary layer. He therefore needed to assume a growth law 

Req = C  t
0.5

 and looked for the C coefficient. Mikic et al. [9] introduced a uniform 

temperature field from the superheated wall to a saturated bulk liquid. They also assumed the 

bubbles to be spherical and tangent to the wall. Cooper and Lloyd [10] considered the 

existence of a liquid microlayer beneath the bubble. Most of the heat transferred to the bubble 
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was conducted through this microlayer. The bubble was hemi-spherical on a wall, in a 

temperature field. The bubble was assumed to be large compared to the thermal boundary 

layer. The bulk liquid was at saturation temperature or slightly subcooled. Due to their 

formulation, all these different theoretical studies lead to a growth law as Req  t
0.5

.

More recent works used numerical simulation to allow the resolution of less simplified and 

more tightly coupled equations systems. One of the last models was developed by Das et al. 

[11]. It is still assumed that there is no interaction between successive or adjacent bubbles, 

and that the generation of single bubbles from each nucleation site is not influenced by the 

surroundings. This assumption cannot be sustained in our single bubble experiments. The 

waiting time between two successive bubbles was very short, so that even at low wall

superheat, a new bubble was generated in the nucleation site while the previous bubble was 

still close to the wall.

Bubble growth rate has also recently been studied in the case of the presence of a surfactant 

by Hetsroni et al. [12]. They did not find any change on the bubble growth dynamics at low 

heat flux, but an increased detachment volume and a shorter life-time at high heat flux were 

described. Bubble growth was observed on an impulsively powered microheater by Yin et al. 

[13]. They found that the bubble growth consists of two steps, the first is a relatively violent 

one followed by shrinking of the vapour mass, and the second one is a slower expansion.

A few experiments have been performed to study the interaction and the coalescence of 

neighbouring bubbles. Bonjour et al. [14] suggested a map of nucleation site interactions, 

which allowed determining the site activation and bubbling coalescence conditions with 

respect to the parameters of an experiment with 3 nucleation sites. Mukherjee and Dhir [15]
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experimentally and numerically studied lateral merger of vapour bubbles. They found that 

merger of multiple bubbles significantly increases the overall wall heat transfer, because of a 

liquid layer trapped between the bubble bases and of cooler liquid drown towards the wall 

during contraction after merger. Zhang and Shoji [16] studied the influence of the ratio of the 

nucleation site distance on the bubble departure diameter. They suggest three interaction 

mechanisms: coalescence, hydrodynamic bubble interaction and thermal nucleation site 

interactions. They established four different regions where the relative weight of each 

mechanism is different.

This brief introduction shows that much work remains to be done as regards bubble growth 

during boiling, and also that the interaction between bubbles during their growth is usually 

not well considered. The present study is focused on the growth and detachment of bubbles 

from a single nucleation site, and on the interaction between two bubbles growing on adjacent 

nucleation sites on a superheat wall in a saturated liquid. Shape and size of bubbles are 

recorded with a high speed camera, and computed by an automatic processing of the images. 

Wall and saturated liquid temperature are measured, and the heat flux transmitted to the fluid 

is computed.

2. Experimental apparatus and procedure

The experimental apparatus is made of an airtight aluminium parallelepiped tank 

(250x250x180 mm
3
). The tank has been depressurised to less than 1 mbar (absolute pressure)

during 12 hours, then filled with 99% purity n-pentane (Fig. 1). After filling the tank with 

pentane, the fluid has been heated to a temperature corresponding to a pressure higher than 

the atmospheric pressure, and several degassing of the liquid have been performed to ensure 

the absence of dissolved air. Three faces of the tank are equipped with windows allowing the 
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observation of the boiling process. The chosen fluid, n-pentane, is not toxic, and allows to 

work with comfortable temperature and pressure conditions (Tsat = 35.7 C at P = 1 bar). A 

heating element is used to warm up the pentane bath and to keep it at the chosen saturation 

conditions. Four thermocouples inside the tank allow to measure the temperatures in both 

liquid and vapour phases and to check their uniformity. The temperature in all experiments 

was homogeneous and the same in both phases.

The experimental sample, shown on Fig. 1, is made of a 20 mm diameter copper cylinder, 

heated by a 100 W cartridge heater. The heat flux is conducted in a 5 mm copper pin, 

equipped with 6 K-type thermocouples. On the top of the pin is soldered a 40 m thin and 18 

mm diameter copper plate. The plate is polished to avoid nucleation on its surface, and its 

thinness results in a radial temperature drop around the pin preventing nucleation on the edges 

of the plate. The whole experimental sample is insulated with Teflon®. The 6 thermocouples 

give the temperature profile in the pin, and a 2D conduction model allows calculating the 

surface temperature and the heat flux transmitted to the pentane. The surface temperature is 

known to be non-homogeneous and to vary with time because of the local heat flux variations 

under the bubble. However, the thermal diffusivity of copper is very high (about 1.1  10
-4

m
2
/s), the bubble size is small (about 1 mm diameter at departure) compared to the size of the 

copper pin (5 mm diameter), and the ratio of heat flux transmitted to the bubble is very low 

(less than 1 % of heat flux is latent heat transfer, as measured in our experiments and [17]). 

Therefore, the temperature variation and non-homogeneity was minimized in these 

experiments. Thus, the wall temperature is assumed to be constant and homogeneous and will 

be used as a reference to analyse the results.
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An artificial nucleation site is made by mechanical indentation at the centre of the plate. The 

site has been visualized with a confocal white light microscope (Fig. 2). It is paraboloidic, 500 

m deep and has a diameter of 180 m. For bubble interaction experiments, a second 

identical site is made with a distance of 660 m between the centres of the sites.

Bubbles are visualized and recorded laterally by a high speed camera (Photron Fastcam 1024 

PCI). The typical image acquisition frequency was 3000 fps for single bubble experiments 

and 27000 fps for lateral coalescence experiments. The image resolution is about 17x17 m 

per pixel due to the optical magnifying system. A trade off for the aperture was sought: 

closing the diaphragm leads to a short depth of field (which is desirable), but limits the image 

brightness (which is not desirable). A short depth of field is required for a proper bubble 

contour detection at the nucleation site centre plane, and to avoid any interference of the 

background on the image processing. An image automatic processing software has been 

developed, allowing to determine the volume of the bubble, the height of its centre of gravity 

and the area of the interface for each image. Bubble contour is first determined by locating 

maximum grey gradient using Sobel method. The bubble’s volume is measured as if the 

bubble was a stack of 17 m thick (i.e. 1 pixel) vapour cylinders. To evaluate the height of the 

centre of gravity, the vapour pressure is supposed to be homogeneous inside the bubble, with 

a low pressure and vapour density evolutions in the bubble.

3. Results and discussion

The vapour volume has been calculated from the image processing. Other studies often use 

the equivalent diameter Req, i.e. the diameter of a sphere of equal volume, as the physical 

parameter to study bubble growth, because the growth models are based on a spherical or 
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truncated spherical shape. The bubbles obtained in our experiments are not spherical (see Fig. 

3), especially close to the moment of detachment. Therefore, the volume is chosen as the main 

parameter, since it is directly linked to mass transfer, i.e. to the latent heat transfer.

Bubble growth has been computed for different wall superheats (Fig. 4). The studied 

superheat range is limited by the deactivation of the nucleation site for low temperatures and 

by the occurrence of vertical coalescence for high temperatures. The bubble growth is 

reproducible, since the mean deviation of the bubble growth time is less than 6% and the 

mean deviation of the departure volume is less than 2% for different experiments performed 

with the same wall superheat. The bubble growth time is significantly reduced when 

increasing the wall superheat, whereas the departure volume remains almost unchanged 

(variations lower than 10%). The force balance that governs bubble departure does not seem 

to be much affected by the wall superheat, unlike the vapour production rate.

The bubble dynamics has then been compared for different superheats (Fig. 5). For a 

meaningful comparison, the growth curves have been normalized by dividing the time by the 

total growth time (t’ = t / td), and the volume by the departure volume (V’ = V / Vd). A very 

good similarity between the different curves is observed. Bubble growth, in all the conditions 

of the experiments can thus be described by a non-dimensional law that holds true for any 

wall superheat, as long as no bubble merging occurs.

The empiric law resulting from our experiments is V’ = t’ 
0.6

 for the bubble growth. However, 

for t’ < 0.2, a better description is reached by V’ = 2t’ (Fig. 5). These results are relatively 

consistent to those obtain by Lee et al. [18]. We must add here that bubble dynamics can be 

described independently from the wall superheat with that empiric law. Until now, most 
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analytical analyses [6-11] yield a power law as Req  t 
0.5

, i.e. V’ = t’ 
1.5

, for the thermal 

growth of a bubble. It must hence be underlined that the results of these analytical analyses 

are very different from our observations, because the models are highly simplified, owing to 

the complexity and the high number of physical mechanisms involved. The curvature of the 

bubble growth curve V’ = t’ 
j
 is even opposite in the models (j >1) and to the experiments 

(0 < j < 1). All these observations lead to the conclusion that a better description of bubble 

growth is needed in order to model this phenomenon. Interactions with the previous bubble 

must be taken into account when modeling bubble growth. Hence, the initial conditions 

cannot be chosen with a still, well-establish thermal boundary layer in the case of two very 

near successive bubbles.

The volume generation rate has been computed by differentiating a high order polynomial 

best fit of the experimental data with respect to time (Fig. 6). This graph shows that even if 

the interface overall area increases, the vapour generation, i.e. the latent heat transfer, is 

decreasing with time. A possible interpretation is proposed: this observation may be attributed 

to the following mechanisms. First, the phase change mainly takes place close to the wall, 

where the liquid superheat is high. But when a bubble rises in the liquid after its detachment, 

it may draw up some liquid, so that the superheated liquid initially located around the bubble 

moves towards the nucleation site, resulting in an increase of the mass transfer during the 

beginning of the next bubble growth. Afterwards, the vapour production cools down the 

liquid around the new bubble, resulting in a drop of the vapour production rate.

Figure 7 shows the ratio of the height of the centre of gravity to the equivalent radius of the 

bubble (A = hcg / Req). The parameter ‘A’ describes well the shape of a bubble. If the bubble is 

a sphere, A = 1. If it is a truncated sphere, A < 1. Furthermore, the oscillations are also 
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described by this parameter. For high wall superheat, the curves exhibit oscillations that 

reflect oscillations of the bubbles during their growth. These oscillations are caused by the 

preceding bubble at departure: in some situations, the departing bubble touches the new 

bubble, particularly when the latter is growing too fast. In some other cases, the departing 

bubble draws the next bubble up when rising in the liquid. The oscillations are more 

significant when the wall superheat is high: the bubble growth velocity is much higher, so that 

the new bubble is more likely to reach the previous one and to be influenced by it. 

Furthermore, since the rising velocity of the previous bubble is independent of the wall 

superheat while the growth time is decreasing with an increasing superheat, the ratio of 

bubbles interaction to the total growth time is larger when the superheat is high. These 

oscillations may have a significant impact on the formation of the thermal boundary layer and 

on heat transfer during the beginning of the bubble growth. Therefore, this phenomenon 

should definitely be included in bubble growth models.

Vapour detachment frequency has also been computed (Fig. 8). The frequency is based on the 

count of departing single bubbles as long as no coalescence occurs, and on the count of 

departing coalesced bubbles otherwise (Twall – Tsat > 6 K). The frequency has been computed 

for 20 consecutive departing vapour blocks. Coalescence implies a larger dispersion of the 

frequency values around their mean, since this phenomenon presents a certain random 

character. At low wall superheat (Twall – Tsat < 2 K), the nucleation site tends to be 

deactivated. The frequency increases linearly with the wall superheat. As the bubble 

detachment volume remains the same, the heat flux increasing mechanism for single bubble 

boiling when increasing the superheat is the vapour frequency.
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Lateral bubble merging has been visualized (Fig. 9) on the double site test sample. Nucleation 

sites are both active when the wall superheat is between 6.5 K and 9 K. For higher superheats, 

vertical coalescence occurs, until creating a vapour column. For lower superheats, one of the 

two nucleation sites gradually becomes deactivated, and the heat flux in the wall is deflected 

to the site that remains active.

Figure 9a shows the lateral merging of two bubbles with a wall superheat of 8.5 K. A bubble 

nucleates at the same time in each nucleation site. Both bubbles grow at the same velocity. 

Once the bubbles diameter is large enough, both liquid-vapour interfaces are very close, so 

that there only remains a thin liquid film between the bubbles. Then, the liquid film breaks up, 

and coalescence occurs. The circular opening between the bubbles grows fast until the vapour 

forms a single resulting bubble. The liquid macrolayer volume between the bubbles necks 

decrease until the macrolayer disappears. Both necks then come free, and the resulting bubble 

forms a new neck that touches the wall just in between the two preceding necks. Then, the 

bubble leaves the wall and starts rising in the liquid, and both nucleation sites are almost 

instantaneously activated again. The coalesced bubble oscillates, and has a bigger inertia than 

a single non coalesced bubble. Therefore, it accelerates slowly, and often vertical coalescence 

occurs with the next bubbles.

In our experiments, no influence on the phase change was detected during coalescence: 

indeed, the vapour production is less than 0.01 mm
3
 between the time when the bubbles touch 

each other (just before the breakage of the liquid layer) and the time when the coalesced 

bubble departs from the wall while the typical volume of a single bubble at detachment is 

about 1 mm
3
. This is especially due to the quickness of the phenomenon: typically 2-3 ms, 

whereas the growth time range is 70-300 ms. These results tend to prove that the liquid film 
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between the bubbles does not evaporate, but is rather pushed away by capillary effects. This 

conclusion is also drawn for the liquid macrolayer trapped between the two necks.

The liquid film breakage induces the propagation of two wave fronts (see Fig. 10 and 

Electronic Annex 1 in the online version of this article) at a velocity of about 63 cm/s. This 

front distorts the liquid-vapour interface. When the wave fronts reach the ends of the resulting 

bubble, tails are created by the distortion of the interface. Such tails have been shown by 

Mukherjee and Dhir [15]. The wave is then reflected and attenuated. This wave can be 

explained by capillary effects: the Laplace-Young equilibrium is obtained before the film 

breakage, and as both main curvature radii are large (R1 R2 > 10
-4

 m, same order of 

magnitude as the bubble equivalent diameter), the pressure difference between the liquid and 

the vapour is low (Pvapour – Pliquid < 3  10
-3

 bar). When the film breaks up, its thickness is 

about 1 to 10 m [19]. The smallest curvature radius (R1) just after the breakage is of the 

same order of magnitude. The deficit of pressure of the liquid, compared to the Laplace-

Young equilibrium, is then of the order of magnitude of 0.1 bar. The shock that creates the 

wave front on the interface is caused by this deficit of pressure. For a better understanding of 

the orders of magnitude of R1 and R2, Fig. 11 shows schematically half of two bubbles (drawn 

as two halves of spheres), during the merging process: this schematically shows that R1 is 

much smaller than R2.

Lateral coalescence has also been observed with two bubbles of different sizes (Fig. 9b). It 

appears that the smallest bubble is sucked into the biggest one. This phenomenon is due to a 

higher pressure inside the small bubble than inside the big one.

4. Conclusion
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Boiling has been experimentally studied on a single and on two neighbouring nucleation sites. 

Bubble growth appears very reproducible, the volume at detachment being independent of the 

wall superheat, whereas the growth time is dependant on the superheat. Bubble growth rates 

follow a non-dimensional law as V’ = t’ 
0.6

 for t’ > 0.2 and V’ = 2  t’ for t’ < 0.2. This law

holds true for any wall superheat in our experiments. These results are very different from 

those obtained from most analytical models, especially in the sense that the vapour production 

rate is predicted by these models as increasing during the bubble growth, contrarily to our 

observations. This shows that much work is still needed in order to describe properly heat and 

mass transfer during bubble growth.

Oscillations of a growing bubble have been detected and quantified from a dimensionless 

parameter. This brings to the fore that a departing bubble influences the growth of the 

following bubble. The interaction is therefore a significant factor that should definitely be 

taken into account in the models of bubble growth.

The bubble frequency has been found to be approximately proportional to the wall superheat. 

As the departure diameter is invariant, the product f  d is also proportional to the wall 

superheat, and not a constant as it is assumed in many models.

Bubble coalescence between two neighbouring bubbles has also been studied. The results tend 

to show that coalescence does not have a great impact on vapour production during merging, 

and that the macrolayer between the bubbles is removed because of capillary effects rather 

than because of its vaporization. The presence of strong capillary effects has been emphasized 

by the observation of a wave front propagation.
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Figure captions:

Figure 1: Schematic of the experimental apparatus and test sample

Figure 2: Nucleation sites geometry obtained by means of confocal microscope observation

Figure 3: Single bubble growth (375 fps, i.e. 1 image out of 8 at a video recording speed of 

3000 fps)

Figure 4: Bubble growth dynamics at various wall superheats

Figure 5: Non-dimensional bubble growth at various wall superheats

Figure 6: Vapour production rate

Figure 7: Height of the centre of gravity divided by the equivalent radius: A = hcg / Req

Figure 8: Vapour detachment frequency

Figure 9: Lateral bubble coalescence with (a) two bubbles of same size or (b) different size 

(5400 fps, i.e. 1 image out of 5 at 27000 fps)

Figure 10: Wave front propagation during lateral coalescence (27000 fps, total time: 1.1 ms)

Figure 11: Interface geometry and main curvature radii after film breakage when merger 

occurs
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