Thierry Gallay 
  
Emmanuel Risler 
  
  
  
  
  
A variational proof of global stability for bistable travelling waves

 without any use of the maximum principle. The method that is illustrated here in the simplest possible setting has been successfully applied to more general parabolic or hyperbolic gradient-like systems.

Introduction

The purpose of this work is to revisit the stability theory for travelling waves of reactiondiffusion systems on the real line. We are mainly interested in global stability results which assert that, for a wide class of initial data with a specified behavior at infinity, the solutions approach for large times a travelling wave with nonzero velocity. In the case of scalar reaction-diffusion equations, such properties have been established by Kolmogorov, Petrovski & Piskunov [START_REF] Kolmogorov | Etude de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], by Kanel [9,[START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF], and by Fife & McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Fife | A phase plane discussion of convergence to travelling fronts for nonlinear diffusion[END_REF] under various assumptions on the nonlinearity. The proofs of all these results use a priori estimates and comparison theorems based on the parabolic maximum principle. Therefore they cannot be extended to general reaction-diffusion systems nor to scalar equations of a different type, such as damped hyperbolic equations or higher-order parabolic equations, for which no maximum principle is available. However, these methods have been successfully applied to monotone reaction-diffusion systems [START_REF] Roquejoffre | Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems[END_REF][START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF], as well as to scalar equations on infinite cylinders [START_REF] Roquejoffre | Convergence to travelling waves for solutions of a class of semilinear parabolic equations[END_REF][START_REF] Roquejoffre | Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders[END_REF].

Recently, a different approach to the global stability of bistable travelling waves has been developped by the second author [START_REF] Risler | Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure[END_REF]. The new method is of variational nature and is therefore restricted to systems which admit a gradient structure, but it does not make any use of the maximum principle and is therefore potentially applicable to a wide class of problems. The goal of this paper is to explain how this method works in the simplest possible case, namely the scalar parabolic equation

u t = u xx -F ′ (u) , (1) 
where u = u(x, t) ∈ R, x ∈ R, and t ≥ 0. We shall thus recover the main result of Fife & McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] under slightly different assumptions on the nonlinearity F , with a completely different proof. The present article can also serve as an introduction to the more elaborate work [START_REF] Risler | Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure[END_REF], where the method is developped in its full generality and applied to the important case of gradient reaction-diffusion systems of the form u t = u xx -∇V (u), with u ∈ R n and V : R n → R. A further application of our techniques is given in [7],

where the global stability of travelling waves is established for the damped hyperbolic equation αu tt + u t = u xx -F ′ (u), with α > 0.

We thus consider the scalar parabolic equation [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF], which models the propagation of fronts in chemical reactions [START_REF] Billingham | The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves[END_REF], in combustion theory [START_REF] Kanel | Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory[END_REF][START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF], and in population dynamics [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF][START_REF] Fisher | The Advance of Advantageous Genes[END_REF]. We suppose that the "potential" F : R → R is a smooth, coercive function with a unique global minimum and at least one additional local minimum. More precisely, we assume that F ∈ C 2 (R) satisfies lim inf |u|→∞ uF ′ (u) > 0 .
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In particular, F (u) → +∞ as |u| → ∞. We also assume that F reaches its global minimum at u = 1:

F (1) = -A < 0 , F ′ (1) = 0 , F ′′ (1) > 0 , (3) 
and has in addition a local minimum at u = 0:

F (0) = F ′ (0) = 0 , F ′′ (0) = β > 0 . (4) 
Finally, we suppose that all the other critical values of F are positive, namely

u ∈ R F ′ (u) = 0 , F (u) ≤ 0 = {0 ; 1} . (5) 
A typical potential satisfying the above requirements is represented in Fig. 1.

Under assumptions (3)- [START_REF] Fife | A phase plane discussion of convergence to travelling fronts for nonlinear diffusion[END_REF], it is well-known that Eq.( 1) has a family of travelling waves of the form u(x, t) = h(x -c * t) connecting the stable equilibria u = 1 and u = 0. More precisely, there exists a unique speed c * > 0 such that the boundary value problem

h ′′ (y) + c * h ′ (y) -F ′ (h(y)) = 0 , y ∈ R , h(-∞) = 1 , h(+∞) = 0 , (6) 
has a solution h : R → (0, 1), in which case the profile h itself is unique up to a translation. Moreover h ∈ C 3 (R), h ′ (y) < 0 for all y ∈ R, and h(y) converges exponentially to its limits as y → ±∞. This family of travelling waves plays a major role in the dynamics of Eq.( 1), as is shown by the following global convergence result: Theorem 1.1 Let F ∈ C 2 (R) satisfy assumptions ( 2)- [START_REF] Fife | A phase plane discussion of convergence to travelling fronts for nonlinear diffusion[END_REF]. Then there exist δ > 0 and ν > 0 such that, for all initial data u 0 ∈ C 0 (R) with

-A 1 0 F (u) u
lim sup x→-∞ |u 0 (x) -1| ≤ δ , lim sup x→+∞ |u 0 (x)| ≤ δ , (7) 
Eq.( 1) has a unique global bounded solution satisfying u(x, 0) = u 0 (x) for all x ∈ R. In addition, there exists

x 0 ∈ R such that sup x∈R u(x, t) -h(x -c * t -x 0 ) = O(e -νt ) , as t → +∞ . (8) 
Theorem 1.1 was first proved by Fife & McLeod [4,[START_REF] Fife | A phase plane discussion of convergence to travelling fronts for nonlinear diffusion[END_REF] under the additional assumption that 0 ≤ u 0 (x) ≤ 1 for all x ∈ R. In that case u(x, t) ∈ [0, 1] for all x ∈ R and all t ≥ 0 by the maximum principle, so that the coercivity assumption (2) is not needed. As is mentioned in [START_REF] Fife | Long time behavior of solutions of bistable nonlinear diffusion equations[END_REF], the results of [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] can be extended to arbitrary initial data satisfying (7) provided that uF ′ (u) > 0 for all u / ∈ [0, 1], a condition that is more restrictive than (2) in the sense that F is not allowed to have critical points outside the interval [0, 1]. The simplest case considered in [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] is when F has exactly one critical point in the open interval (0, 1), a situation in which condition ( 5) is clearly met. However, Fife & McLeod also study the case where F has three critical points in the open interval, including a local minimum at u = u * ∈ (0, 1). In this situation there exists a travelling wave solution of (1) with speed c 1 > 0 connecting u = 1 to u = u * , and also a travelling wave with speed

c 2 ∈ R connecting u = u * to u = 0. If c 1 > c 2 ,
which is always the case if (5) holds, there exists c * ∈ (0, 1) such that (6) has a solution h : R → (0, 1), and the conclusion of Theorem 1.1 is still valid. If c 1 < c 2 , there exists no travelling wave connecting u = 1 to u = 0, and the solution of (1) with initial data satisfying (7) converges as t → ∞ to a superposition of two travelling waves [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF].

Theorem 1.1 is a particular case of the general results obtained in [START_REF] Risler | Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure[END_REF], see Theorem 4 in Section 9.6 of that reference. Therefore, there is no need to give here a complete proof. Instead we shall prove the convergence result [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] under the additional assumption that the initial data u 0 (x) decay rapidly to zero as x → +∞. It is intuitively clear that the precise behavior of u 0 (x) near x = +∞ should not play an important role, because the equilibrium u = 0 ahead of the front is stable (this is in sharp contrast with the case of a monostable front invading an unstable equilibrium, where the behavior ahead of the front is of crucial importance). However, this restriction allows to shortcut many technicalities and to give a much simpler proof in which the essence of the argument can be easily understood.

Our approach is based on the fact that Eq.( 1) possesses (at least formally) a gradient structure, not only in the laboratory frame but also in any frame moving to the right with a positive velocity. To see this, we introduce the following notation. If u(x, t) is a solution of (1), we define for any c > 0 v(y, t) = u(y + ct, t) , or equivalently u(x, t) = v(x -ct, t) .

Setting y = x -ct we see that the new function v(y, t) satisfies

v t = v yy + cv y -F ′ (v) . ( 10 
)
We now introduce the energy functional

E c [v] = R e cy 1 2 v 2 y + F (v) dy , (11) 
and the corresponding energy dissipation functional

D c [v] = R e cy v yy + cv y -F ′ (v) 2 dy . (12) 
We also denote by H 1 c (R) the Banach space

H 1 c (R) = v ∈ L ∞ (R) e cy/2 v ∈ H 1 (R) , (13) 
equipped with the norm v H 1 c = v L ∞ + e cy/2 v H 1 . Note that any v ∈ H 1 c (R) decays to zero faster than e -cy/2 as y → +∞. Since F (v) ∼ βv 2 /2 as v → 0 by (4), it follows that

E c [v] < ∞ for all v ∈ H 1 c (R). Conversely, any v ∈ L ∞ (R) such that v(y) → 0 as y → +∞ belongs to H 1 c (R) as soon as E c [v] < ∞. If v(y, t) is a solution of (10) with initial data v 0 ∈ H 1 c (R), then v(•, t) ∈ H 1 c (R) for all t ≥ 0 and a direct calculation shows that d dt E c [v(•, t)] = -D c [v(•, t)] ≤ 0 , t > 0 . (14) 
In other words, the energy E c is a Lyapunov function of system [START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF] in H 1 c (R). This observation is of course not new: in their original proof, Fife & McLeod [START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF] already used a suitable truncation of the functional E c for the particular value c = c * to show that the solution v(y, t) of (10) approaches a travelling wave for a sequence of times. However, the fact that Eq.(1) has a whole family of (nonequivalent) Lyapunov functions has not been fully exploited until recently. The only reference we know where the implications of this rich Lyapunov structure are really discussed is a recent paper by Muratov [START_REF] Muratov | A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[END_REF], which contains a lot of interesting observations and a few general results concerning a wider class of systems than Eq.( 1), but fails to prove the convergence to travelling waves. The goal of the present article is to show that, in the simple case of Eq.( 1), the gradient structure alone is sufficient to establish convergence, at least if we restrict ourselves to solutions which decay to zero rapidly enough as x → +∞ so that the energy functionals are properly defined.

The main difficulty of this purely variational approach is that we do not have good a priori estimates on the solution v(y, t) = u(y + ct, t) in a moving frame with speed c > 0. First of all, it is not clear a priori that the energy E c [v(•, t)] is bounded from below (this will not be the case typically if c is too small), and without this information it is difficult to really exploit the dissipation relation [START_REF] Roquejoffre | Convergence to travelling waves for solutions of a class of semilinear parabolic equations[END_REF]. Next, if we have a lower bound on E c [v(•, t)], we can deduce from ( 14) that the solution v(y, t) converges uniformly on compact sets, at least for a sequence of times, towards a stationary solution of ( 10), but we cannot exclude a priori that this limit is just the trivial equilibrium v ≡ 0 (this will be the case typically if c is too large). To overcome these difficulties, the main idea is to track the position of the front interface in the following way. We fix positive constants β 1 , β 2 such that β 1 < F ′′ (0) < β 2 , and we choose ε > 0 small enough so that

β 1 ≤ F ′′ (u) ≤ β 2 , for all u ∈ [-2ε, 2ε] . ( 15 
)
Given a continuous solution of (1) satisfying the boundary conditions

lim x→-∞ u(x, t) = 1 , lim x→+∞ u(x, t) = 0 , t ≥ 0 , (16) 
we define the invasion point x(t) as the first point starting from the right where the solution u(x, t) leaves an ε-neighborhood of the equilibrium u = 0:

x(t) = max x ∈ R |u(x, t)| ≥ ε . (17) 
In view of [START_REF] Roquejoffre | Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders[END_REF], it is clear that -∞ < x(t) < ∞ for all t ≥ 0, and that |u(x(t), t)| = ε. A quantity similar to x(t) was also introduced in [START_REF] Muratov | A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[END_REF], where it is called the "leading edge". The strategy of the proof is to show that the solution u(x, t) converges uniformly on compact sets around the invasion point x(t) towards a suitable translate of the travelling wave [START_REF] Fisher | The Advance of Advantageous Genes[END_REF]. Using only the gradient structure, we can prove the following result:

Proposition 1.2 Let F ∈ C 2 (R) satisfy assumptions (2)-(5). If u 0 ∈ H 1 c (R)
for some sufficiently large c > 0 and u 0 -1 ∈ H 1 (R -), then the solution u(x, t) of Eq.( 1) with initial data u 0 satisfies, for all L > 0,

sup z∈[-L,+∞) |u(x(t) + z, t) -h ε (z)| --→ t→∞ 0 , ( 18 
)
where x(t) is the invasion point ( 17) and h ε is the travelling wave ( 6) normalized so that

h ε (0) = ε. Moreover the map t → x(t) is C 1 for t sufficiently large and x′ (t) → c * as t → ∞.
As is explained above, the assumption u 0 ∈ H 1 c (R) is needed in order to use the energy functional E c without truncating the unbounded exponential factor e cy . The proof will show that is it sufficient to take here c > √ 2A/ε, where A is defined in (3) and ε in [START_REF] Roquejoffre | Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems[END_REF]. On the other hand, the assumption u 0 -1 ∈ H 1 (R -) is just a convenient way to guarantee that the first condition in ( 16) is satisfied, but with minor modifications we can treat the more general case where |u 0 (x) -1| is assumed to be small for large x < 0, as in (7).

The local convergence established in Proposition 1.2 is the key step in proof of Theorem 1.1. Once ( 18) is known, it remains to show that the solution u(x, t) converges uniformly to 1 in the region far behind the invasion point x(t). Such a "repair" is certainly expected because u = 1 is the point where the potential F reaches its global minimum. A convenient way to prove this is to use a truncated version of the functional

E[u] = R 1 2 u 2 x + F (u) dx , (19) 
where

F (u) = F (u) -F (1) ≥ 0.
In this way, we can show that the solution u(x, t) approaches uniformly on R a travelling wave (at least for a sequence of times), and using in addition the local stability results established in [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF] we obtain [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]. We thus have:

Corollary 1.
3 Under the assumptions of Proposition 1.2, there exist x 0 ∈ R and ν > 0 such that ( 8) holds.

We conclude this introduction with a few comments on the scope of our method. First, it is clear that the assumptions (2)-( 5) are not the weakest ones under which Proposition 1.2 holds. A careful examination of the proof reveals that the only hypotheses that we really use are:

H1: For all bounded initial data u 0 , Eq.( 1) has a (unique) global bounded solution. This is certainly true if (2) holds, but it is sufficient to assume, for instance, that F (u) → +∞ as |u| → ∞, or that uF ′ (u) > 0 whenever |u| is sufficiently large.

H2: F (0) = F ′ (0) = 0, and there exists ε > 0 such that

F ′′ (u) ≥ 0 for all u ∈ [-ε, ε].
This is automatically true if (4) holds, but u = 0 need not be a strict local minimum of F . In particular Proposition 1.2 holds for the nonlinearities of combustion type considered in [START_REF] Kanel | Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory[END_REF][START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF].

H3: There exists a unique c > 0 such that the differential equation v yy + cv y -F ′ (v) = 0 has a bounded solution satisfying |v(0)| = ε, |v(y)| ≤ ε for all y ≥ 0, and v(y) → 0 as y → +∞; furthermore, this solution is unique. Under assumptions (3)-( 5), we have c = c * and v = h ε . In general, we can assume without loss of generality that v is positive and converges to 1 as y → -∞, so that F (1) < 0 and F ′ (1) = 0. It also follows that F (u) ≥ 0 for all u ≤ 0 and that F has no critical point u * < 1 with

F (u * ) < 0.
On the other hand, to prove that the solution of (1) given by Proposition 1.2 converges uniformly on R to a travelling wave we need the additional assumption:

H4: There exists ε ′ > 0 such that the only bounded solution of the differential equation

u xx -F ′ (u) = 0 with |u(0) -1| ≤ ε ′ is u ≡ 1.
This requires that F attains its global minimum at u = 1, and nowhere else.

Finally, if we want the convergence to be exponential in time as in [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF], we need to assume that F ′′ (1) > 0.

Another comment concerns the variational structure of Eq.( 1). Due to the exponential weight e cy , it is clear that the energy functional E c is not translation invariant. In fact, for any v ∈ H 1 c (R) and any ℓ ∈ R, we have the relation

E c [v(• -ℓ)] = e cℓ E c [v]
. This implies that the infimum of E c [v] is either 0 or -∞. Under our assumptions on F , the transition between both regimes occurs precisely at the critical speed c * for which travelling waves exist:

inf v∈H 1 c (R) E c [v] = 0 if c ≥ c * , -∞ if c < c * .
Indeed, as was observed by Muratov [START_REF] Muratov | A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[END_REF], for any c < c * + c 2 * + 4F ′′ (0) we have the identity

c E c [h] = (c -c * ) R e cy h ′ (y) 2 dy ,
where h is the solution of ( 6). This shows in particular that E c [h] < 0 when c < c * , hence inf E c = -∞ in that case. The fact that E c ≥ 0 when c ≥ c * is not obvious a priori, and will be established in the course of the proof of Proposition 1.2, see Corollary 4.3. Note also that

E c * [h] = 0, so that inf E c * = min E c * = 0.
The rest of the paper is organized as follows. In Section 2, we establish the basic inequalities relating the energy E c , the dissipation D c , and the invasion point. Using these relations, we prove in Section 3 that the average speed of the invasion point x(t) has a limit c ∞ > 0 as t → ∞. The core of the paper is Section 4, where we show that c ∞ = c * and prove Proposition 1.2. The proof of Corollary 1.3 is then performed in the final Section 5. Acknowledgements. The authors are indebted to S. Heinze, R. Joly, and C.B. Muratov for fruitful discussions.

Preliminary estimates

As the potential F is smooth and coercive, it is well-known that the Cauchy problem for the semilinear equation ( 1) is globally well-posed in the space of bounded functions, see e.g. [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF]. Due to parabolic regularization, the solutions are smooth for t > 0 and satisfy (1) in the classical sense. Under assumption [START_REF] Billingham | The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates. I. Permanent form travelling waves[END_REF], one can also show that our system has a bounded absorbing set in the following sense: Lemma 2.1 There exists a constant B > 0 depending only on F such that, for all initial data u 0 ∈ L ∞ (R), the (unique) solution u(x, t) of ( 1) satisfies, for all sufficiently large t ≥ 0, sup

x∈R |u(x, t)| + |u x (x, t)| + |u xx (x, t)| ≤ B . ( 20 
)
Moreover, u(•, t) is bounded in H s loc (R) for some s > 5/2 and all t ≥ 1.

The uniform bound on |u(x, t)| follows easily from the maximum principle, but it can also be established using localized energy estimates, see [START_REF] Risler | Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure[END_REF]Section 9.1]. The bounds on the derivatives are then obtained in a standard way using parabolic regularization.

From now on, we suppose that u 0 ∈ H 1 c 0 (R) for some c 0 > 0 (which will be specified later) and that u 0 -1 ∈ H 1 (R -). Then the solution of (1) with initial data u 0 satisfies u(•, t) ∈ H 1 c 0 (R) and u(•, t) -1 ∈ H 1 (R -) for all t ≥ 0, because u = 0 and u = 1 are (stable) equilibria of (1). In particular, the boundary conditions ( 16) hold for all times, so that one can define the invasion point x(t) by [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF]. Also, since we are interested in the long-time behavior of u(x, t), we can assume without loss of generality that estimate (20) is valid for all t ≥ 0.

As is explained in the introduction, we shall use the energy functionals E c (for various values of c > 0) to prove that the solution u(x, t) converges to a travelling wave h locally around the invasion point x(t). A technical problem we shall encounter is that the invasion point, as defined in [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF], need not be a continuous function of time and can therefore jump back and forth in an uncontrolled way. It is possible to avoid this difficulty using a more clever definition than [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF], see [START_REF] Risler | Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure[END_REF], but we follow here another approach and just introduce a second invasion point defined by

X(t) = max x ∈ R |u(x, t)| ≥ 2ε . (21) 
Clearly, -∞ < X(t) < x(t) < +∞ for all t ≥ 0. The important point is that an information on x at a given time provides an upper bound on X at later times:

Lemma 2.2 There exists T 0 > 0 and C 0 > 0 such that, for all t 0 ≥ 0, one has

X(t) ≤ x(t 0 ) + C 0 for all t ∈ [t 0 , t 0 + T 0 ] . (22) 
Proof: Fix t 0 ≥ 0. The solution of (1) satisfies

u(t) = S(t -t 0 )u(t 0 ) - t t 0 S(t -s)F ′ (u(s)) ds ≡ u 1 (t) + u 2 (t) , t ≥ t 0 ,
where S(t) = e t∂ 2 x is the heat semigroup. Take K > 0 such that |F ′ (u)| ≤ K whenever |u| ≤ B, where B is as in (20). Then u 2 (t) L ∞ ≤ K(t -t 0 ). On the other hand, by definition of x, we have |u(x, t 0 )| ≤ ε if x ≥ x(t 0 ) and |u(x, t 0 )| ≤ B if x ≤ x(t 0 ). Using the explicit form of the heat kernel, we deduce that

|u 1 (x, t)| ≤ 1 4π(t -t 0 ) R e -(x-y) 2 4(t-t 0 ) |u(y, t 0 )| dy ≤ ε + B 2 erfc x -x(t 0 ) 4(t -t 0 ) , where erfc(x) = (2/ √ π) ∞
x e -z 2 dz. We first choose T 0 > 0 such that KT 0 < ε/2, and then C 0 > 0 such that B erfc(C 0 / √ 4T 0 ) < ε. Then, for all t ∈ [t 0 , t 0 + T 0 ] and all x ≥ x(t 0 ) + C 0 we have |u(x, t)| < 2ε, which implies that X(t) ≤ x(t 0 ) + C 0 .

We now derive the basic estimates on the energy [START_REF] Kolmogorov | Etude de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] and the energy dissipation [START_REF] Muratov | A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[END_REF] which will be used throughout the proof. Given c ∈ (0, c 0 ), we define v(y, t) = u(y + ct, t) as in [START_REF] Kanel | Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory[END_REF], and we set

E c (t) = E c [v(•, t)] , D c (t) = D c [v(•, t)] , t ≥ 0 . ( 23 
)
Of course, v(y, t) depends also on the speed parameter c, but to simplify the notations this dependence will not be indicated explicitly. We also denote by ȳc (t), Ȳc (t) the invasion points in the moving frame:

ȳc (t) = x(t) -ct , Ȳc (t) = X(t) -ct . (24) 
By construction, |v(ȳ c (t), t)| = ε, |v(y, t)| ≤ ε for y ≥ ȳc (t) and |v(y, t)| ≤ 2ε for y ≥ Ȳc (t).

Remark that, by [START_REF] Roquejoffre | Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems[END_REF], the following inequalities hold whenever |v| ≤ 2ε:

β 1 2 v 2 ≤ F (v) ≤ β 2 2 v 2 , β 1 v 2 ≤ vF ′ (v) ≤ β 2 v 2 , β 1 ≤ F ′′ (v) ≤ β 2 . ( 25 
)
Lower bound on E c : Using ( 11), (25), and the fact that F (u) ≥ -A for all u ∈ R, we find

E c (t) = ȳc(t) -∞ e cy 1 2 v 2 y (y, t) + F (v(y, t)) dy + ∞ ȳc(t) e cy 1 2 v 2 y (y, t) + F (v(y, t)) dy ≥ ȳc(t) -∞ e cy (-A) dy + ∞ ȳc(t)
e cy 1 2 v 2 y (y, t) +

β 1 2 v 2 (y, t) dy . ( 26 
)
To estimate the last integral in (26) we recall that v(ȳ c (t), t) 2 = ε 2 , so that

e cȳc(t) ε 2 = - ∞ ȳc(t) ∂ y e cy v 2 (y, t) dy = - ∞ ȳc(t)
e cy 2v(y, t)v y (y, t) + cv 2 (y, t) dy .

Given d > -c, we have |2vv y | ≤ (c+d)v 2 + (c+d) -1 v 2 y , hence e cȳc(t) ε 2 ≤ ∞ ȳc(t) e cy 1 c + d v 2 y (y, t) + dv 2 (y, t) dy . ( 27 
)
If we choose d such that d(c + d) = β 1 and insert the resulting inequality into (26), we obtain

E c (t) ≥ e cȳc(t) - A c + κε 2 , where 0 ≤ κ ≤ 1 4 (c + c 2 + 4β 1 ) . (28) 
This estimate shows in particular that the energy E c (t) is bounded from below as long as the invasion point ȳc (t) is bounded from above. Moreover, the lower bound is close to zero if ȳc (t) is large and negative.

Variation of D c : It follows from ( 10) and ( 12) that D c (t) = R e cy v 2 t (y, t) dy. Differentiating this relation with respect to t and integrating by parts, we find

1 2 D ′ c (t) = R e cy (v t v tt )(y, t) dy = R e cy v t (v tyy + cv ty -F ′′ (v)v t ) dy = - R e cy v 2 ty (y, t) dy - R e cy F ′′ (v(y, t))v 2 t (y, t) dy .
Take C 1 > 0 such that F ′′ (u) ≥ -C 1 /2 whenever |u| ≤ B, where B is as in (20). Then the above relation shows that

D ′ c (t) ≤ C 1 D c (t) , t ≥ 0 . (29) 
This differential inequality implies that, if 14), this will be the case as soon as E c is bounded from below. Lower bound on D c : Using (12) again and integrating by parts, we find

D c ∈ L 1 (R + ), then D c (t) → 0 as t → ∞. Since E ′ c (t) = -D c (t) by (
D c (t) = R e cy (v yy + cv y -F ′ (v)) 2 (y, t) dy = R e cy v 2 yy + 2F ′′ (v)v 2 y + F ′ (v) 2 (y, t) dy .
We split the integration domain into (-∞, Ȳc (t)) and ( Ȳc (t), +∞). Using (20), (25) and the lower bound

F ′′ (v) ≥ -C 1 /2, we obtain D c (t) ≥ - C 1 B 2 c e c Ȳc(t) + ∞ Ȳc(t)
e cy v 2 yy (y, t)

+ 2β 1 v 2 y (y, t) + β 2 1 v 2 (y, t) dy .
Observe that, for any y 0 ∈ R, 

Indeed the first inequality is just (27) with ε = 0, d = -c/2, and ȳc (t) replaced by y 0 , and the second inequality is similar. Thus, for any d ≥ 0 we have

D c (t) ≥ - C 1 B 2 c e c Ȳc(t) + ∞ Ȳc(t) e cy 2β 1 + c 2 4 -d v 2 y + β 2 1 + dc 2 4 v 2 (y, t) dy . (31) 
In an analogous way we find

E c (t) = Ȳc(t) -∞ e cy 1 2 v 2 y (y, t) + F (v(y, t)) dy + ∞ Ȳc(t)
e cy 1 2 v 2 y (y, t) + F (v(y, t)) dy

≤ K c e c Ȳc(t) + ∞ Ȳc(t)
e cy 1 2 v 2 y (y, t) +

β 2 2 v 2 (y, t) dy , (32) 
where K = (B 2 /2) + K ′ and K ′ = sup{F (u) | |u| ≤ B}. If we now combine (31), (32) and choose the particular value d = β 2 -(β 2 -β 1 ) 2 /(β 2 + c 2 /4) ≥ 0, we arrive at

D c (t) ≥ γE c (t) - C 2 c e c Ȳc(t) , t ≥ 0 , (33) 
where

0 < γ ≤ 1 2 (c 2 + 4β 1 ) 2 c 2 + 4β 2 , and 
C 2 = C 1 B 2 + γK .
Inequality (33) means that, if the invasion point Ȳc (t) is large and negative, the energy dissipation D c = -E ′ c is essentially proportional to the energy itself. This gives a differential inequality for E c (t) which, in view of Lemma 2.2, can be integrated as follows:

E c (t) ≤ e -γ(t-t 0 ) E c (t 0 ) + C 2 T 0 c e c(ȳc(t 0 )+C 0 ) , t ∈ [t 0 , t 0 + T 0 ] . (34) 
Remark 2.3 The constants C 0 , C 1 and T 0 introduced in this section depend only on the potential F . In particular, they are independent of the solution u(x, t) and of the speed parameter c. Similarly, if we choose κ = √ β 1 /2 and γ = 2β 2 1 /β 2 , then the constants κ, γ and C 2 depend only on F .

Existence of the invasion speed

As in the previous section, we suppose that u(x, t) is a solution of (1) with initial data u 0 satisfying the assumptions of Proposition 1.2. We also assume that the bounds (20) hold for all t ≥ 0. If x(t) denotes the invasion point [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF], we define

c -= lim inf t→∞ x(t) t , c + = lim sup t→∞ x(t) t . (35) 
Our first result shows that the solution u(x, t) invades the stable equilibrium u = 0 at a positive, but finite, speed.

Proposition 3.1 One has c -> 0 and c + < ∞.

Proof: The proof relies on the lower bound (28). Assume that the initial data u 0 belong to H 1 c 0 (R) for some c 0 > √ 2A/ε, where A = -F (1) and ε is as in [START_REF] Roquejoffre | Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems[END_REF]. Using (28) with c = c 0 and κ = c/2, we find that E c (t) ≥ α e cȳc(t) for some α > 0. Since E c (t) ≤ E c (0) for all t ≥ 0, it follows that ȳc (t) = x(t) -ct is bounded from above, hence

c + = c + lim sup t→∞ ȳc (t) t ≤ c < ∞ .
On the other hand, since

u 0 -1 ∈ H 1 (R -) and F (1) = -A < 0, it is easy to verify that E c (0) = E c [u 0 ] ∼ -A/c as c → 0.
Thus if we take c > 0 sufficiently small so that E c (0) < 0, it follows from (28) that 0 > E c (0) ≥ E c (t) ≥ (-A/c) e cȳc(t) for all t ≥ 0. This implies that ȳc (t) = x(t) -ct is bounded from below, hence

c -= c + lim inf t→∞ ȳc (t) t ≥ c > 0 .
This concludes the proof.

We next prove that the average invasion speed x(t)/t converges to a limit as t → ∞.

Proposition 3.2 One has c -= c + .

Proof: We argue by contradiction. Assume that c -< c + , and choose time sequences

{t n } n∈N , {t ′ n } n∈N such that t n → ∞, t ′ n → ∞ and x(t ′ n ) t ′ n --→ n→∞ c -, x(t n ) t n --→ n→∞ c + .
Due to Lemma 2.1, upon extracting a subsequence we can assume that u(x(t n ) + z, t n ) converges in H 2 loc (R) to some limit w ∞ (z). More precisely, for any L > 0,

u(x(t n ) + z, t n ) --→ n→∞ w ∞ (z) in H 2 ([-L, L]) , u t (x(t n ) + z, t n ) --→ n→∞ ŵ∞ (z) in L 2 ([-L, L]) ,
where

w ∞ ∈ H 2 loc (R) ∩ L ∞ (R) and ŵ∞ ∈ L ∞ (R) satisfy ŵ∞ = w ′′ ∞ -F ′ (w ∞ ).
Moreover, by definition of the invasion point, we have |w ∞ (0)| = ε. Now, we fix any c ∈ (c -, c + ) and we observe that the invasion point ȳc (t) = x(t) -ct satisfies ȳc (t ′ n ) → -∞ and ȳc (t n ) → +∞ as n → ∞. Using first the lower bound (28), we find

E c (t ′ n ) ≥ - A c e cȳc(t ′ n ) --→ n→∞ 0 , ( 36 
) hence (since E c is non-increasing) E c (t) ≥ 0 for all t ≥ 0. As E ′ c (t) = -D c (t), we deduce that ∞ 0 D c (t) dt ≤ E c (0) < ∞ , (37) 
and using in addition (29) we conclude that D c (t) → 0 as t → ∞.

Next, we observe that, for all n ∈ N,

D c (t n ) = R e cy v 2 t (y, t n ) dy = e cȳc(tn) R e cz v 2 t (ȳ c (t n ) + z, t n ) dz = e cȳc(tn) R e cz (u t + cu x ) 2 (x(t n ) + z, t n ) dz . ( 38 
)
Since D c (t n ) → 0 as n → ∞, the last integral in (38) converges to zero as n → ∞, hence the limits w ∞ , ŵ∞ satisfy ŵ∞ + cw ′ ∞ = 0. Incidentally, this means that

w ′′ ∞ + cw ′ ∞ - F ′ (w ∞ ) = 0, i.e. w ∞ is a travelling wave solution of (1) with speed c. Now the crucial point is that c ∈ (c -, c + ) is arbitrary. Obviously, the relation ŵ∞ + cw ′ ∞ = 0 can be satisfied for two different values of c only if w ′ ∞ ≡ 0, i.e. if w ∞ is identically constant. But then we must have F ′ (w ∞ ) = 0, which is impossible in view of (25) since |w ∞ | = ε.
This contradicts the assumption c -< c + and concludes the proof.

Remark 3.3 Another way to obtain a contradiction in the proof of Proposition 3.2, which

works even if u = 0 is not a strict local minimum of F (see hypothesis H2 in the introduction), is to observe that the limiting function w ∞ (z) converges to zero as z → +∞. Indeed, proceeding as in ( 26), (38) and using (30) we find for all n ∈ N: tn) ,

E c (t n ) = e cȳc(tn) R e cz 1 2 u 2 x + F (u) (x(t n ) + z, t n ) dz ≥ e cȳc(tn) ∞ 0 e cz 1 2 u 2 x + β 1 2 u 2 (x(t n ) + z, t n ) dz - A c e cȳc(tn) (39) 
≥ e cȳc(tn) κ ′ 2 ∞ 0 e cz (u 2 x + u 2 )(x(t n ) + z, t n ) dz - A c e cȳc(
where κ ′ = min{1, (c 2 +4β 1 )(c 2 +4) -1 }. As E c (t n ) ≤ E c (0) and ȳc (t n ) → +∞ as n → ∞,
we have by Fatou's lemma:

∞ 0 e cz (w ′ ∞ (z) 2 + w ∞ (z) 2 ) dz ≤ lim inf n→∞ ∞ 0 e cz (u 2 x + u 2 )(x(t n ) + z, t n ) dz ≤ 2A cκ ′ < ∞ . Thus w ∞ ∈ H 1 c (R), and in particular w ∞ (z) → 0 as z → +∞. This is clearly impossible if w ′ ∞ ≡ 0 and |w ∞ (0)| = ε.

Local convergence to a travelling wave

This section is devoted to the proof of Proposition 1.2. Using the same notations as in the previous sections, we first prove that the solution u(x, t) of ( 1) converges for a sequence of times towards a travelling wave, locally in space around the invasion point. On this occasion we identify the invasion speed given by Proposition 3.2 with the unique speed c * for which travelling waves exist.

Proposition 4.1 Let c ∞ = c -= c + .
There exists a sequence t n → ∞ such that, for all L > 0,

L -L e c∞z (u t + c ∞ u x ) 2 (x(t n ) + z, t n ) dz --→ n→∞ 0 . (40) 
Proof: Since the left-hand side of ( 40) is a nondecreasing function of L, it is sufficient to prove that, for any L > 0, there exists a sequence t n → ∞ such that (40) holds. We argue by contradiction and assume that there exist L > 0 and δ > 0 such that

L -L e c∞z (u t + c ∞ u x ) 2 (x(t) + z, t) dz ≥ δ , (41) 
for all sufficiently large t. In fact, upon changing the origin of time, we can assume that (41) holds for all t ≥ 0. In analogy with (24), we denote ȳ(t) = x(t) -c ∞ t. Two situations may occur:

(c-c ∞ )t ȳ(t 1 ) ȳ(t 2 ) ȳ(t 3 ) y ȳ(t) t Fig. 2: If there exists a sequence t n → ∞ such that ȳ(t n ) is bounded from below, a contradiction is obtained by considering the dissipation of the energy E c in a moving frame with speed c > c ∞ (c close to c ∞ ). If ȳ(t n ) ≥ 1 for all n ∈ N, the set S c consisting of all n such that ȳ(t n ) ≥ (c -c ∞ )t n increases as c → c ∞ , and card(S c ) → ∞.
Case 1: There exists a time sequence t n → ∞ such that {ȳ(t n )} n∈N is bounded from below. Without loss of generality we can assume that t n+1 ≥ t n + 1 and ȳ(t n ) ≥ 1 for all n ∈ N (the second condition is easily achieved by translating the origin).

Let K > 0 be such that E c (0

) ≤ K for all c ∈ [c ∞ , c 0 ], where c 0 > c ∞ is as in the proof of Proposition 3.1. Take c ∈ (c ∞ , c 0 ) sufficiently close to c ∞ so that e (c-c∞)L ≤ 2 , and (c -c ∞ ) 2 B 2 L -L e c∞z dz ≤ δ 4 , (42) 
where B is as in (20). Let ȳc (t) = x(t) -ct = ȳ(t) -(c-c ∞ )t. Since ȳ(t n ) ≥ 1 for all n ∈ N, it is clear that the cardinality of the set

S c = {n ∈ N | ȳc (t n ) ≥ 0} = {n ∈ N | ȳ(t n ) ≥ (c -c ∞ )t n }
becomes arbitrarily large as c → c ∞ , see Fig. 2. On the other hand, ȳc (t n ) → -∞ as n → ∞ and this implies (as in the proof of Proposition 3.2) that E c (t) ≥ 0 for all t ≥ 0. But for all n ∈ S c , we have by ( 38), ( 41), (42)

D c (t n ) = e cȳc(tn) R e cz (u t + cu x ) 2 (x(t n ) + z, t n ) dz ≥ L -L e cz (u t + cu x ) 2 (x(t n ) + z, t n ) dz ≥ δ 8 , because e cz ≥ 1 2 e c∞z for |z| ≤ L and (u t + cu x ) 2 ≥ 1 2 (u t + c ∞ u x ) 2 -(c -c ∞ ) 2 B 2 . Moreover, it follows from (29) that D c (t) ≥ D c (t n ) e -C 1 for all t ∈ [t n -1, t n ], hence E c (t n -1) -E c (t n ) = tn tn-1 D c (t) dt ≥ δ 8 e -C 1 , n ∈ S c .
If we choose c close enough to c ∞ so that card(S c ) > 8Ke C 1 /δ, we obtain a contradiction with the fact that E c (t) is positive, nonincreasing, and E c (0) ≤ K.

(c n -c ∞ )t ȳ(t 1 ) ȳ(t 2 ) ȳ(t) y t t n t n -T ȳ(t n ) Fig. 3: If ȳ(t) → -∞
a contradiction is obtained by considering the dissipation of the energy E cn in a moving frame with speed c n < c ∞ on the time interval [0, t n ], where ȳ(t n ) = (c nc ∞ )t n . We choose T ≫ 1 and then n large enough so that (c ∞c n )T ≤ 1.

Case 2: ȳ(t) → -∞ as t → ∞. In this case, there exists a sequence t n → ∞ such that

ȳ(t n ) ≤ inf 0≤s≤tn ȳ(s) + 1 , for all n ∈ N , (43) 
see Fig. 3. Indeed the function µ(t) = inf{ȳ(s) | 0 ≤ s ≤ t} is nonincreasing and µ(t) → -∞ as t → ∞. For each n ∈ N, we choose

t n ∈ [0, n] such that ȳ(t n ) ≤ µ(n) + 1. Then µ(n) ≤ µ(t n ), hence (43) holds. 
Given some (large) n ∈ N, we take c n < c ∞ such that (c n -c ∞ )t n = ȳ(t n ), or equivalently ȳcn (t n ) = 0. Since c n → c ∞ as n → ∞, we can assume that c n ≥ c ∞ /2 and

e (c∞-cn)L ≤ 2 , (c ∞ -c n ) 2 B 2 L -L e c∞z dz ≤ δ 4 . (44) 
If t ∈ [0, t n ], we have by ( 43)

ȳcn (t) = ȳ(t) + (c ∞ -c n )t ≥ ȳ(t n ) -1 + (c ∞ -c n )t = (c n -c ∞ )(t n -t) -1 .
Using (41), (44) and proceeding as in the previous case, we obtain

D cn (t) = e cn ȳcn (t) R e cnz (u t + c n u x ) 2 (x(t) + z, t) dz ≥ e cn((cn-c∞)(tn-t)-1) L -L e cnz (u t + c n u x ) 2 (x(t n ) + z, t n ) dz ≥ e c∞((cn-c∞)(tn-t)-1) δ 8 ,
hence for all T ≤ t n :

tn tn-T D cn (t) dt ≥ T e c∞((cn-c∞)T -1) δ 8 . (45) 
On the other hand, there exists K > 0 such that E cn (0) ≤ K for all n, and since ȳcn (t n ) = 0 we know from ( 28) that E cn (t n ) ≥ -A/c n . Thus

tn 0 D cn (t) dt = E cn (0) -E cn (t n ) ≤ K + A c n ≤ K + 2A c ∞ . ( 46 
)
If we now choose T > 0 large enough so that T e -2c∞ δ > 8K + 16A/c ∞ , and then n ∈ N large enough so that t n ≥ T and (c ∞ -c n )T ≤ 1, we obtain the desired contradiction by comparing (45) and (46). Corollary 4.2 One has c -= c + = c * , and there exists a sequence t n → ∞ such that, for all L > 0, sup

z∈[-L,L] |u(x(t n ) + z, t n ) -h ε (z)| --→ n→∞ 0 .
Proof: We argue as in the proof of Proposition 3.2. If {t n } n∈N is the sequence given by Proposition 4.1, we know that (upon extracting a subsequence) u(x(t n ) + z, t n ) converges in H 2 loc (R) to a limit w ∞ (z) which satisfies Proof: Assume first that w ∈ H 1 c ′ (R) for all c ′ > 0, and that w -1 ∈ H 1 (R -). If u(x, t) is the solution of (1) with initial data u(x, 0) = w(x), we know from Proposition 3.2 and Corollary 4.2 that the invasion point x(t) defined by [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF] satisfies x(t)/t → c * as t → ∞. Thus, for any c > c * , the quantity ȳc (t) = x(t) -ct converges to -∞ as t → ∞, so that E c (t) ≥ 0 for all t ≥ 0. In particular, E c (0) = E c [w] ≥ 0. Letting c → c * , we also obtain

w ′′ ∞ (z) + c ∞ w ′ ∞ (z) -F ′ (w ∞ (z)) = 0 , z ∈ R .
E c * [w] ≥ 0.
Assume now that c ≥ c * and that w ∈ H 1 c (R). For any n ≥ 1 we define

w n (x) = w(x)χ(x-n) + (1 -w(x))χ(x+n+1) , x ∈ R ,
where χ ∈ C ∞ (R), χ(x) = 1 for x ≤ 0 and χ(x) = 0 for x ≥ 1. Clearly w n (x) = w(x) for x ∈ [-n, n], whereas w n (x) = 0 for x ≥ n + 1 and w n (x) = 1 for x ≤ -n -1. Thus

w n ∈ H 1 c ′ (R) for all c ′ > 0 and w n -1 ∈ H 1 (R -), so that E c [w n ] ≥ 0 for all n ∈ N by the preceding argument. Moreover it is straightforward to verify that E c [w n ] → E c [w] as n → ∞, hence E c [w] ≥ 0.
Equipped with these results, we are now able to prove that the solution u(x, t) converges for all times towards a travelling wave, locally in space around the invasion point. (47)

Proof: We argue by contradiction and assume that there exist L > 0, δ > 0, and a sequence t n → ∞ such that

L -L e c * z (u t + c * u x ) 2 (x(t n ) + z, t n ) dz ≥ δ , (48) 
for all n ∈ N. Let ȳ(t) = x(t) -c * t. If the sequence {ȳ(t n )} n∈N has a subsequence that is bounded from below, then we easily get a contradiction as in the proof of Proposition 4.1 (case 1). So it remains to consider the case where ȳ(t n ) → -∞, which requires a new argument. Without loss of generality, we can suppose that t n+1 ≥ t n +T 0 for all ∈ N, where T 0 > 0 is as in Lemma 2.2, and that ȳ(t n ) ≤ -n -1. Upon extracting a subsequence, we can also assume that u(x(t n ) + z, t n ) converges in H 2 loc (R) towards a limit w ∞ (z).

Given some (large) n ∈ N, we take c n < c * such that ȳ(t n ) = (c n -c * )t n , see Fig. 4. Since c n → c * as n → ∞, we can assume that c n ≥ c * /2. Let ȳcn (t) = ȳ(t) + (c * -c n )t, so that ȳcn (t n ) = 0. For each k = 0, 1, . . . , n we have by (34) hence

E cn (t k+1 ) ≤ E cn (t k + T 0 ) ≤ e -γT 0 E cn (t k ) + C 2 T 0 c n e cn(ȳc n (t k )+C 0 ) , (c n -c * )t ȳ(t 1 ) ȳ(t 2 ) ȳ(t 3 ) y ȳ(t n ) t Fig. 4: If ȳ(t n ) → -∞ a contradiction
E cn (t k ) ≤ e -kγT 0 E cn (t 0 ) + C 2 T 0 e cnC 0 c n k j=1
e -(j-1)γT 0 e cn ȳcn (t k-j ) .

We now define k(n) as the largest integer k ∈ N such that

(c * -c n )t j ≤ 1 + j 2
, for all j = 0, 1, . . . , k .

Since c n → c * , it is clear that k(n) → ∞ as n → ∞. Moreover, k(n) < n as (c * -c n )t n = -ȳ(t n ) ≥ n + 1 by assumption. For k = k(n) and j ≤ k, we have ȳcn (t k-j ) = ȳ(t k-j ) + (c * -c n )t k-j ≤ -(k -j)/2 ,
hence it follows from (49) that

E cn (t n ) ≤ E cn (t k(n) ) ≤ e -k(n)γT 0 E cn (0) + C 2 T 0 e cnC 0 c n k(n) e -γ * (k(n)-1) ,
where γ * = min(γT 0 , c * /4). Taking the limit n → ∞ and using the fact that E cn (0) is uniformly bounded, we conclude that

lim sup n→∞ E cn (t n ) ≤ 0 .
Now, since ȳcn (t n ) = 0 by our choice of c n , we have

E cn (t n ) = R e cnz 1 2 u 2 x + F (u) (x(t n ) + z, t n ) dz ,
hence taking the limit n → ∞ and using Fatou's lemma we obtain

E c * [w ∞ ] = R e c * z 1 2 w ′ ∞ (z) 2 + F (w ∞ (z)) dz ≤ lim inf n→∞ E cn (t n ) ≤ 0 .
In particular w ∞ ∈ H 1 c * (R), hence it follows from Corollary 4.3 that E c * [w ∞ ] = 0. On the other hand, in view of (48), we have

D c * [w ∞ ] = R e c * z w ′′ ∞ (z) + c * w ′ ∞ (z) -F ′ (w ∞ (z)) 2 dz ≥ L -∞ e c * z w ′′ ∞ (z) + c * w ′ ∞ (z) -F ′ (w ∞ (z)) 2 dz = lim n→∞ L -∞ e c * z (u t + c * u x ) 2 (x(t n ) + z, t n ) dz ≥ δ . Thus, if u(x, t) is the solution of (1) with initial data u(x, 0) = w ∞ (x), then E c * (0) = E c * [w ∞ ] = 0 and E ′ c * (0) = -D c * [w ∞ ] ≤ -δ, hence E c * (t)
< 0 for all t > 0. This contradicts the conclusion of Corollary 4.3.

It is now a straightforward task to conclude the proof of Proposition 1.2. Using Proposition 4.4 and proceeding as in Corollary 4.2, we see that u(x(t) + z, t) converges to w ∞ (z) ≡ h ε (z) in H 2 ([-L, L]) for any L > 0. On the other hand, arguing as in (39), we find for any c ∈ (0, c * ):

lim sup t→∞ ∞ 0 e cz (u 2 x + u 2 )(x(t) + z, t) dz ≤ 2A cκ ′ < ∞ .
This implies in particular that u(x(t) + z, t) converges to zero as z → +∞ uniformly in t ≥ 0, hence u(x(t) + z, t) converges as t → ∞ to h ε (z) uniformly for all z ∈ [-L, +∞). This proves [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF]. It remains to verify that the map t → x(t) is C 1 for large t and satisfies x′ (t) → c * as t → ∞. Using [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF], (20), and an interpolation argument, we find for any L > 0: As h ′ ε (0) < 0, this implies in particular that u x (x(t), t) is bounded away from zero for t sufficiently large. Since u(x(t), t) = ε for t large, the Implicit Function Theorem then asserts that x(t) is differentiable with x′ (t) = -u t (x(t), t) u x (x(t), t) , for all sufficiently large t > 0 .

On the other hand sup |z|≤L |u t (x(t)+z, t) + c * u x (x(t)+z, t)| → 0 as t → ∞ by ( 20) and (47), hence x′ (t) → c * as t → ∞.

Repair behind the front

This final section is devoted to the proof of Corollary 1.3. We follow closely the arguments given in [13, Section 9.6], with a few simplifications. Let u(x, t) be a solution of [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF] with initial data u 0 satisfying the assumptions of Proposition 1.2. According to [START_REF] Volpert | Traveling wave solutions of parabolic systems[END_REF] 

Let θ : R → [0, 1] be a smooth, nondecreasing function satisfying θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x ≥ 1. We define a map x : [0, +∞) → R by imposing, for all n ∈ N: where F (u) = F (u) -F (1) ≥ 0 and φ(x, t) = 1 if x ≤ x(t) , e x(t)-x if x ≥ x(t) .

x(t) = x(
Since u(•, t) -1 ∈ H 1 (R -) and u(•, t) ∈ H 1 (R + ), it is clear that E(t) is well-defined and finite for all t ≥ 0. Moreover, E(t) is differentiable for t ≥ T and a direct calculation shows that 

E ′ (t) = - R φ(x,

Fig. 1 :

 1 Fig. 1: The simplest example of a nonlinearity F satisfying assumptions (2)-(5).
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 040040 cy v 2 dy , and ∞ y cy v 2 y dy .

  Moreover, |w ∞ (z)| ≤ ε for all z ≥ 0, |w ∞ (z)| ≤ B for all z ≤ 0, and |w ∞ (0)| = ε. Arguing as in Remark 3.3, one can also show that w ∞ (z) → 0 as z → +∞. These properties together imply that c ∞ = c * and that w ∞ = h ε , see hypothesis H3 in the introduction.
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 44 For all L > 0 we haveL -L e c * z (u t + c * u x ) 2 (x(t) + z, t) dz --→ t→∞ 0 .

  sup z∈[-L,L]

  |u x (x(t) + z, t) -h ′ ε (z)| --→ t→∞ 0 .

  is obtained by considering the dissipation of the energy E cn in a moving frame with speed c n < c * on the time interval [0, t n ], where ȳ(t n ) = (c nc * )t n .

  , we can find a time sequence t n → ∞ such thatt n+1 ≥ t n + n + 1 for all n ∈ N, and sup z∈[-2n,+∞) |u(x(t) + z, t) -h ε (z)| ≤ 1 n + 1, for all t ≥ t n .

  t) -n -θ t -t n t n+1 -t n , for all t ∈ [t n , t n+1 ] . It is clear that x(t) -n -1 ≤ x(t) ≤ x(t) -n for all t ∈ [t n , t n+1 ]. Moreover, there exists T > 0 such that x(t) is differentiable for t ≥ T , with x′ (t) ≤ x′ (t) ≤ c * + 1 for all t ≥ T . For later use we observe that, for any L > 0, sup z∈[-L,L] |u(x(t) + z, t) -1| + |u x (x(t) + z, t)| --→ Indeed, since x(t) ≈ x(t) -n for t ∈ [t n , t n+1 ], the estimate on |u -1| is a consequence of (50) and of the fact that h ε (z) → 1 as z → -∞. The result for |u x | then follows from the a priori bound (20) by interpolation. We next consider the truncated energy function

					t→∞	0 .	(51)
	E(t) =	R	φ(x, t)	1 2	u 2

x (x, t) + F (u(x, t)) dx ,

  t)u 2 t (x, t) dx + In view of (20), (51), the last integral in the right-hand side converges to zero as t → ∞. Since E(t) ≥ 0 for all t ≥ 0, it follows that there exists a time sequence t ′ n → ∞ such that

				∞ x(t)	φ(x, t) x′ (t)	1 2	u 2 x + F (u) + u x u t dx
	≤ -	1 2 R	φ(x, t)u 2 t (x, t) dx + (c * +1)
			R	φ(x, t ′ n )u 2 t (x, t ′ n ) dx --→ n→∞	0 .	(52)
	Now, we claim that	
				sup

∞ 0 e -z (u 2 x + F (u))(x(t) + z, t) dz . x∈(-∞,x(t ′ n )] |u(x, t ′ n ) -1| --→ n→∞ 0 .

(53)

Indeed, if this is not the case, there exist a positive constant ε ′ , a subsequence {t ′′ n } n∈N of {t ′ n } n∈N , and a sequence {x n } n∈N ⊂ R such that x n ≤ x(t ′′ n ) and |u(x n , t ′′ n ) -1| = ε ′ for all n ∈ N. Without loss of generality, we can assume that ε ′ > 0 is sufficiently small so that the only bounded solution of the differential equation w xx -F ′ (w) = 0 with |w(0) -1| ≤ ε ′ is w ≡ 1, see hypothesis H4 in the introduction. In view of (51), it is clear that

On the other hand, upon extracting a subsequence, we can assume that, for all L > 0,

where

). However, it follows from (52) that ŵ∞ = 0, hence w ∞ is a bounded solution of the differential equation w ′′ ∞ -F ′ (w ∞ ) = 0 which satisfies |w ∞ (0) -1| = ε ′ . This contradicts the assumption above on ε ′ , hence (53) must hold.

Finally, if we combine ( 50) and ( 53), we obtain

In other words, the solution u(x, t) approaches uniformly on R a translate of the travelling wave h ε for a sequence of times t ′ n → ∞. On the other hand, the classical results of Sattinger [START_REF] Sattinger | On the Stability of Waves of Nonlinear Parabolic Systems[END_REF] show that, if assumptions (3), ( 4) are satisfied, the travelling wave h is asymptotically stable with shift in the space L ∞ (R). In other words, Eq.( 8) holds for any solution of (1) which is sufficiently close (uniformly on R) to a translate of h. This is the case for u(•, t ′ n ) if n is sufficiently large, hence Corollary 1.3 is proved.