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Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent
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The large time behavior of non-negative solutions to the viscous Hamilton-Jacobi equation ∂ t u -∆u + |∇u| q = 0 in (0, ∞) × R N is investigated for the critical exponent q = (N + 2)/(N + 1). Convergence towards a rescaled self-similar solution to the linear heat equation is shown, the rescaling factor being (ln t) -(N +1) . The proof relies on the construction of a one-dimensional invariant manifold for a suitable truncation of the equation written in self-similar variables.

Introduction

The dynamics of integrable non-negative solutions to the viscous Hamilton-Jacobi equation

∂ t u -∆u + |∇u| q = 0 , (t, x) ∈ (0, ∞) × R N , (1) 
depends strongly on the value of the parameter q ∈ (0, ∞) and results from the competition between the linear diffusion term ∆u and the nonlinear absorption term |∇u| q . An important issue is therefore to determine which mechanism (diffusion or absorption) is dominant for large times. A first indication is given by the behavior of the L 1 norm u(t) L 1 , which is time-independent for non-negative solutions of the heat equation and strictly decreasing for nontrivial non-negative solutions of [START_REF] Amour | Global existence and decay for viscous Hamilton-Jacobi equations[END_REF]. For such solutions, it is proved in [START_REF] Amour | Global existence and decay for viscous Hamilton-Jacobi equations[END_REF][START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] that

I ∞ := lim t→∞ u(t) L 1      > 0 if q > q ⋆ := N + 2 N + 1 , = 0 if q ∈ (0, q ⋆ ] . (2) 
This suggests that diffusion dominates the large time behavior when q > q ⋆ , whereas absorption becomes effective for q ≤ q ⋆ . As a matter of fact, if q > q ⋆ it is shown in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF][START_REF] Biler | Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation[END_REF] that the nonlinear term |∇u| q becomes negligible for large times, and that the solution of (1) behaves as t → ∞ like the self-similar solution I ∞ g of the linear heat equation, where

g(t, x) = 1 t N/2 G x t 1/2
and G(ξ) = 1 (4π) N/2 exp -|ξ| 2 

4

.

On the other hand, if q ∈ (1, q ⋆ ), both diffusion and absorption play a role in the large time asymptotics. Indeed, if u(0, x) decays faster than |x| -α as |x| → ∞ with α = (2-q)/(q-1) > N, it is proved in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF] that the solution u(t) converges as t → ∞ to the so-called very singular solution, a self-similar solution of (1) whose existence and uniqueness have been established in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. II -Uniqueness[END_REF][START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I. Existence[END_REF][START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF]. In that case, the L 1 -norm of u(t) decays to zero like t -(α-N )/2 as t → ∞.

Finally, the influence of the absorption term |∇u| q is much stronger for q ∈ (0, 1]: depending on the initial data, one might have exponential decay of the solution as t → ∞ [START_REF] Amour | Global existence and decay for viscous Hamilton-Jacobi equations[END_REF][START_REF] Benachour | Solutions fondamentales de u t -1 2 u xx = ±|u x[END_REF][START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF], or even extinction in finite time if q ∈ (0, 1) [START_REF] Benachour | Extinction and decay estimates for viscous Hamilton-Jacobi equations in R N[END_REF][START_REF] Benachour | Extinction and nonextinction for viscous Hamilton-Jacobi equations in R N , Asymptot[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q , large-time behaviour[END_REF]. For such values of the parameter, it is the diffusion term which is expected to be negligible for large times.

To summarize, precise asymptotic expansions show that the large time behavior of nonnegative solutions to [START_REF] Amour | Global existence and decay for viscous Hamilton-Jacobi equations[END_REF] with sufficiently localized initial data is determined by the sole diffusion if q > q ⋆ , whereas absorption plays an important role if q < q ⋆ . With this perspective in mind, it is interesting to investigate the critical case q = q ⋆ = (N + 2)/(N + 1) where a transition between both regimes is expected to occur. Very few results are available in this situation: we only know that u(t) L 1 → 0 as t → ∞, as already stated in [START_REF] Andreucci | The Cauchy problem for degenerate parabolic equations with source and damping[END_REF], and that u(t) L 1 cannot decay faster than (ln t) -(N +1) for large times [START_REF] Benachour | Extinction and decay estimates for viscous Hamilton-Jacobi equations in R N[END_REF]Proposition 3]. The purpose of this work is to fill this gap and to give an accurate description of the large time behavior of the non-negative solutions to

∂ t u -∆u + |∇u| q⋆ = 0 , (t, x) ∈ (0, ∞) × R N , (4) u(0) = u 0 , x ∈ R N , (5) 
when the initial data u 0 (x) decay to zero sufficiently rapidly as |x| → ∞. More precisely, we assume that u 0 ≥ 0 belongs to the weighted L 2 space

L 2 m (R N ) = u ∈ L 2 (R N ) |u| m := (1+|x| 2m ) 1/2 u L 2 < ∞ , (6) 
for some m > N/2. Then (by Hölder's inequality)

u 0 ∈ L 1 (R N ) ∩ L 2 (R N
) and it follows from [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF] that the Cauchy problem (4), ( 5) has a unique global solution

u ∈ C([0, ∞); L 1 (R N )) ∩ C((0, ∞); W 1,∞ (R N )).
Our main result describes the large time behavior of this solution:

Theorem 1 Assume that the initial condition u 0 is non-negative, not identically zero, and belongs to L 2 m (R N ) for some m > N/2. Then the (unique) solution u to ( 4), [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF] satisfies, for all p ∈ [1, ∞],

lim t→∞ t N 2 (1-1 p ) (ln t) N +1 u(t) - M ⋆ (ln t) N +1 g(t) L p = 0 , (7) 
where

M ⋆ = (N + 1) N +1 ∇G -(N +2) L q⋆
and g(t, x), G(ξ) are defined in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF].

In other words, if the initial condition decays sufficiently rapidly at infinity, the solution u to (4) behaves asymptotically like a particular self-similar solution M ⋆ g of the linear heat equation, with an extra logarithmic factor due to the effect of the absorption term. Such a logarithmic correction also appears in other parabolic equations with critical nonlinearity, for instance in the nonlinear diffusion equation ∂ t u-∆u m +u m+(2/N ) = 0 with m ≥ 1, see e.g. [START_REF] Galaktionov | Spectra of critical exponents in nonlinear heat equations with absorption[END_REF][START_REF] Galaktionov | Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach[END_REF][START_REF] Herraiz | Asymptotic behaviour of solutions of some semilinear parabolic problems[END_REF] and the references therein. It is interesting to observe that, in both situations, the leading order term in the long-time asymptotics is completely independent of the initial conditions. In the case of the viscous Hamilton-Jacobi equation (4), Theorem 1 indeed shows that neither the asymptotic profile g(t, x) nor the prefactor M ⋆ (ln t) -(N +1) depends on u 0 . This universality property reflects the important role played here by the nonlinearity: when the large time behavior is driven by the linear part of the system, which is the case for (1) when q > q ⋆ , the leading term in the asymptotics does depend on the initial condition.

Remark 2 As g(t) L 1 = 1 for all t > 0, the L 1 -norm of the solution u(t) behaves exactly like M ⋆ (ln t) -(N +1) for large times under the assumptions of Theorem 1. This has to be compared with [START_REF] Benachour | Extinction and decay estimates for viscous Hamilton-Jacobi equations in R N[END_REF]Proposition 3], where it is shown that there is no nontrivial non-negative solution of (4) such that u(t) L 1 ≤ C(ln t) -γ for γ > N + 1. In fact, using Theorem 1 and a comparison argument, it is straightforward to verify that, for all nontrivial non-negative integrable data, the solution of (4) satisfies

lim inf t→∞ (ln t) N +1 u(t) L 1 ≥ M ⋆ .
Our analysis of the large time behavior of solutions to (4), [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF] relies on an alternative formulation of (4) in terms of the so-called "scaling variables" or "similarity variables"

ξ = x (1 + t) 1/2 and τ = ln (1 + t) . (8) 
Introducing the new unknown function v defined by

u(t, x) = 1 (1 + t) N/2 v ln (1 + t), x (1 + t) 1/2 , (t, x) ∈ [0, ∞) × R N , (9) 
we deduce from (4), (5) that v(τ, ξ) solves the initial-value problem

∂ τ v = Lv -|∇v| q⋆ , (τ, ξ) ∈ (0, ∞) × R N , ( 10 
) v(0) = u 0 , ξ ∈ R N , (11) 
where the linear operator L is given by

Lv(ξ) = ∆v(ξ) + 1 2 ξ • ∇v(ξ) + N 2 v(ξ) , ξ ∈ R N . ( 12 
)
Observe that equation ( 10) is still autonomous, although it was obtained from (4) through the time-dependent transformation [START_REF] Benachour | Solutions fondamentales de u t -1 2 u xx = ±|u x[END_REF]. This crucial property follows from the fact that (4) is invariant under the rescaling u(t, x) → λ N u(λ 2 t, λx), because q ⋆ = (N + 2)/(N + 1). Remark also that LG = 0, where G is defined in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF]. At this stage, we follow the approach of [START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF][START_REF] Wayne | Invariant manifolds for parabolic partial differential equations on unbounded domains[END_REF] and prove that the large time behavior of the solutions of [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF], [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] is governed, up to exponentially decaying terms, by an ordinary differential equation which results from restricting the dynamics of (10) to a one-dimensional invariant manifold. This manifold is tangent at the origin to the kernel RG of L, and solutions to [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] which lie on this manifold satisfy v(τ, ξ) ≈ M(τ ) G(ξ) for large times. Inserting this ansatz into [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] and integrating over R N we obtain the ordinary differential equation dM/dτ + ∇G q⋆ L q⋆ M q⋆ = 0 for M(τ ), from which we deduce that M(τ ) ≈ M ⋆ τ -(N +1) for large times. Returning to the original variables (t, x), we then conclude that u(t) ≈ M ⋆ (ln t) -(N +1) g(t) as t → ∞, and Theorem 1 follows.

To construct the center manifold, it is necessary to assume that the solutions we consider decay a little bit faster as |x| → ∞ than what is needed to be integrable. Indeed, using the results of [17, Appendix A], it is easy to see that the spectrum of the linear operator L in L 1 (R N ) is just the left half-plane {z ∈ C | ℜ(z) ≤ 0} (no spectral gap). In contrast, the spectrum of the same operator in

L 2 m (R N ) = L 2 (R N ; (1 + |ξ| 2m ) dξ) is given by σ(L; L 2 m (R N )) = z ∈ C ℜ(z) ≤ N 4 - m 2 - k 2 k ∈ N ,
see [START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF]Theorem A.1]. Thus, if m > N/2, the operator L has a simple isolated eigenvalue at the origin and the rest of the spectrum is strictly contained in the interior of the left halfplane, a spectral configuration which allows to construct the center manifold. This explains the choice of the weighted Lebesgue space L 2 m (R N ) in Theorem 1. In fact, since the nonlinearity in (4) involves the gradient of the solution u, we shall rather use the corresponding Sobolev space H 1 m (R N ) (defined in ( 16) below) in the proof. The rest of this paper is organized as follows. In the next section, we recall existence and uniqueness results for [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF], [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] and establish the convergence to zero of the solution v(τ ) in H 1 m (R N ) as τ → ∞. In Section 3, we study a suitable truncated version of ( 10), ( 11) to which we can apply an abstract result of [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF] to construct the invariant manifold. The proof of Theorem 1 is then performed in the final section.

Global existence and convergence to zero

In this section we briefly discuss the Cauchy problem for the rescaled equation ( 10) and we show that the solutions converge to zero as τ → ∞. We first consider initial data in the Lebesgue space 10), [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] have a unique non-negative (mild) solution

L 1 (R N ) ∩ L 2 (R N ). Proposition 3 Let u 0 be a non-negative function in L 1 (R N ) ∩ L 2 (R N ). Then (
v ∈ C([0, ∞); L 1 (R N ) ∩ L 2 (R N )) ∩ L ∞ loc ((0, ∞); W 1,∞ (R N )) ,
which moreover satisfies

lim τ →∞ { v(τ ) L 1 + v(τ ) L ∞ + ∇v(τ ) L ∞ } = 0 . (13) 
Proof: For such initial data u 0 , the results of [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF] imply that the original system (4), (5) has a unique (mild) solution

u ∈ C([0, ∞); L 1 (R N ) ∩ L 2 (R N )) ∩ C((0, ∞); W 1,∞ (R N )) .
For all t > 0, the function u(t, x) is C 1 with respect to t, C 2 with respect to x, and ( 4) is satisfied in the classical sense. In addition, the following bounds hold for all t > 0:

u(t) L 1 + t N/2 u(t) L ∞ + t (N +1)/2 ∇u(t) L ∞ ≤ C u(t/2) L 1 ≤ C u 0 L 1 . (14) 
Since u(t) L 1 → 0 as t → ∞ by [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF], we deduce from ( 14) that

lim t→∞ u(t) L 1 + t N/2 u(t) L ∞ + t (N +1)/2 ∇u(t) L ∞ = 0 . ( 15 
)
The conclusions of Proposition 3 are straightforward consequences of these results, since [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] is obtained from (4) via the simple transformation [START_REF] Benachour | Solutions fondamentales de u t -1 2 u xx = ±|u x[END_REF]. In particular, v(τ

) L 1 = u(t) L 1 , v(τ ) L ∞ = (1+t) N/2 u(t) L ∞ , ∇v(τ ) L ∞ = (1+t) (N +1)/2 ∇u(t) L ∞ , hence (13) 
follows immediately from [START_REF] Galaktionov | Spectra of critical exponents in nonlinear heat equations with absorption[END_REF]. Finally, as the transformation (9) involves a time-dependent dilation which is not continuous in

L ∞ (R N ), the fact that u ∈ C((0, ∞); W 1,∞ (R N )) only implies that v ∈ L ∞ loc ((0, ∞); W 1,∞ (R N )).
We next study the properties of solutions to [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF], [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] in the weighted Lebesgue space L 2 m (R N ) defined in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I. Existence[END_REF], and in the corresponding Sobolev space

H 1 m (R N ) = v ∈ H 1 (R N ) v m := (|v| 2 m + |∇v| 2 m ) 1/2 < ∞ , (16) 
where

|v| m = R N 1 + |ξ| 2m |v(ξ)| 2 dξ 1/2 . Proposition 4 Let u 0 be a non-negative function in L 2 m (R N ) for some m > N/2.
Then the solution v to [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF], [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] given by Proposition 3 satisfies

v ∈ C([0, ∞); L 2 m (R N )) ∩ C((0, ∞); H 1 m (R N )) ,
and lim

τ →∞ v(τ ) m = 0 . ( 17 
)
Proof: The fact that v ∈ C([0, T ); L 2 m (R N )) ∩ C((0, T ); H 1 m (R N ))
for some T > 0 can be established by a classical fixed point argument, which will be implemented in Section 3 for a truncated version of [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF]. Here we just obtain differential inequalities for the norms |v(τ )| m and |∇v(τ )| m which imply (in view of the local existence theory) that T > 0 can be chosen arbitrarily large and that (17) holds.

We first multiply (10) by v and integrate over R N . Using the non-negativity of v and integrating by parts, we find 1 2

d dτ R N v 2 dξ = R N v ∂ τ v dξ ≤ R N vLv dξ = - R N |∇v| 2 dξ + N 4 R N v 2 dξ . (18) 
Similarly, multiplying [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] by |ξ| 2m v, we obtain 1 2

d dτ R N |ξ| 2m v 2 dξ ≤ R N |ξ| 2m v ∆v + 1 2 ξ • ∇v + N 2 v dξ (19) = - R N |ξ| 2m |∇v| 2 dξ -2m R N |ξ| 2m-2 v ξ • ∇v dξ - 2m-N 4 R N |ξ| 2m v 2 dξ .
The only difficulty is to bound the integral involving ξ • ∇v. If m ≥ 1, we have by Young's inequality

2m|ξ| 2m-1 v|∇v| ≤ 1 2 |ξ| 2m |∇v| 2 + 2m 2 |ξ| 2m-2 v 2 , and |ξ| 2m-2 ≤ ε|ξ| 2m + C(ε) ,
where ε > 0 is arbitrary. If 1/2 < m < 1 (which is possible only if N = 1) we find similarly

2m|ξ| 2m-1 v|∇v| ≤ 1 2 |∇v| 2 + 2m 2 |ξ| 4m-2 v 2 , and |ξ| 4m-2 ≤ ε|ξ| 2m + C(ε) .
In both cases, summing up ( 18) and ( 19), we obtain the inequality

d dτ |v(τ )| 2 m + |∇v(τ )| 2 m + 2m-N-8m 2 ε 2 |v(τ )| 2 m ≤ (m + 4m 2 C(ε)) v(τ ) 2 L 2 . ( 20 
)
We now choose ε > 0 sufficiently small so that 2m -N -8m 2 ε > 0. Since v(τ ) L 2 → 0 by [START_REF] Biler | Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation[END_REF], the differential inequality [START_REF] Henry | Geometric theory of semilinear parabolic equations[END_REF] implies that |v(τ )| m → 0 as τ → ∞.

We next control the evolution of ∇v. Multiplying (10) by -∆v and integrating by parts, we obtain

1 2 d dτ R N |∇v| 2 dξ = - R N |∆v| 2 dξ + N+2 4 R N |∇v| 2 dξ + R N ∆v |∇v| q⋆ dξ . (21) 
Similarly,

1 2 d dτ R N |ξ| 2m |∇v| 2 dξ = - R N |ξ| 2m |∆v| 2 dξ + N+2 -2m 4 R N |ξ| 2m |∇v| 2 dξ -2m R N |ξ| 2m-2 ∆v ξ • ∇v dξ + R N |ξ| 2m ∆v + 2m|ξ| 2m-2 ξ • ∇v |∇v| q⋆ dξ . ( 22 
)
Using the crude estimate

|ξ| 2m-1 ≤ 1 + |ξ| 2m , we find 2m R N |ξ| 2m-1 |∆v| |∇v| dξ ≤ 1 4 |∆v| 2 m + C|∇v| 2 m .
Moreover, as ∇v L ∞ is uniformly bounded for all τ ≥ 1 by (13), we have for such times

R N (1+|ξ| 2m ) |∆v| |∇v| q⋆ dξ ≤ 1 4 |∆v| 2 m + C|∇v| 2 m , 2m R N |ξ| 2m-1 |∇v| |∇v| q⋆ dξ ≤ C|∇v| 2 m .
Thus adding up ( 21) and ( 22), we obtain

d dτ |∇v(τ )| 2 m + |∆v(τ )| 2 m + |∇v(τ )| 2 m ≤ K |∇v(τ )| 2 m , τ ≥ 1 , (23) 
for some K > 0. Now, if we combine ( 20) and ( 23), we see that h(τ

) := K|v(τ )| 2 m + |∇v(τ )| 2 m
satisfies a differential inequality of the form

h ′ (τ ) + ε 0 h(τ ) ≤ C v(τ ) 2 L 2 , τ ≥ 1 ,
for some positive constants ε 0 and C. Thus h(τ ) → 0 as τ → ∞, and ( 17) follows. This concludes the proof of Proposition 4.

Construction of the center manifold

We now proceed along the lines of [START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF]Section 3] to describe the large time behavior of the non-negative solutions to [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF], [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] in the space L 2 m (R N ). By Proposition 4 these solutions converge to zero in H 1 m (R N ) as τ → ∞, hence the large time asymptotics remain unchanged if we truncate the nonlinearity in [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] outside a neighborhood of the origin. This modification will allow us to apply the center manifold theorem as stated in [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF].

The goal of the present section is to verify that our problem fits into the general framework considered in [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF]. First, we introduce a truncated version of system [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] and we show that it generates a C 1 -smooth and globally Lipschitz continuous semiflow (ϕ τ ) τ ≥0 in H 1 m (R N ) (Proposition 5). Using [14, Theorem 1.1], we then prove the existence of a one-dimensional center manifold W c ⊂ H 1 m (R N ), which is tangent at the origin to the kernel of the linear operator L, and which attracts all trajectories of the semiflow (ϕ τ ) τ ≥0 as τ → ∞ (Theorem 9). Thanks to this construction, proving Theorem 1 is reduced to determining the large time behavior of the solutions on the center manifold, a relatively simple task that is postponed to Section 4. The reader who is mainly interested in computing the large time asymptotics may just read the beginning of Sections 3.1 and 3.2, including the statements of Proposition 5 and Theorem 9, and then proceed directly to Section 4.

The semiflow of a truncated system

Throughout this section, we fix a function χ

∈ C ∞ ([0, ∞)) such that 0 ≤ χ ≤ 1, χ(r) = 0 if r ≥ 4 and χ(r) = 1 if r ≤ 1.
For ̺ > 0 and r ≥ 0, we denote χ ̺ (r) = χ(r/̺ 2 ). Given ̺ ∈ (0, 1) and m > N/2, we consider the initial-value problem

∂ τ v = Lv -F ̺ (v) , (τ, ξ) ∈ (0, ∞) × R N , (24) v(0) = v 0 ∈ H 1 m (R N ) , ξ ∈ R N , ( 25 
)
where L is the linear operator [START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF] and F ̺ is the truncated nonlinearity

F ̺ (v) = χ ̺ v 2 m |∇v| q⋆ , v ∈ H 1 m (R N ) . (26) 
We first establish the well-posedness of (24), (25) and show that this system generates a

C 1 -smooth semiflow in H 1 m (R N ). Proposition 5 Fix ̺ ∈ (0, 1) and m > N/2. For each v 0 ∈ H 1 m (R N ), the initial-value problem (24), (25) has a unique global solution v ∈ C([0, ∞); H 1 m (R N )). Moreover, the map ϕ τ : H 1 m (R N ) → H 1 m (R N ) defined for τ ≥ 0 by ϕ τ (v 0 ) = v(τ ) is globally Lipschitz continuous, uniformly in τ on compact intervals. Finally ϕ τ is C 1 -smooth for all τ ≥ 0, so that the family (ϕ τ ) τ ≥0 defines a C 1 semiflow in H 1 m (R N ).
Before proving Proposition 5, we recall that the linear operator L defined by [START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF] is the generator of a strongly continuous semigroup

e τ L τ ≥0 in L 2 m (R N ), see e.g. [17, Appendix A].
If m > N/2, this semigroup is uniformly bounded, i.e. there exists C 1 > 0 such that, for all

w ∈ L 2 m (R N ), e τ L w m ≤ C 1 |w| m , τ ≥ 0 . (27) 
More generally, let b(ξ) = (1 + |ξ| 2 ) 1/2 and assume that b m w ∈ L p (R N ) for some p ∈ [START_REF] Amour | Global existence and decay for viscous Hamilton-Jacobi equations[END_REF][START_REF] Andreucci | The Cauchy problem for degenerate parabolic equations with source and damping[END_REF]. Then e τ L w ∈ L 2 m (R N ) for all τ > 0, and there exists C 2 > 0 such that

e τ L w m ≤ C 2 a(τ ) N 2 ( 1 p -1 2 ) b m w L p , τ > 0 , (28) 
where a(τ 

) = 1 -e -τ ,
(R N ). In addition, if b m w ∈ L p (R N ) for some p ∈ [1, 2],
we have the analog of (28):

∇e τ L w m ≤ C 3 a(τ ) N 2 ( 1 p -1 2 )+ 1 2 b m w L p , τ > 0 . (29) 
In the rest of this section, we fix p ∈ (1, 2) such that

2(N + 1) N + 3 < p < 2(N + 1) N + 2 . ( 30 
)
Given T > 0 and w ∈ C([0, T ]; H 1 m (R N )), we define

(N ̺ w)(τ ) = τ 0 e (τ -s)L F ̺ (w(s)) ds , τ ∈ [0, T ] . (31) 
Then N ̺ w belongs to C([0, T ]; H 1 m (R N )) and enjoys the following property:

Lemma 6 There exists a constant C 4 > 0 such that, for all T > 0, all ̺ ∈ (0, 1), and all w 1 , w 2 ∈ C([0, T ]; H 1 m (R N )), the following inequality holds:

(N ̺ w 1 -N ̺ w 2 ) (τ ) m ≤ C 4 Z p (τ ) ̺ q⋆-1 sup s∈[0,τ ] (w 1 -w 2 )(s) m , τ ∈ [0, T ] ,
where

Z p (τ ) = τ 0 1 a(s) N 2 ( 1 p -1 2 )
1 + 1 a(s) 1/2 ds .

Proof: We first observe that our choice of p in (30) guarantees that N 2 ( 1 p -1 2 ) < 1 2 , so that Z p (τ ) is well-defined and finite for every τ ≥ 0. The following inequality will also be useful:

if f, g ∈ L 2 m (R N ), then b m |f | q⋆-1 g ∈ L p (R N ) and b m |f | q⋆-1 g L p ≤ C 5 |f | q⋆-1 m |g| m . (32) 
Indeed, by Hölder's inequality,

b m |f | q⋆-1 g L p ≤ b m g L 2 f q⋆-1 L r
, where r = (q ⋆ -1) 2p 2p .

But b m g L 2 ≤ C|g| m , and 1 < r < 2 by (30), hence

f L r ≤ C( f L 1 + f L 2 ) ≤ C|f | m because L 2 m (R N ) ֒→ L 1 (R N ) ∩ L 2 (R N ) for m > N/2.
This proves (32). Now, let T > 0, ̺ ∈ (0, 1), and w 1 , w 2 ∈ C([0, T ]; H 1 m (R N )). For all τ ∈ [0, T ] we have by (31), ( 28)

|(N ̺ w 1 -N ̺ w 2 ) (τ )| m ≤ τ 0 e (τ -s)L (F ̺ (w 1 (s)) -F ̺ (w 2 (s))) m ds ≤ τ 0 C 2 a(τ -s) N 2 ( 1 p -1 2 ) b m (F ̺ (w 1 (s)) -F ̺ (w 2 (s))) L p ds . ( 33 
)
For a fixed s ∈ [0, τ ], we can assume for instance that w 1 (s

) m ≥ w 2 (s) m . Then b m (F ̺ (w 1 (s)) -F ̺ (w 2 (s))) L p ≤ χ ̺ w 1 (s) 2 m -χ ̺ w 2 (s) 2 m b m |∇w 2 (s)| q⋆ L p + χ ̺ w 1 (s) 2 m b m (|∇w 1 (s)| q⋆ -|∇w 2 (s)| q⋆ ) L p .
Obviously, the right-hand side vanishes if w 2 (s) m ≥ 2̺, hence we can suppose that w 2 (s) m ≤ 2̺. To bound the first term, we apply (32

) with f = g = |∇w 2 | and obtain b m |∇w 2 (s)| q⋆ L p ≤ C 5 |∇w 2 (s)| q⋆ m ≤ C̺ q⋆ . Moreover, if w 1 (s) m ≤ 4̺, we have χ ̺ w 1 (s) 2 m -χ ̺ w 2 (s) 2 m ≤ C ̺ 2 w 1 (s) 2 m -w 2 (s) 2 m ≤ C ̺ (w 1 -w 2 )(s) m ,
and the same estimate holds if w 1 (s) m ≥ 4̺ because (w 1w 2 )(s) m ≥ 2̺ in that case. Thus

χ ̺ w 1 (s) 2 m -χ ̺ w 2 (s) 2 m b m |∇w 2 (s)| q⋆ L p ≤ C ̺ q⋆-1 (w 1 -w 2 )(s) m .
On the other hand, using (32) and the inequality | |y| q⋆ -|z| q⋆ | ≤ q ⋆ (|y| q⋆-1 + |z| q⋆-1 )|y -z|, we obtain

χ ̺ w 1 (s) 2 m b m (|∇w 1 (s)| q⋆ -|∇w 2 (s)| q⋆ ) L p ≤ C χ ̺ w 1 (s) 2 m |∇w 1 (s)| q⋆-1 m + |∇w 2 (s)| q⋆-1 m |∇(w 1 -w 2 )(s)| m ≤ C χ ̺ w 1 (s) 2 m w 1 (s) q⋆-1 m (w 1 -w 2 )(s) m ≤ C ̺ q⋆-1 (w 1 -w 2 )(s) m . Therefore b m (F ̺ (w 1 (s))-F ̺ (w 2 (s))) L p ≤ C ̺ q⋆-1 (w 1 -w 2 )(s) m ,
and inserting this bound into (33) we conclude that

|(N ̺ w 1 -N ̺ w 2 ) (τ )| m ≤ C ̺ q⋆-1 τ 0 1 a(τ -s) N 2 ( 1 p -1 2 ) (w 1 -w 2 )(s) m ds . ( 34 
)
Finally, using (29) and proceeding in the same way, we also obtain

|∇ (N ̺ w 1 -N ̺ w 2 ) (τ )| m ≤ τ 0 C 3 a(τ -s) N 2 ( 1 p -1 2 )+ 1 2 b m (F ̺ (w 1 (s)) -F ̺ (w 2 (s))) L p ds ≤ C ̺ q⋆-1 τ 0 1 a(τ -s) N 2 ( 1 p -1 2 )+ 1 2 (w 1 -w 2 )(s) m ds . ( 35 
)
Lemma 6 is now a immediate consequence of (34) and (35).

Proof of Proposition 5: Given v 0 ∈ H 1 m (R N ), we choose K > 2C 1 v 0 m and T > 0 sufficiently small so that

C 1 v 0 m e T /2 ≤ K 2 , and 
C 4 ̺ q⋆-1 Z p (T ) ≤ 1 2 , ( 36 
)
where C 1 is as in ( 27) and C 4 , Z p are defined in Lemma 6. We introduce the set

X K,T = w ∈ C([0, T ]; H 1 m (R N )) sup τ ∈[0,T ] w(τ ) m ≤ K ,
which is a complete metric space for the distance d T defined by

d T (w 1 , w 2 ) = sup τ ∈[0,T ] (w 1 -w 2 )(τ ) m , (w 1 , w 2 ) ∈ X K,T × X K,T .
Using ( 27) and Lemma 6 it is straightforward to verify that, if w ∈ X K,T , then the function

T ̺ w : [0, T ] → H 1 m (R N ) defined by (T ̺ w)(τ ) = e τ L v 0 -(N ̺ w)(τ ) , τ ∈ [0, T ] ,
belongs to X K,T , and that the map w → T ̺ w is a strict contraction in X K,T . By the Banach fixed point theorem, T ̺ has thus a unique fixed point v in X K,T . This proves that the Cauchy problem (24), ( 25) is locally well-posed in H 1 m (R N ). Let T * (v 0 ) ∈ (0, ∞] be the maximal existence time for the solution of ( 24), ( 25) in H 1 m (R N ). For all τ < T * (v 0 ), it follows from ( 27), (34), and (35) (with

w 1 = v and w 2 = 0) that v(τ ) m ≤ C 1 e τ /2 v 0 m + C 4 ̺ q⋆-1 τ 0 v(s) m a(τ -s) N 2 ( 1 p -1 2 )+ 1 2 ds .
Using a version of Gronwall's lemma (see e.g. [20, Lemma 7.1.1]), we deduce that v(τ

) m cannot blow up in finite time, hence T * (v 0 ) = ∞. Thus (24) has a unique global solution v ∈ C([0, ∞); H 1 m (R N )) for all v 0 ∈ H 1 m (R N
), and we may define a semiflow (ϕ τ ) τ ≥0 by the relation ϕ τ (v 0 ) = v(τ ) for τ ≥ 0.

By construction, the map v 0 → ϕ τ (v 0 ) is globally Lipschitz continuous, uniformly in time on compact intervals: for each T > 0, there exists L(T ) > 0 such that

ϕ τ (v 0 ) -ϕ τ (v 0 ) m ≤ L(T ) v 0 -v0 m , (37) 
for all τ ∈ [0, T ] and all (v 0 , v0 )

∈ H 1 m (R N ) × H 1 m (R N )
. Indeed, by the semigroup property, it is sufficient to prove (37) for a T > 0 satisfying (36), in which case (37) follows immediately from the fixed point argument above, with L(T ) = 2C 1 e T /2 . This proof also shows that L(T ) can be chosen independent of ̺ if ̺ ∈ (0, 1). Finally, the fact that the map ϕ τ is C 1 for each τ ≥ 0 is obtained by classical arguments which we omit here. We only mention that, given v 0 ∈ H 1 m (R N ), τ ≥ 0, and h ∈ H 1 m (R N ), the differential Dϕ τ (v 0 )h of ϕ τ at v 0 applied to h is equal to V (τ ), where V denotes the solution of the linear non-autonomous equation

∂ τ V = LV -q ⋆ χ ̺ v 2 m |∇v| q⋆-2 ∇v • ∇V -2χ ′ ̺ v 2 m |∇v| q⋆ ≪ v, V ≫ m , V (0) = h . Here v(τ ) = ϕ τ (v 0 ) and ≪ •, • ≫ m denotes the scalar product in H 1 m (R N ).
In particular, since ϕ τ (0) = 0 for all τ ≥ 0, this formula shows that Dϕ τ (0) = e τ L for each τ ≥ 0.

Remark 7 It can actually be shown that the differential Dϕ

τ : H 1 m (R N ) → L (H 1 m (R N )
) is Hölder continuous with exponent q ⋆ -1 for any τ ≥ 0.

For later use, we also point out the following properties of the time-one map ϕ 1 :

Corollary 8 The map R = ϕ 1 -e L belongs to C 1 (H 1 m (R N ); H 1 m (R N ))
and satisfies R(0) = 0, DR(0) = 0. Moreover R is globally Lipschitz continuous and there exists C 6 > 0 (independent of ̺) such that its Lipschitz constant satisfies Lip(R) ≤ C 6 ̺ q⋆-1 .

Proof: We know from Proposition 5 that R is indeed a C 1 -map from H 1 m (R N ) into itself, and it was observed at the end of the proof that ϕ 1 (0) = 0 and Dϕ 1 (0) = e L , hence R(0) = 0 and DR(0) = 0. Now, given v 0 , v0 in H 1 m (R N ) we define v(τ ) = ϕ τ (v 0 ) and v(τ ) = ϕ τ (v 0 ) for τ ≥ 0. Using Lemma 6 and estimate (37) we find

R(v 0 ) -R (v 0 ) m = (N ̺ v)(1) -(N ̺ v)(1) m ≤ C 4 ̺ q⋆-1 sup s∈[0,1] (v -v) (s) m ≤ C 4 L(1) ̺ q⋆-1 v 0 -v0 m ,
which is the desired bound.

Existence of the center manifold

Having associated a C 1 -semiflow to the truncated system (24), we now turn to the construction of a center manifold for this semiflow at the origin. If m > N/2, we can decompose

H 1 m (R N ) = E c ⊕ E s
, where E c = {αG | α ∈ R} is the kernel of the operator L and

E s = w ∈ H 1 m (R N ) R N w(ξ) dξ = 0 . ( 38 
)
We recall that G is the Gaussian function defined in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF]. Let P 0 be the continuous projection onto E c along E s , namely

P 0 w = R N w(ξ) dξ G , w ∈ H 1 m (R N ) ,
and let Q 0 = 1-P 0 . It is easily verified that P 0 and Q 0 commute with L, so that the subspaces E c and E s are invariant under the action of L. Moreover, we know from [17, Appendix A] that the spectrum of the restriction of L to the invariant subspace E s is strictly contained in the left-half plane in C, because the associated semigroup e τ L decreases exponentially in E s . More precisely, if µ 0 ∈ (0, 1/2) satisfies 2µ 0 < m -(N/2), there exists C 7 > 0 such that

e τ L Q 0 w m + a(τ ) 1/2 ∇e τ L Q 0 w m ≤ C 7 e -µ 0 τ |w| m , (39) 
for all w ∈ L 2 m (R N ) and all τ > 0, see [START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF]Proposition A.2]. We are now in a position to apply the invariant manifold theorem as stated in [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF]Theorem 1.1]. The main result of this section reads: 

Theorem 9 Fix µ ∈ (0, 1/2) such that 2µ < m -(N/2). If ̺ > 0 is sufficiently small, there exists a globally Lipschitz continuous map f ∈ C 1 (E c ; E s ) with f (0) = 0 and Df (0) = 0 such that the submanifold W c = {αG + f (αG) | α ∈ R} ⊂ H 1 m (R N )
Proof: Theorem 9 readily follows from [14, Theorem 1.1] once we have checked that the assumptions (H.1)-(H.4) of [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF] are fulfilled in our case. By Proposition 5, (ϕ τ ) τ ≥0 is a C 1 semiflow in H 1 m (R N ) and ϕ τ is globally Lipschitz continuous, uniformly for τ ∈ [0, 1]. Therefore, [14, (H.1)] is verified. Next, assumption [14, (H.2)] is nothing but the decomposition ϕ 1 = e L + R described in Corollary 8. To check [14, (H.3)], we remark that P 0 e L P 0 = 1, hence P 0 e L P 0 -k P 0

L (Ec) = P 0 L (Ec) , for all k ∈ N .
On the other hand, if we choose µ 0 ∈ (µ, 1/2) such that 2µ 0 < m-(N/2), it follows from (39) that e kL Q 0 w m ≤ C e -kµ 0 w m for all k ∈ N. Since Q 0 and e L commute, this inequality is equivalent to

Q 0 e L Q 0 k Q 0 L (Es)
≤ C e -kµ 0 , for all k ∈ N .

As e -µ 0 < 1, we have thus checked that [14, (H.3)] is fulfilled. Finally [14, (H.4)] is automatically satisfied if the Lipschitz constant of R is sufficiently small. By Corollary 8, this is easily achieved by choosing ̺ appropriately small. Therefore, by [14, Theorem 1.1], there exist µ 1 ∈ (0, µ 0 ) and a globally Lipschitz continuous map f ∈ C 1 (E c ; E s ) such that the submanifold

W c = {αG + f (αG) | α ∈ R} ⊂ H 1 m (R N )
enjoys the following properties:

Invariance: ϕ τ (W c ) = W c for all τ ≥ 0, and the restriction to W c of the semiflow (ϕ τ ) τ ≥0 can be extended to a Lipschitz continuous flow on W c .

Invariant foliation: There is a continuous map h :

H 1 m (R N ) × E s → E c such that, for each v ∈ W c , one has h(v, Q 0 v) = P 0 v and the manifold M v = {h(v, w) + w | w ∈ E s } ⊂ H 1 m (R N ) passing through v satisfies ϕ τ (M v ) ⊂ M ϕτ (v)
for τ ≥ 0 and is characterized by

M v = w ∈ H 1 m (R N ) lim sup τ →∞ 1 τ ln ( ϕ τ (w) -ϕ τ (v) m ) ≤ -µ 1 . Completeness: For every v ∈ W c , M v ∩ W c = {v}. In particular, M v ∩ M w = ∅ if (v, w) ∈ W c × W c and v = w, and H 1 m (R N ) = ∪ v∈Wc M v . Moreover, we can assume that µ 1 ∈ (µ, µ 0 ) if ̺ > 0 is sufficiently small.
We can now conclude the proof of Theorem 9. Assertion (a) is nothing but the invariance property of W c . To prove (b), let v 0 ∈ H 1 m (R N ). By the completeness property of W c , there is a unique w 0 ∈ W c such that v 0 ∈ M w 0 . Since µ < µ 1 , we deduce from the invariant foliation property of W c that there is τ 0 > 0 such that ϕ τ (v 0 )ϕ τ (w 0 ) m ≤ e -µτ , for all τ ≥ τ 0 .

Using in addition (37), we obtain (40).

Large time behavior

This final section is entirely devoted to the proof of Theorem 1. Assume that u 0 is a non-negative function in L 2 m (R N ), m > N/2, such that u 0 L 1 > 0. Let u(t, x) be the corresponding solution of (4), (5) and v(τ, ξ) the corresponding solution of ( 10), [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF]. By the strong maximum principle [19, Corollary 4.2], we know that u(t, x) > 0 for all t > 0 and all x ∈ R N . Choose µ ∈ (0, 1/2) such that 2µ < m -(N/2) and ̺ ∈ (0, 1) sufficiently small so that Theorem 9 applies.

By Proposition 4, the solution v of (10) converges to zero in H 1 m (R N ) as τ → ∞, hence there exists τ 0 ≥ 0 such that v(τ ) m ≤ ̺ for all τ ≥ τ 0 . Setting v 0 = v(τ 0 ) and v(τ ) = v(τ +τ 0 ), we obtain a solution v(τ ) of [START_REF] Benachour | Asymptotic estimates of solutions of u t -1 2 ∆u = -|∇u| in R + × R d , d ≥ 2[END_REF] 

with initial condition v 0 ∈ H 1 m (R N ) which satisfies v(τ ) m ≤ ̺ for all τ ≥ 0 . (41) 
Using the notations of Section 3, it follows that v(τ ) = ϕ τ (v 0 ) for τ ≥ 0, because (41) implies that χ ̺ ( v(τ ) 2 m ) = 1. Thus, in view of Theorem 9, there exist w 0 ∈ W c and

C 9 > 0 such that v(τ ) -ϕ τ (w 0 ) m ≤ C 9 e -µτ , τ ≥ 0 . (42) 
To simplify the notations, we set w(τ ) = ϕ τ (w 0 ) and

M(τ ) = R N w(τ, ξ) dξ , τ ≥ 0 .
We claim that M(τ ) > 0 for all τ ≥ 0 , and lim

τ →∞ M(τ ) = 0 . (43) Indeed, since H 1 m (R N ) ֒→ L 1 (R N ), it follows from (42) that R N v(τ, ξ) dξ -M(τ ) ≤ C v(τ ) -w(τ ) m ≤ C 10 e -µτ , (44) 
for all τ ≥ 0. Assume by contradiction that there exists τ 1 ≥ 0 such that M(τ 1 ) ≤ 0. Since w is a solution of (24), (25) and F ̺ ≥ 0, it is clear that τ → M(τ ) is non-increasing, hence M(τ ) ≤ M(τ 1 ) ≤ 0 for τ ≥ τ 1 . Using (44) and recalling that v is non-negative, we thus find v(τ ) L 1 = R N v(τ, ξ) dξ ≤ M(τ ) + C 10 e -µτ ≤ C 10 e -µτ , for τ ≥ τ 1 . As a consequence, u(t) L 1 = v(ln(1+t)τ 0 ) L 1 ≤ C 10 e µτ 0 (1 + t) -µ for t ≥ e τ 1 +τ 0 -1 .

By [START_REF] Chen | Invariant foliations for C 1 semigroups in Banach spaces[END_REF], we also have u(t) L ∞ ≤ C t -µ-(N/2) for t sufficiently large, a property which implies that u ≡ 0 by [7, Proposition 3] and [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF]Corollary 4.2]. This contradicts the fact that u(t, x) > 0 for t > 0, hence we have proved the first assertion in (43). As for the second claim, it is a straightforward consequence of ( 13) and (44). Now, since v(τ ) m → 0 as τ → ∞, it follows from (42) that there exists τ 2 ≥ 0 such that w(τ ) m ≤ ̺ for all τ ≥ τ 2 . On the other hand, as w(τ ) ∈ W c for each τ ≥ 0, we have w(τ, ξ) = M(τ ) G(ξ) + f (M(τ ) G(ξ)) for (τ, ξ) ∈ [0, ∞) × R N , where f is as in Theorem 9. In view of (24) and (26) we deduce that, for τ ≥ τ 

where M ⋆ is as in Theorem 1. As w(τ, ξ) = M(τ ) G(ξ) + f (M(τ ) G(ξ)), we deduce from (43), (47) and the properties of f that τ N +1 w(τ ) -M(τ ) G m → 0 as τ → ∞. Combining this result with (42), (47), we arrive at lim

τ →∞ τ N +1 v(τ ) - M ⋆ τ N +1 G L 1 = 0 . ( 48 
)
Of course, the same result holds for v(τ ) = v(τ -τ 0 ). If we now return to the original function u(t, x) via the transformation (9), we obtain exactly [START_REF] Benachour | Extinction and decay estimates for viscous Hamilton-Jacobi equations in R N[END_REF] for p = 1. The case p ∈ (1, ∞] then follows from ( 14) by a classical interpolation argument.
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  see[START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] Proposition A.5] and[START_REF] Th | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] Proposition A.2]. Similar estimates hold for the spatial derivatives of e τ L w. For instance, as ∇e τ L = e τ /2 e τ L ∇, it follows from (27) that |∇e τ L w| m ≤ C 1 e τ /2 |∇w| m for all w ∈ H 1 m