\

Monotonicity of Non-deterministic Graph Searching

Frédéric Mazoit, Nicolas Nisse

» To cite this version:

Frédéric Mazoit, Nicolas Nisse. Monotonicity of Non-deterministic Graph Searching. International
Workshop on Graph-Theoretic Concepts in Computer Science, Jun 2007, Dornburg, Germany. pp.33-
44, 10.1007/978-3-540-74839-7 . hal-00351481

HAL Id: hal-00351481
https://hal.science/hal-00351481
Submitted on 9 Jan 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00351481
https://hal.archives-ouvertes.fr

Monotonicity of Non-deterministic Graph Searching*

Frédéric Mazoit! and Nicolas Nisse?

! LABRI, University of Bordeaux, 33405 Talence, France
2 LRI, University of Paris Sud, 91405 Orsay, France

Abstract. In graph searching, a team of searchers is aiming at capturing a fugitive moving
in a graph. In the initial variant, called invisible graph searching, the searchers do not
know the position of the fugitive until they catch it. In another variant, the searchers know
the position of the fugitive, i.e. the fugitive is visible. This latter variant is called wisible
graph searching. A search strategy that catches any fugitive in such a way that, the part
of the graph reachable by the fugitive never grows is called monotone. A priori, monotone
strategies may require more searchers than general strategies to catch any fugitive. This is
however not the case for visible and invisible graph searching. Two important consequences
of the monotonicity of visible and invisible graph searching are: (1) the decision problem
corresponding to the computation of the smallest number of searchers required to clear a
graph is in NP, and (2) computing optimal search strategies is simplified by taking into
account that there exist some that never backtrack.

Fomin et al. (2005) introduced an important graph searching variant, called non-determi-
nistic graph searching, that unifies visible and invisible graph searching. In this variant, the
fugitive is invisible, and the searchers can query an oracle that knows the current position
of the fugitive. The question of the monotonicity of non-deterministic graph searching is
however left open.

In this paper, we prove that non-deterministic graph searching is monotone. In particular,
this result is a unified proof of monotonicity for visible and invisible graph searching. As
a consequence, the decision problem corresponding to non-determinisitic graph searching
belongs to NP. Moreover, the exact algorithms designed by Fomin et al. do compute optimal
non-deterministic search strategies.

Keywords: Graph searching, Treewidth, Monotonicity.

1 Introduction

Introduced in [7,17], graph searching is a game in which a team of searchers aims at catching
a fugitive moving in a graph. At each step of the game, a searcher can either be placed at or
removed from a vertex of the graph [13]. The fugitive is invisible, arbitrary fast and aware of the
positions of the searchers. It can move along paths of the graph as long as it does not cross any
vertex occupied by a searcher. The fugitive is caught when a searcher is placed at the vertex it
occupies, and it cannot flee because all the neighbors are occupied by searchers. A search strategy
for a graph G is a sequence of basic operations, i.e., place or remove a searcher, that results in
catching any invisible fugitive in G. The node search number of a graph G, denoted by s(G), is the
smallest integer k such that it exists a search strategy for G using at most k searchers (see [5] for
a survey). Given a graph G, the graph searching problem consists in computing an optimal search
strategy for G, i.e., a strategy that clears G using at most s(G) searchers.

During a search strategy, the vertices that are accessible by the fugitive are said contaminated. A
non-contaminated vertex is said clear. A strategy is monotone if it does not allow recontamination,
i.e., after having been cleared, a vertex remains clear until the end of the strategy. LaPaugh [14]

* The first author received additional supports from the french ANR-project “Graph decompositions and
algorithms (GRAAL)”
The second author received additional supports from the project “Alpage” of the ACI Masses de
Données, from the project “Fragile” of the ACI Sécurité Informatique, and from the project “Grand
Large” of INRIA.



proved that “recontamination does not help” to catch an invisible fugitive. That is, for any graph
G, there exists a monotone search strategy of G using at most s(G) searchers. We say that invisible
graph searching is monotone. LaPaugh’s proof was later simplified by Bienstock and Seymour [6]
using the concept of crusades. Both these proofs are constructive. Indeed, they transform any
strategy into a monotone one without increasing the number of searchers.

In [20], Seymour and Thomas introduce the wisible graph searching. In this variant [8, 20], the
searchers are aware of the position of the fugitive. Hence, they can adapt their strategy according
to its position. The visible search number of a graph G, denoted by vs(G), is the smallest integer
k such that k searchers are sufficient to catch any visible fugitive in G. Seymour and Thomas [20]
proved that visible graph searching is monotone. However, Seymour and Thomas’ proof is not
constructive. They show that, if no monotone strategies using k searchers exist for a graph G,
then there exists an escape strategy for the fugitive which actually is a general escape strategy,
and thus, no non-monotone strategies using at most k searchers allow to catch any visible fugitive
in G.

Monotonicity plays a crucial role in graph searching. First, a monotone strategy conludes in a
polynomial number of steps and thus, gives a certificate of polynomial size for the decision problem
corresponding to the graph searching problem. Since the decision problems corresponding to the
visible and invisible graph searching problems are known to be NP-hard [1,15], they are NP-
complete. Second, it appears algorithmically difficult to design strategies that are not monotone.
Last but not least, monotone strategies for catching an invisible (resp., visible) fugitive in a graph
G correspond exactly to path-decompositions (resp., tree-decompositions) [18] of G.

Indeed, the importance of visible graph searching and invisible graph searching comes from
their close relationship with crucial notions of graph theory: treewidth and pathwidth [18]. Roughly
speaking, the treewidth tw(G) (resp., the pathwidth pw(G)) of a graph G measures how close this
graph is from a tree (resp., a path). The correspondence between search numbers and width param-
eters provides different interpretations of these parameters, and thus, different ways of handling
them. More precisely,

s(G) =pw(G) +1 (see [9,13]) (1)
vs(G) = tw(G) + 1 (see [8,20]) (2)

In [10], Fomin et al. provide a unique approach to the pathwidth and the treewidth of a graph.
For any graph G and any ¢ > 0, they define the notions of g-branched tree decomposition and
g-branched treewidth, denoted by tw,(G). Roughly speaking, a g-branched tree decomposition of
a graph is a parametrized tree decomposition such that the number of branching nodes of the tree
is limited. In particular, path-decompositions are exactly O-branched tree decompositions, and
tree-decompositions are exactly oo-branched tree decompositions.

Fomin et al. also provide an interpretation of g-branched tree decompositions in terms of
graph searching. More precisely, they provide a unique approach to both visible and invisible
search problems, called non-deterministic graph searching. In this variant, the fugitive is invisible.
However, the searchers can query an oracle that knows the position of the fugitive. Given the set
S C V(G) of clear vertices, a query returns a connected component C' of G'\ S, and all vertices in
G\ C are cleared. The choice of C' is nondeterministic. Intuitively, the oracle gives the position of
the fugitive to the searchers. More formally, the searchers can perform one of the following three
basic operations called search steps.

1. place a searcher at a vertex of the graph;
2. remove a searcher from a vertex of the graph;
3. perform a query to the oracle.

The number of query steps that the searchers can performed is however limited. For ¢ > 0, the
monotone g¢-limited search number ms,(G) of a graph G is the smallest number of searchers
required to catch any fugitive in G in a monotone way performing at most ¢ queries. The main
result of Fomin et al. [10] is the following generalization of Equations 1 and 2 :

For any graph G and any q > 0, tw,(G) + 1 = ms,(G). (3)



Moreover, Fomin et al. [10] prove the NP-completness of the problem of computing ms,(G), for
any g > 0. Using the correspondence between monotone ¢-limited graph searching and g-branched
treedecomposition, they also design an exact exponential algorithm that computes tw,(G) and
the corresponding decomposition, for any graph G and any ¢ > 0.

However, Fomin et al. only consider monotone non-deterministic search strategies. They left
open the problem whether recontamination helps for ¢-limited graph searching, for any ¢ > 0.
This paper answers this question.

Our Results

Let G be a graph and ¢ > 0. Let s4(G) denotes the smallest number of searchers required to catch
any fugitive in G performing at most g queries. We prove that, for any graph G and any ¢ > 0,
recontamination does not help to catch a fugitive in G performing at most ¢ queries. In other
words, we prove that for any graph G and any g > 0, there exists a monotone search strategy
of G using at most s,(G) searchers, i.e. s4(G) = ms,(G). In particular, this implies that the
decision problem related to non-deterministic graph searching is in NP. This also implies that
the exponential exact algorithm designed in [10] actually computes s,(G) for any graph G and
any ¢ > 0. More interestingly, our result unifies the proof of the monotonicity of invisible graph
searching [6] and the proof of the monotonicity of visible graph searching [20]. The original proof
of the monotonicity of visible graph searching is not constructive, while our proof is constructive
and turns any general strategy into a monotone one.

Related Works

The monotonicity property of several graph searching variants has been studied before. In [3],
Barriére et al. have defined the connected graph searching. A search strategy is connected if, at
any step of the strategy, the subgraph induced by the clear vertices is connected. Barriére et al. [3]
proved that connected graph searching is monotone as long as the input graph is restricted to be
a tree. However, this does not remain true in case of arbitrary graphs. Yang et al. [21] proved
that there exist graphs for which ”"recontamination does help” to catch an invisible fugitive in a
connected way. In [11], Fraigniaud and Nisse proved that recontamination does help as well to
catch a visible fugitive in a connected way.

In [12], Johnson et al. introduced directed graph searching. In this variant of the game, a
visible fugitive is moving in a digraph. However, it is only permitted to move to vertices where
there exists a directed searcher-free path from its intended destination back to its current position.
The authors exhibit a graph for which recontamination does help. Obdrzélek [16] and Berwanger
et al. [4] independamently defined a new visible graph searching game in a digraph by relaxing
the latter constraint. The question of the monotonicity of this latter variant is however left open.
In [2], Bardt studies the monotonicity property of a search strategy for catching invisible fugitive
moving in a digraph. He proves that mixed-graph searching is monotone in directed graph.

2 Formal Definitions

In this paper, G = (V, E) will denote a connected graph with vertex-set V and edge-set E. For
A C E, we denote by V[A] the set of vertices incident to at least one edge in A. The border of
two disjoint edge sets A and B is the set 6(A, B) = V[A] N V[B] of the vertices incident both to
an edge in A and to an edge in B. We extend this definition to any family of pair-wise disjoint
edge sets {X1,...,X,} by setting

0(Xy,-, X)) = | 0(XiX5)

1<i<j<n

The border §(X) of X C FE denotes the set 6(X, E \ X).



2.1 Non-deterministic Graph Searching

Now, we formally define the notion of non-deterministic search strategy. Intuitively, given a graph
G, a non-deterministic search strategy (or simply a non-deterministic strategy) for G is a sequence
of pairs, such that each pair consists of a subset of V', the positions of searchers, and a subset of
E, the clear part of G. More precisely, a non-deterministic strategy is a sequence of ordered pairs
(Zi, Ai)ie[o,l] such that

o forany 0<i <[, Z; CV and A; C F;
e 7y =10 and Ay = 0;
e for any 0 < i <[ one of the following holds
— (placing searchers) there is X; 1 C V, such that Z;11 = Z; U X;41 and A; 41 = A; U B
with B,y the set of edges with both ends in Z;,1, or
— (removing searchers) there is X; 11 C V, such that Z;11 = Z; \ X;11 and 4,41 is obtained
from A; by recursively removing the edges {z,y} € A; with y € Z;; and such that there
is z € V with {y, 2z} & A;41, or
— (performing a query) Z;+1 = Z; and A;41 is the set of edges not incident with a vertex of
C, one of the connected component of G\ Z; not incident to a vertex of A;. The choice of
C' is non-deterministic.

For any 0 < i < I, (Z;, A;) is the configuration reached by the strategy at the i*" step. A
strategy (Zi, Ai)iejo,) uses at most k > 1 searchers if, for any 0 < i < [, [Z;] < k. A non-
deterministic search program is a non-deterministic program that takes as input a graph G and
an integer k > 1, and returns a non-deterministic strategy for G using at most k searchers. A non-
deterministic search program wins if for every possible fugitive moves, at least one of the strategies
that the program computes catches the fugitive. That is, for any non-deterministic choice of the
component C' during the “performing a query” steps, the computed strategy insures that A; = E.
A non-deterministic search program is monotone if the strategies that it computes are monotone.
The number of searchers required by a non-deterministic strategy is the maximum number of
searchers required by the strategies that it computes.

A g-limited non-deterministic search program (or simply, a g-program) is a non-deterministic
search program that computes strategies using at most g query steps. The g-limited search number
(or simply the g-search number) of a graph G, denoted by s,(G), is the smallest number of searchers
required by a ¢-program to win against any fugitive in G. Similarily, we define the monotone ¢-
limited search number of a graph G, denoted by ms,(G), as the smallest number of searchers
required by a monotone g-program to win against any fugitive in G.

If ¢ = 0, no non-deterministic steps are allowed, and the previous definition is similar to
the usual definition of an invisible search strategy [13]. Note that, in this case, the deterministic
strategy (Z;, Ai)ie[o,l] wins, if and only if, there is 0 < 4 < such that, for any j >4, A; = E.

2.2 Branched Treewidth

Fomin et al. [10] defined a parametrized version of the tree-decomposition of a graph. Their main
result is the interpretation of this decomposition in terms of graph searching.

A tree decomposition [18] of graph G is a pair (T, X) where T is a tree of node set I, and
X ={X;,i € I} is a collection of subsets of V(G) satisfying the following three conditions:

1. V(G) = Uier Xi;
ii. for any edge e of G, there is a set X; € X containing both end-points of e;
iii. for any ¢1,42,¢3 € I with iy is on the path from 4; to i3 in T', X;, N X, C X;,.

The width w(T,X) of a tree decomposition is max;e;{|X;| — 1} and the treewidth of a graph is
the minimum width over all its tree-decompositions.

A rooted tree decomposition of a graph G, denoted by (T, X, r), is a tree decomposition (T, X)
of G such that T is a rooted tree and r is its root. A branching node of a rooted tree decomposition



is a node with at least two children. For any g > 0, a g-branched tree decomposition [10] (or simply,
a g-tree decomposition) of a graph G is a rooted tree decomposition (', X', r) of G such that every
path in T from the root r to a leaf contains at most ¢ branching nodes. Thus a path decomposition
rooted at one of its extremities is a 0-branched tree decomposition, and a usual tree decomposition
is a oo-branched tree decomposition. For any graph G, the g-branched treewidth (or simply, the
g-treewidth) of G, denoted by twy(G), is the minimum width of any g-tree decomposition of G.

Theorem 1. [10] Let G be a graph, ¢ > 0 and k > 1. There is a winning monotone q-program
using at most k searchers in G if and only if twy(G) < k.

2.3 Search-tree

To prove the monotonicity of non-deterministic graph searching, we define an auxiliary structure
called search-tree which is inspired by the tree-labelling defined by Robertson and Seymour [19].

A search-tree of a graph G is a triple (T, «, 3) with T a tree, a a mapping from the incidence
(between vertices and edges) of T into the subsets of E and § a mapping from the vertices of T’
into the subsets of E such that:

e for any edge e = {u,v} of T, a(u,e) Na(v,e) = P;

e for no leaf v of T incident to an edge e of T is such that a(v,e) = E;

o for any node v of T incident to e, ..., ep, {B(v)} U p(v) is a (possibly degenerated) partition
of E with p(v) = {a(v,e1,),...,a(v,ep)}.

We extend the function § to any sub-tree T" of T by setting S(T') = UyerB(v). The width of a
search-tree is defined as w(T’, a, §) = max,ev (r){|xo|} where x, = V[B(v)] Ud(u(v)) and [x.|
denotes the weight of the node v € V(T'). As for tree decompositions, we consider rooted search-
trees, denoted by (T, a, 3,7), that are search-trees over rooted trees. A branching node of a rooted
search-tree is a node with at least two children. For any ¢ > 0, a ¢-branched search-tree is a rooted
search-tree (T, «, 3,7) of G such that every path in T from the root r to a leaf contains at most
g branching nodes. An edge e = {u, v} of a search-tree is monotone if a(u,e) = E'\ a(v,e), and a
search-tree is monotone if all its edges are monotone. Edges that are not monotone are said dirty.

3 Monotonicity of non-deterministic graph searching

The remaining part of the paper is devoted to prove the monotonicity of non-deterministic graph
searching. For this purpose, we prove that, from any winning ¢-program using at most k searchers
in a graph G, we can build a g-branched search-tree of width at most k for G (Lemma 1). Then, by
performing local optimisations, we transform any g-search-tree into a monotone one (Lemma 3)
without increasing its width. To conclude, any monotone ¢-branched search-tree, of width k, of
a graph G can be transform into a g-branched tree-decomposition, of width at most &k — 1, of G
(Lemma 5). Then, the proof of the monotonicity property of non-deterministic graph searching
follows from Theorem 1. More formally, we prove the following theorem:

Theorem 2. Let G be a connected graph, ¢ > 0 and k > 2. The following are equivalent:

1. There is a winning q-program for G using at most k searchers;
1. There is a q-search-tree of width at most k for G;
#i. There is a monotone gq-search-tree of width at most k for G;
iv. There is a q-tree decomposition of width at most k — 1 for G;
v. There is a winning monotone q-program for G using at most k searchers.

Proof. We prove that (i) = (i) (Lemma 1), (i¢) = (4i¢) (Lemma 3), (%) = (iv) (Lemma 5).
Proposition (iv) = (v) follows from Theorem 1 and (v) = (4) is obvious. O



3.1 From strategies to search-trees

Lemma 1. Let G be a connected graph, ¢ > 0 and k > 2, (i) = (ii).

i. There is a winning q-program using at most k searchers for G;
1. There is a g-search-tree of width at most k for G.

Proof. In this proof, we consider extended search programs whose the starting configuration is
not necessarily the (@,0) configuration. That is, we consider search programs whose strategies
start from a configuration (Zy, Ag) that satisfies §(Ag) C Zy. The length of a search program is
the maximum number of steps of the strategies it computes. Let us define the partial width of a
rooted search tree as the maximum weight of its nodes, the maximum being taken over all the
nodes of the search-tree but its root.

We prove the following claim by induction on the length of the search program.

Claim. For every winning g-program using at most k searchers with (Zy, Ag) as starting configu-
ration, there is a rooted g-search-tree (T, «, 3,r) of partial width at most k, and such that, r is
incident to a unique edge e € E(T'), and a(r,e) = E'\ Ao.

Let ¢ > 0 and let S be a g-program on G with k searchers and with (Zy, Ag) as starting
configuration.

e Suppose that S has length 1.

The only search step has to be a ”placing searchers” step. Thus, S conputes only the following
0—strategy: (Zo,Ao), (Zl,Al) in which Zl = Zo U X1 and Al = AO @] Bl =F.

Define the tree T with only one edge {r,v}, f(v) = a(r,{r,v}) = E\ Ag and B(r) =
a(v,{r,v}) = Ag. Since V[B(v)] Ud(uy) = VIE \ Ag] which is a subset of Z1, (T,c, 8,7
is a rooted 0-search tree of partial width at most k.

e Suppose that S has length [ > 1. Let us assume that for any winning ¢-program S’ using at
most k searchers with (Z, A) as starting configuration (with §(A4) C Z) and such that S’ has
length I’ < I, there is a rooted g-search-tree (T, «, 3,7) of partial width at most k, and such
that, = is incident to a unique edge e € E(T), and a(r,e) = E \ A. Consider &’ obtained by
removing the first configuration of the sequences of S. Note that, S’ is strictly shorter than S.
We consider three cases according to the type of the first step of S.

a. if the first step of S is a "removing searchers” step, S’ is a g-program with (Z;, A;) as
a starting configuration, Z; C Zy and A; C Ag. According to the induction hypothesis,
there is a rooted g-search-tree (17, o/, 5, ') of partial width at most k¥ and such that there
is an edge €’ incident to v’ with o/(r',e’) = E '\ 4.

Define a new g¢-search-tree (T, a, 8,r) from (T',a’,5',r') as follows:

— add a new leaf r linked to 7’ in T”, and set r as the new root,

— put a(r,{r,”"}) = E\ Ao, a(r’, {r,7'}) = A1 and o = o’ otherwise;

— put B(r) = Ag, B(r') = 0 and 3 = ' otherwise.
Since Ay C Ao, a(r,{r,7'}) Na(r',{r,r'}) = 0 and (T,«,r) is a g-search-tree. Moreover,
V[B(")] Ué(u(r')) € Z1 and (T, o, 3, 7) satisfies the required conditions.

b. if the first step of S is a ”placing searchers” step, S’ is a ¢-program with (Z1, A;) as
a starting configuration, Z; = Zy U X7 and A; = Ay U By. According to the induction
hypothesis, there is a rooted g-search-tree (T”,a',3’,r") of partial width at most & and
such that there is an edge e’ incident to ' with o/(1/,¢’) = E'\ 4.

Define a new g-search-tree (T, o, 8, 1) from (T', ', 3, 7') as follows:
— add a new leaf r linked to v’ in T”, and set r as the new root,
— put a(r, {r,r'}) = E\ Ag, a(r’,{r,1’}) = Ag and a = o’ otherwise;
— set B(r) = Ag, B(r') = By and 8 = 3’ otherwise.
By counstruction, (T, «, 3,r) is a g-search-tree that satisfies the required conditions.



c. if the first step of S is a ”performing a query” step, there are p > 1 distinct (¢ — 1)-
programs Sy, ...,S, for G such that: {Ag, E\Y1,..., E\Y,} is a partition of E, and, for
any 1 < i < p, S; is a winning (¢ — 1)-program for G, starting from the configuration
(Z;,Y;) and using at most k searchers. For any 1 < i < p, since the (¢ — 1)-programs S;
are shorter than S, there exists a rooted (¢ — 1)-search-tree (T}, cv;, B;, ;) of partial width
at most k, and such that there is an edge e; incident to r; with «;(r;,e;) = E\ Y.
Define a new g-search-tree (T, o, 8, ) from these search-trees as follow:

— identify the roots r; with a node r’, add a new leaf r linked to r’ in 7", and set r as

the new root,.

— put a(r,{r,r'}) = E\ Ao, a(r’,{r,r'}) = Ao and a(u, e) = a;(u, e) for every edge e of

Ti;

— put B(r) = Ay, B(r') = 0, and, for any 1 < i < p and any node u of T}, B(u) = B;(u).
The rooted search-tree (T, a,,r) has one more branching node than any search-tree
(T}, ey, Bi, ;) and, since each of them has at most ¢ — 1 branching nodes, (T, «,,7)
satisfies the required conditions.

Therefore, for any winning g-program S using at most k searchers with (Zy, Ag) as starting
configuration (with §(Ag) C Zp) and such that S has length [, there is a rooted g-search-tree
(T, o, 8, 1) of partial width at most &, and such that, r is incident to a unique edge e € E(T),
and a(r,e) = E'\ Ap. This concludes the induction and the proof of the claim.

To conclude the proof of the lemma, is it sufficient to note that, if Ag = @, the weight of the root
of the search-tree equals 0. Thus, its partial width equals its width. a

3.2 From search-trees to monotone search-trees

To prove the second step of the proof, we need the following technical lemma.

Lemma 2. Let G = (V,E) be a connected graph, uw = {E1,...,E,} be a (possibly degenerated)
partition of E and F' C E\ Ey. Set B} = E\F, E; = E;NF for2<i<pandy ={E,...,E,}.

If §(F)

< O(En) then [6(u)| < |8(u)|
If6(F) <6 )| < |6(w)

FE
(Ey) then |5(u')| < |5(s)]

Proof. Since §(Fy) C 6(u) and §(F) C o(y'), we get that ‘5(;1)! = ‘5(;1) \ 8(E1)| + |6(E1)| and
|6(1))| = |6(1') \ 6(F)| + |6(F)|. This implies that

[8()] = (66| = (1) \ 8(E)| + [a(E)]) = (|8a) \ o(F)| + |8(F)])
= [0(E)| = [o(F)] + (|80 \ 3(Ev)| — [3(u') \ 6(F)])

To complete the proof, it is sufficient to show that
o) \6(F) € o(p) \ 6(E).

To prove this latter assertion, first note that any vertex w € §(Eq) N d(y') belongs to 6(F).
Indeed, w € &(u') implies, by definition of pu’, the existence of e; € F incident to w. Beside,
w € §(F7) implies the existence of es € E; incident to w. Since F; C E \ F, we have e; € F and
ez & F. Therefore, w € §(F). Hence, we obtain that (6(u') \ 6(F)) N&(E;) = 0. Finally, since
(') \ 6(F) C &(u), it implies that 6(p') \ 6(F) C §(p) \ 6(F1). That concludes the proof. O

Lemma 3. Let n > 0. Let G be a n-node connected graph, ¢ > 0 and k > 2, (ii)= (iii).

1. There is a q-search-tree of width k on G;
1ii. There is a monotone g-search-tree of width k on G.



Proof. Let T = (T, «, 3,7) be a rooted g-search-tree of G of width k.

For every edge e of T, denote by dist(e) the distance of e to the root r. The weight wg(7T)
of Tis 3 cv(r) |6(1a(v))| and the badness bn(T) of T is ) n~%4®) the sum being taken over
the dirty edges of 7. Let 77 and 73 be two rooted g¢-search-trees. 7y is tighter than 75 if either
we(Th) < wg(Ta), or we(T;) = we(Ta) and bn(T;) < bn(Ty).

The remaining part of this lemma is devoted to prove that the tightest search-tree among any
g-search-tree of width k of G is monotone. For this purpose, we make local optimisations that are
compatible with the above relation.

a. Suppose that {u,v} is a dirty edge of 7 such that |6 (a(u, {u,v}))| < |§(a(v, {u,v}))]

e Let us assume that v is a leaf. If a(u, {u,v}) = 0, just remove the leaf (by setting u as the
new root, if » = v). Otherwise, set a(v,{u,v}) = E \ a(u,{u,v}) and S(v) = a(u, {u,v}).
The resulting search-tree is tighter than 7.

e Now, let us assume that v is an internal node of T". Set v = uy, let ua, ..., u, be the other
neighbours of v, set a(v, {v,u;}) = E;, py = {E1,...,Ep} and F = a(u, {u,v}) so that
the condition on {u,v} can be rephrased as |§(E1)| > |6(F)|. Let us modify 7 by setting
Bw) = BW)NF, a(v,vu;) = E for 1 <4 < p. Since, Bl C E; for2<i<pand E{ = E\F,
we obtain a new g-search-tree 7”. It remains to prove that 7 is tighteer than 7.

Let 1, be the partition {E, ..., Ep, B(v)} of E. Consider n;, = {EY, ..., E,, B(v)NF} with
E{=FE\F,and E/ = E;NF for 2 <i<p. By lemma 2

[0(m)| < [0(nw)]-

Beside, [x7(0)| = |8(t) U VIB@)]| = [6(3,) U V[B@)]\ 6@ = [803)] + [VIB@)] \
6(B(v)| > [8(m,) |+ [VIB) NFI\ (6(B(v) N F))| = [6(EL, . . ., E) UV[B() N Fl| = X7 (v)]-
Thus, 7’ has strictly smaller weight than 7. Therefore, 7’ is tighter than 7.
b. Suppose that {u,v} is a dirty edge of 7, and |§(a(u,{u,v}))| = |6(a(v, {u,v}))|. We can
suppose without loss of generality that u is closer to the root r than v.

e Let us assume that v is a leaf. We set a(v, {u,v}) = E\a(u, {u,v}) and B(v) = a(u, {u,v}).
The resulting search-tree 7" is such that wg(7”’) < wg(7 ), and has smaller badness. Thus,
T’ is tighter than 7.

e Now, let us assume that v is an internal node of T. We consider exactly the same new
g-search-tree 7’ as in the second item of case a. The only difference is that using lemma 2,
we only get [0(n,,)| < |6(n,)| and thus wg(7T") < wg(T ). However, in 77, the edge {u, v} is
monotone. Moreover, the only edges that were monotone in 7', and that could have become
dirty are the edges {v,u;} for 2 < i < p. Since p < n+1 and dist({v, w;}) = dist({v,u})+1
for 2 < i < p, we have

P
bn(T) _ bn(T’) > n—dist({u,v}) _ Zn—dist({v,ui})
=2
> n—dist({u,v}) _ (n _ l)n—dist({v,u})—l >0

The g-search-tree 7’ is tighter than 7.

If a g-search-tree of width k£ has a dirty edge, we can algorithmically turn it into a new g¢-
search-tree of width at most k& which is tighter. Since there are no infinitely decreasing sequences
for this relation, there exists a monotone g-search-tree of width at most k. a

3.3 From monotone search-trees to tree decompositions

The two following lemmas conclude the third step of the proof of Theorem 2.

Lemma 4. Let G be a connected graph and T = (T, «, 3,7) be a monotone search-tree on G. For
any edge {u,v} of T, a(u,{u,v}) = B(T,) with T, the connected component of T \ {u,v} that
contains v.

Proof. We prove this by induction of |V(T},)|.



o if |V(T,)| = 1, then f(v) = E\ a(v, {u,v}) and since a(u,{u,v}) = E\ a(v, {u,v}) (T is
monotone), we have a(u, {u,v}) = B(v) = 8(T,).

e otherwise, let wy, ..., w, be the neighbours of v in T}, and for 1 <7 < p, let T\, be the connected
components of Ty, \ {v,w;} that contains w;. By induction hypothesis, a(v, {v,w;}) = 8(Tw,).
Since T is a search-tree, the sets 3(v), a(v, {u,v}) and 3(Ty, ), ..., B(Tw,) induce a partition of
E, thus a(v,{u,v}) = E\ B(T,). Since T is monotone, a(u, {u,v}) = E\ a(v,{u,v}) = (T})
which finishes the proof. a

Lemma 5. Let G be a connected graph, ¢ > 0 and k > 2, (iii) = (iv).

1i. There is a monotone g-search-tree of width k on G;
w. There is a g-tree decomposition of width at most k — 1 on G.

Proof. Let T = (T, «, 8,7) be a g-search-tree of width k.

We claim that © = (T, X,r) with X = {x, | v node of T'} is a tree decomposition of width at
most k£ — 1.

Since G is connected and |E| > 0, condition #i. of a tree decomposition implies condition i.

Let {z,y} € E be an edge of G. Since 7 is monotone, for every edge {u,v} of T, {z,y} belongs
to either a(u,{u,v}) or a(v,{u,v}). Suppose {z,y} € a(u,{u,v}), by lemma 4, {z,y} € 5(T,)
with T, the connected component of T\ {u,v} that contains v. The edge {x,y} thus belongs to
at least one f(w) for some node w of T;,. By definition of xu, {z,y} C Xw.

Let u, v, w be three nodes of T with v on the path {u,u/,... ,v,...,w w} from u to w. Let Ty,
(resp., Ty,) be the connected component of T\ {u,u'} (resp., T\ {w,w’}) that contains u (resp.,
w). Let TV (resp., T.) be the connected component of T\ v that contains u (resp., w).

Let uy = o/, ..., up be the neighbours of w in T and = € x,,. Either there is an edge of G incident
to = in B(u), or there exist 1 < i < p such that there is an edge incident to = in a(u, {u,u;}). By
lemma 4, there is an edge incident to x in 8(T,,) C B(T,).

Suppose that & € x, N xw. There exist an edge incident to z in B(TY) 2 B(Ty,) and an edge
incident to x in B(TY) 2 B(Ty). By lemma 4, we get that 2 € d(u,). Thus, 2 € x,. This proves
that © is a tree-decomposition. Moreover, by construction, w(©) = wg(7) — 1. Since both 7 and
© use the same underlying three, @ is a g-tree decomposition of width at most k£ — 1. a

4 Conclusion

We prove the monotonicity of non-deterministic graph searching. As a consequence, the corre-
sponding decision problem belongs to NP. Moreover, the exact algorithm designed in [10] does
compute optimal non-deterministic search strategy. However, the problem to know whether com-
puting a monotone optimal non-deterministic search strategy in trees can be done in polynomial
time is still open. Another interesting open problem deals with graph searching in digraph. In [16],
Obdrzalek left open the question of knowing whether recontamination does help to catch a visible
fugitive moving in a digraph.
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