Frédéric Mazoit

Nicolas Nisse

Monotonicity of Non-deterministic Graph Searching ⋆

Keywords: Graph searching, Treewidth, Monotonicity

 introduced an important graph searching variant, called non-deterministic graph searching, that unifies visible and invisible graph searching. In this variant, the fugitive is invisible, and the searchers can query an oracle that knows the current position of the fugitive. The question of the monotonicity of non-deterministic graph searching is however left open. In this paper, we prove that non-deterministic graph searching is monotone. In particular, this result is a unified proof of monotonicity for visible and invisible graph searching. As a consequence, the decision problem corresponding to non-determinisitic graph searching belongs to NP. Moreover, the exact algorithms designed by Fomin et al. do compute optimal non-deterministic search strategies.

Introduction

Introduced in [START_REF] Breisch | An intuitive approach to speleotopology[END_REF][START_REF] Parsons | Pursuit-evasion in a graph[END_REF], graph searching is a game in which a team of searchers aims at catching a fugitive moving in a graph. At each step of the game, a searcher can either be placed at or removed from a vertex of the graph [START_REF] Kirousis | Searching and pebbling[END_REF]. The fugitive is invisible, arbitrary fast and aware of the positions of the searchers. It can move along paths of the graph as long as it does not cross any vertex occupied by a searcher. The fugitive is caught when a searcher is placed at the vertex it occupies, and it cannot flee because all the neighbors are occupied by searchers. A search strategy for a graph G is a sequence of basic operations, i.e., place or remove a searcher, that results in catching any invisible fugitive in G. The node search number of a graph G, denoted by s(G), is the smallest integer k such that it exists a search strategy for G using at most k searchers (see [START_REF] Bienstock | Graph searching, path-width, tree-width and related problems (a survey)[END_REF] for a survey). Given a graph G, the graph searching problem consists in computing an optimal search strategy for G, i.e., a strategy that clears G using at most s(G) searchers.

During a search strategy, the vertices that are accessible by the fugitive are said contaminated. A non-contaminated vertex is said clear. A strategy is monotone if it does not allow recontamination, i.e., after having been cleared, a vertex remains clear until the end of the strategy. LaPaugh [START_REF] Lapaugh | Recontamination does not help to search a graph[END_REF] proved that "recontamination does not help" to catch an invisible fugitive. That is, for any graph G, there exists a monotone search strategy of G using at most s(G) searchers. We say that invisible graph searching is monotone. LaPaugh's proof was later simplified by Bienstock and Seymour [START_REF] Bienstock | Monotonicity in graph searching[END_REF] using the concept of crusades. Both these proofs are constructive. Indeed, they transform any strategy into a monotone one without increasing the number of searchers.

In [START_REF] Seymour | Graph Searching and a Min-Max Theorem for Tree-Width[END_REF], Seymour and Thomas introduce the visible graph searching. In this variant [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF][START_REF] Seymour | Graph Searching and a Min-Max Theorem for Tree-Width[END_REF], the searchers are aware of the position of the fugitive. Hence, they can adapt their strategy according to its position. The visible search number of a graph G, denoted by vs(G), is the smallest integer k such that k searchers are sufficient to catch any visible fugitive in G. Seymour and Thomas [START_REF] Seymour | Graph Searching and a Min-Max Theorem for Tree-Width[END_REF] proved that visible graph searching is monotone. However, Seymour and Thomas' proof is not constructive. They show that, if no monotone strategies using k searchers exist for a graph G, then there exists an escape strategy for the fugitive which actually is a general escape strategy, and thus, no non-monotone strategies using at most k searchers allow to catch any visible fugitive in G.

Monotonicity plays a crucial role in graph searching. First, a monotone strategy conludes in a polynomial number of steps and thus, gives a certificate of polynomial size for the decision problem corresponding to the graph searching problem. Since the decision problems corresponding to the visible and invisible graph searching problems are known to be NP-hard [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF][START_REF] Megiddo | The complexity of searching a graph[END_REF], they are NPcomplete. Second, it appears algorithmically difficult to design strategies that are not monotone. Last but not least, monotone strategies for catching an invisible (resp., visible) fugitive in a graph G correspond exactly to path-decompositions (resp., tree-decompositions) [START_REF] Robertson | Graph Minors. II. Algorithmic aspects of tree-width[END_REF] of G.

Indeed, the importance of visible graph searching and invisible graph searching comes from their close relationship with crucial notions of graph theory: treewidth and pathwidth [START_REF] Robertson | Graph Minors. II. Algorithmic aspects of tree-width[END_REF]. Roughly speaking, the treewidth tw(G) (resp., the pathwidth pw(G)) of a graph G measures how close this graph is from a tree (resp., a path). The correspondence between search numbers and width parameters provides different interpretations of these parameters, and thus, different ways of handling them. More precisely,

s(G) = pw(G) + 1
(see [START_REF] Ellis | The Vertex Separation and Search Number of a Graph[END_REF][START_REF] Kirousis | Searching and pebbling[END_REF])

vs(G) = tw(G) + 1 (see [START_REF] Dendris | Fugitive-search games on graphs and related parameters[END_REF][START_REF] Seymour | Graph Searching and a Min-Max Theorem for Tree-Width[END_REF])

In [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF], Fomin et al. provide a unique approach to the pathwidth and the treewidth of a graph. For any graph G and any q ≥ 0, they define the notions of q-branched tree decomposition and q-branched treewidth, denoted by tw q (G). Roughly speaking, a q-branched tree decomposition of a graph is a parametrized tree decomposition such that the number of branching nodes of the tree is limited. In particular, path-decompositions are exactly 0-branched tree decompositions, and tree-decompositions are exactly ∞-branched tree decompositions.

Fomin et al. also provide an interpretation of q-branched tree decompositions in terms of graph searching. More precisely, they provide a unique approach to both visible and invisible search problems, called non-deterministic graph searching. In this variant, the fugitive is invisible. However, the searchers can query an oracle that knows the position of the fugitive. Given the set S ⊆ V (G) of clear vertices, a query returns a connected component C of G \ S, and all vertices in G \ C are cleared. The choice of C is nondeterministic. Intuitively, the oracle gives the position of the fugitive to the searchers. More formally, the searchers can perform one of the following three basic operations called search steps.

1. place a searcher at a vertex of the graph; 2. remove a searcher from a vertex of the graph; 3. perform a query to the oracle.

The number of query steps that the searchers can performed is however limited. For q ≥ 0, the monotone q-limited search number ms q (G) of a graph G is the smallest number of searchers required to catch any fugitive in G in a monotone way performing at most q queries. The main result of Fomin et al. [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] is the following generalization of Equations 1 and 2 :

F or any graph G and any q ≥ 0, tw q (G) + 1 = ms q (G).

(3)

Moreover, Fomin et al. [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] prove the NP-completness of the problem of computing ms q (G), for any q ≥ 0. Using the correspondence between monotone q-limited graph searching and q-branched treedecomposition, they also design an exact exponential algorithm that computes tw q (G) and the corresponding decomposition, for any graph G and any q ≥ 0. However, Fomin et al. only consider monotone non-deterministic search strategies. They left open the problem whether recontamination helps for q-limited graph searching, for any q ≥ 0. This paper answers this question.

Our Results

Let G be a graph and q ≥ 0. Let s q (G) denotes the smallest number of searchers required to catch any fugitive in G performing at most q queries. We prove that, for any graph G and any q ≥ 0, recontamination does not help to catch a fugitive in G performing at most q queries. In other words, we prove that for any graph G and any q ≥ 0, there exists a monotone search strategy of G using at most s q (G) searchers, i.e. s q (G) = ms q (G). In particular, this implies that the decision problem related to non-deterministic graph searching is in NP. This also implies that the exponential exact algorithm designed in [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] actually computes s q (G) for any graph G and any q ≥ 0. More interestingly, our result unifies the proof of the monotonicity of invisible graph searching [START_REF] Bienstock | Monotonicity in graph searching[END_REF] and the proof of the monotonicity of visible graph searching [START_REF] Seymour | Graph Searching and a Min-Max Theorem for Tree-Width[END_REF]. The original proof of the monotonicity of visible graph searching is not constructive, while our proof is constructive and turns any general strategy into a monotone one.

Related Works

The monotonicity property of several graph searching variants has been studied before. In [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF], Barrière et al. have defined the connected graph searching. A search strategy is connected if, at any step of the strategy, the subgraph induced by the clear vertices is connected. Barrière et al. [START_REF] Barrière | Capture of an intruder by mobile agents[END_REF] proved that connected graph searching is monotone as long as the input graph is restricted to be a tree. However, this does not remain true in case of arbitrary graphs. Yang et al. [START_REF] Yang | Sweeping Graphs with Large Clique Number[END_REF] proved that there exist graphs for which "recontamination does help" to catch an invisible fugitive in a connected way. In [START_REF] Fraigniaud | Monotony Properties of Connected Visible Graph Searching[END_REF], Fraigniaud and Nisse proved that recontamination does help as well to catch a visible fugitive in a connected way.

In [START_REF] Johnson | Directed Tree-Width[END_REF], Johnson et al. introduced directed graph searching. In this variant of the game, a visible fugitive is moving in a digraph. However, it is only permitted to move to vertices where there exists a directed searcher-free path from its intended destination back to its current position. The authors exhibit a graph for which recontamination does help. Obdrzálek [START_REF] Obdrzálek | DAG-width: connectivity measure for directed graphs[END_REF] and Berwanger et al. [START_REF] Berwanger | Dag-width and Parity Games[END_REF] independamently defined a new visible graph searching game in a digraph by relaxing the latter constraint. The question of the monotonicity of this latter variant is however left open. In [START_REF] Barát | Directed Path-width and Monotonicity in Digraph Searching[END_REF], Barát studies the monotonicity property of a search strategy for catching invisible fugitive moving in a digraph. He proves that mixed-graph searching is monotone in directed graph.

Formal Definitions

In this paper, G = (V, E) will denote a connected graph with vertex-set V and edge-set E. For A ⊆ E, we denote by V [A] the set of vertices incident to at least one edge in A. The border of two disjoint edge sets A and B is the set δ(A, B) = V [A] ∩ V [B] of the vertices incident both to an edge in A and to an edge in B. We extend this definition to any family of pair-wise disjoint edge sets {X 1 , . . . , X p } by setting

δ(X 1 , • • • , X n) = 1≤i<j≤n δ(X i , X j)
The border δ(X) of X ⊆ E denotes the set δ(X, E \ X).

Non-deterministic Graph Searching

Now, we formally define the notion of non-deterministic search strategy. Intuitively, given a graph G, a non-deterministic search strategy (or simply a non-deterministic strategy) for G is a sequence of pairs, such that each pair consists of a subset of V , the positions of searchers, and a subset of E, the clear part of G. More precisely, a non-deterministic strategy is a sequence of ordered pairs

(Z i , A i) i∈[0,l] such that • for any 0 ≤ i ≤ l, Z i ⊆ V and A i ⊆ E; • Z 0 = ∅ and A 0 = ∅; • for any 0 ≤ i < l one of the following holds -(placing searchers) there is X i+1 ⊆ V , such that Z i+1 = Z i ∪ X i+1 and A i+1 = A i ∪ B i+1
with B i+1 the set of edges with both ends in Z i+1 , or -(removing searchers) there is X i+1 ⊆ V , such that Z i+1 = Z i \ X i+1 and A i+1 is obtained from A i by recursively removing the edges {x, y} ∈ A i with y ∈ Z i+1 and such that there is z ∈ V with {y, z} ∈ A i+1 , or -(performing a query) Z i+1 = Z i and A i+1 is the set of edges not incident with a vertex of C, one of the connected component of G \ Z i not incident to a vertex of A i . The choice of C is non-deterministic.

For any 0 ≤ i ≤ l, (Z i , A i) is the configuration reached by the strategy at the i th step. A strategy (Z i , A i) i∈[0,l] uses at most k ≥ 1 searchers if, for any 0 ≤ i ≤ l, |Z i | ≤ k. A nondeterministic search program is a non-deterministic program that takes as input a graph G and an integer k ≥ 1, and returns a non-deterministic strategy for G using at most k searchers. A nondeterministic search program wins if for every possible fugitive moves, at least one of the strategies that the program computes catches the fugitive. That is, for any non-deterministic choice of the component C during the "performing a query" steps, the computed strategy insures that A l = E. A non-deterministic search program is monotone if the strategies that it computes are monotone. The number of searchers required by a non-deterministic strategy is the maximum number of searchers required by the strategies that it computes.

A q-limited non-deterministic search program (or simply, a q-program) is a non-deterministic search program that computes strategies using at most q query steps. The q-limited search number (or simply the q-search number) of a graph G, denoted by s q (G), is the smallest number of searchers required by a q-program to win against any fugitive in G. Similarily, we define the monotone qlimited search number of a graph G, denoted by ms q (G), as the smallest number of searchers required by a monotone q-program to win against any fugitive in G.

If q = 0, no non-deterministic steps are allowed, and the previous definition is similar to the usual definition of an invisible search strategy [START_REF] Kirousis | Searching and pebbling[END_REF]. Note that, in this case, the deterministic strategy (Z i , A i) i∈[0,l] wins, if and only if, there is 0 < i ≤ l such that, for any j ≥ i, A j = E.

Branched Treewidth

Fomin et al. [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] defined a parametrized version of the tree-decomposition of a graph. Their main result is the interpretation of this decomposition in terms of graph searching.

A tree decomposition [START_REF] Robertson | Graph Minors. II. Algorithmic aspects of tree-width[END_REF] of graph G is a pair (T, X) where T is a tree of node set I, and X = {X i , i ∈ I} is a collection of subsets of V (G) satisfying the following three conditions: i. V (G) = ∪ i∈I X i ; ii. for any edge e of G, there is a set X i ∈ X containing both end-points of e; iii. for any i 1 , i 2 , i 3 ∈ I with i 2 is on the path from i

1 to i 3 in T , X i1 ∩ X i3 ⊆ X i2 .
The width w(T, X) of a tree decomposition is max i∈I |X i | -1 and the treewidth of a graph is the minimum width over all its tree-decompositions.

A rooted tree decomposition of a graph G, denoted by (T, X , r), is a tree decomposition (T, X) of G such that T is a rooted tree and r is its root. A branching node of a rooted tree decomposition is a node with at least two children. For any q ≥ 0, a q-branched tree decomposition [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] (or simply, a q-tree decomposition) of a graph G is a rooted tree decomposition (T, X , r) of G such that every path in T from the root r to a leaf contains at most q branching nodes. Thus a path decomposition rooted at one of its extremities is a 0-branched tree decomposition, and a usual tree decomposition is a ∞-branched tree decomposition. For any graph G, the q-branched treewidth (or simply, the q-treewidth) of G, denoted by tw q (G), is the minimum width of any q-tree decomposition of G. Theorem 1. [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] Let G be a graph, q ≥ 0 and k ≥ 1. There is a winning monotone q-program using at most k searchers in G if and only if tw q (G) < k.

Search-tree

To prove the monotonicity of non-deterministic graph searching, we define an auxiliary structure called search-tree which is inspired by the tree-labelling defined by Robertson and Seymour [START_REF] Robertson | Graph Minors. X. Obstructions to Tree-Decomposition[END_REF].

A search-tree of a graph G is a triple (T, α, β) with T a tree, α a mapping from the incidence (between vertices and edges) of T into the subsets of E and β a mapping from the vertices of T into the subsets of E such that:

• for any edge e = {u, v} of T , α(u, e) ∩ α(v, e) = ∅; • for no leaf v of T incident to an edge e of T is such that α(v, e) = E;

• for any node v of T incident to e 1 , . . . , e p , β(v) ∪ µ(v) is a (possibly degenerated) partition of E with µ(v) = {α(v, e 1 ,), . . . , α(v, e p)}.
We extend the function β to any sub-tree T ′ of T by setting

β(T ′) = ∪ v∈T ′ β(v). The width of a search-tree is defined as w(T, α, β) = max v∈V (T) {|χ v |} where χ v = V β(v) ∪ δ µ(v) and |χ v |
denotes the weight of the node v ∈ V (T). As for tree decompositions, we consider rooted searchtrees, denoted by (T, α, β, r), that are search-trees over rooted trees. A branching node of a rooted search-tree is a node with at least two children. For any q ≥ 0, a q-branched search-tree is a rooted search-tree (T, α, β, r) of G such that every path in T from the root r to a leaf contains at most q branching nodes. An edge e = {u, v} of a search-tree is monotone if α(u, e) = E \ α(v, e), and a search-tree is monotone if all its edges are monotone. Edges that are not monotone are said dirty.

Monotonicity of non-deterministic graph searching

The remaining part of the paper is devoted to prove the monotonicity of non-deterministic graph searching. For this purpose, we prove that, from any winning q-program using at most k searchers in a graph G, we can build a q-branched search-tree of width at most k for G (Lemma 1). Then, by performing local optimisations, we transform any q-search-tree into a monotone one (Lemma 3) without increasing its width. To conclude, any monotone q-branched search-tree, of width k, of a graph G can be transform into a q-branched tree-decomposition, of width at most k -1, of G (Lemma 5). Then, the proof of the monotonicity property of non-deterministic graph searching follows from Theorem 1. More formally, we prove the following theorem:

Theorem 2. Let G be a connected graph, q ≥ 0 and k ≥ 2. The following are equivalent:

i. There is a winning q-program for G using at most k searchers; ii. There is a q-search-tree of width at most k for G;

iii. There is a monotone q-search-tree of width at most k for G; iv. There is a q-tree decomposition of width at most k -1 for G; v. There is a winning monotone q-program for G using at most k searchers.

Proof. We prove that (i) ⇒ (ii) (Lemma 1), (ii) ⇒ (iii) (Lemma 3), (iii) ⇒ (iv) (Lemma 5). Proposition (iv) ⇒ (v) follows from Theorem 1 and (v) ⇒ (i) is obvious. ⊓ ⊔

3.1 From strategies to search-trees Lemma 1. Let G be a connected graph, q ≥ 0 and k ≥ 2, (i) ⇒ (ii).

i. There is a winning q-program using at most k searchers for G;

ii. There is a q-search-tree of width at most k for G.

Proof. In this proof, we consider extended search programs whose the starting configuration is not necessarily the (∅, ∅) configuration. That is, we consider search programs whose strategies start from a configuration (Z 0 , A 0) that satisfies δ(A 0) ⊆ Z 0 . The length of a search program is the maximum number of steps of the strategies it computes. Let us define the partial width of a rooted search tree as the maximum weight of its nodes, the maximum being taken over all the nodes of the search-tree but its root.

We prove the following claim by induction on the length of the search program.

Claim. For every winning q-program using at most k searchers with (Z 0 , A 0) as starting configuration, there is a rooted q-search-tree (T, α, β, r) of partial width at most k, and such that, r is incident to a unique edge e ∈ E(T), and α(r, e) = E \ A 0 .

Let q ≥ 0 and let S be a q-program on G with k searchers and with (Z 0 , A 0) as starting configuration.

• Suppose that S has length 1.

The only search step has to be a "placing searchers" step. Thus, S conputes only the following 0-strategy:

(Z 0 , A 0), (Z 1 , A 1) in which Z 1 = Z 0 ∪ X 1 and A 1 = A 0 ∪ B 1 = E.
Define the tree T with only one edge {r, v},

β(v) = α(r, {r, v}) = E \ A 0 and β(r) = α(v, {r, v}) = A 0 . Since V β(v) ∪ δ(µ v) = V [E \ A 0] which is a subset of Z 1 , (T, α, β, r)
is a rooted 0-search tree of partial width at most k. • Suppose that S has length l > 1. Let us assume that for any winning q-program S ′ using at most k searchers with (Z, A) as starting configuration (with δ(A) ⊆ Z) and such that S ′ has length l ′ < l, there is a rooted q-search-tree (T, α, β, r) of partial width at most k, and such that, r is incident to a unique edge e ∈ E(T), and α(r, e) = E \ A. Consider S ′ obtained by removing the first configuration of the sequences of S. Note that, S ′ is strictly shorter than S.

We consider three cases according to the type of the first step of S.

a. if the first step of S is a "removing searchers" step, S ′ is a q-program with (Z 1 , A 1) as a starting configuration, Z 1 ⊆ Z 0 and A 1 ⊆ A 0 . According to the induction hypothesis, there is a rooted q-search-tree (T ′ , α ′ , β ′ , r ′) of partial width at most k and such that there is an edge e ′ incident to r ′ with α ′ (r ′ , e ′) = E \ A 1 .

Define a new q-search-tree (T, α, β, r) from (T ′ , α ′ , β ′ , r ′) as follows:

-add a new leaf r linked to r ′ in T ′ , and set r as the new root, -put α r, {r, r ′ } = E \ A 0 , α(r ′ , {r, r ′ }) = A 1 and α = α ′ otherwise; -put β(r) = A 0 , β(r ′) = ∅ and β = β ′ otherwise. Since A 1 ⊆ A 0 , α(r, {r, r ′ }) ∩ α(r ′ , {r, r ′ }) = ∅ and (T, α, r) is a q-search-tree. Moreover, V β(r ′) ∪ δ µ(r ′) ⊆ Z 1 and (T, α, β, r) satisfies the required conditions. b. if the first step of S is a "placing searchers" step, S ′ is a q-program with (Z 1 , A 1) as a starting configuration, Z 1 = Z 0 ∪ X 1 and A 1 = A 0 ∪ B 1 . According to the induction hypothesis, there is a rooted q-search-tree (T ′ , α ′ , β ′ , r ′) of partial width at most k and such that there is an edge e ′ incident to r ′ with α ′ (r ′ , e ′) = E \ A 1 .

Define a new q-search-tree (T, α, β, r) from (T ′ , α ′ , β ′ , r ′) as follows:

-add a new leaf r linked to r ′ in T ′ , and set r as the new root, -put α r, {r, r ′ } = E \ A 0 , α(r ′ , {r, r ′ }) = A 0 and α = α ′ otherwise; -set β(r) = A 0 , β(r ′) = B 1 and β = β ′ otherwise. By construction, (T, α, β, r) is a q-search-tree that satisfies the required conditions.

⋆ The first author received additional supports from the french ANR-project "Graph decompositions and algorithms (GRAAL)"The second author received additional supports from the project "Alpage" of the ACI Masses de Données, from the project "Fragile" of the ACI Sécurité Informatique, and from the project "Grand Large" of INRIA.

c. if the first step of S is a "performing a query" step, there are p ≥ 1 distinct (q -1)programs S 1 , . . . , S p for G such that: {A 0 , E \ Y 1 , . . . , E \ Y p } is a partition of E, and, for any 1 ≤ i ≤ p, S i is a winning (q -1)-program for G, starting from the configuration (Z i , Y i) and using at most k searchers. For any 1 ≤ i ≤ p, since the (q -1)-programs S i are shorter than S, there exists a rooted (q -1)-search-tree (T i , α i , β i , r i) of partial width at most k, and such that there is an edge e i incident to r i with α i (r i , e i) = E \ Y i .

Define a new q-search-tree (T, α, β, r) from these search-trees as follow: -identify the roots r i with a node r ′ , add a new leaf r linked to r ′ in T ′ , and set r as the new root,. -put α(r, {r, r ′ }) = E \ A 0 , α(r ′ , {r, r ′ }) = A 0 and α(u, e) = α i (u, e) for every edge e of T i ; -put β(r) = A 0 , β(r ′) = ∅, and, for any 1 ≤ i ≤ p and any node u of T i , β(u) = β i (u). The rooted search-tree (T, α, β, r) has one more branching node than any search-tree (T i , α i , β i , r i) and, since each of them has at most q -1 branching nodes, (T, α, β, r) satisfies the required conditions. Therefore, for any winning q-program S using at most k searchers with (Z 0 , A 0) as starting configuration (with δ(A 0) ⊆ Z 0) and such that S has length l, there is a rooted q-search-tree (T, α, β, r) of partial width at most k, and such that, r is incident to a unique edge e ∈ E(T), and α(r, e) = E \ A 0 . This concludes the induction and the proof of the claim.

To conclude the proof of the lemma, is it sufficient to note that, if A 0 = ∅, the weight of the root of the search-tree equals 0. Thus, its partial width equals its width. ⊓ ⊔

From search-trees to monotone search-trees

To prove the second step of the proof, we need the following technical lemma.

Lemma 2. Let G = (V, E) be a connected graph, µ = {E 1 , . . . , E p } be a (possibly degenerated) partition of E and

To complete the proof, it is sufficient to show that

To prove this latter assertion, first note that any vertex

ii. There is a q-search-tree of width k on G;

iii. There is a monotone q-search-tree of width k on G.

Proof. Let T = (T, α, β, r) be a rooted q-search-tree of G of width k.

For every edge e of T , denote by dist(e) the distance of e to the root r. The weight wg(T) of T is v∈V (T) δ µ α (v) and the badness bn(T) of T is n -dist(e) the sum being taken over the dirty edges of T . Let T 1 and T 2 be two rooted q-search-trees. T 1 is tighter than T 2 if either wg(T 1) < wg(T 2), or wg(T 1) = wg(T 2) and bn(T 1) < bn(T 2).

The remaining part of this lemma is devoted to prove that the tightest search-tree among any q-search-tree of width k of G is monotone. For this purpose, we make local optimisations that are compatible with the above relation. a. Suppose that {u, v} is a dirty edge of T such that δ α(u, {u, v}) < δ α(v, {u, v})

• Let us assume that v is a leaf. If α(u, {u, v}) = ∅, just remove the leaf (by setting u as the new root, if r = v). Otherwise, set α(v, {u, v}) = E \ α(u, {u, v}) and β(v) = α(u, {u, v}).

The resulting search-tree is tighter than T . • Now, let us assume that v is an internal node of T . Set u = u 1 , let u 2 , . . . , u p be the other neighbours of v, set α(v, {v,

. . , E p } and F = α(u, {u, v}) so that the condition on {u, v} can be rephrased as δ(E 1) > δ(F) . Let us modify T by setting

Thus, T ′ has strictly smaller weight than T . Therefore, T ′ is tighter than T . b. Suppose that {u, v} is a dirty edge of T , and δ α(u, {u, v}) = δ α(v, {u, v}) . We can suppose without loss of generality that u is closer to the root r than v.

• Let us assume that v is a leaf. We set α(v, {u, v}) = E\α(u, {u, v}) and β(v) = α(u, {u, v}).

The resulting search-tree T ′ is such that wg(T ′) ≤ wg(T), and has smaller badness. Thus, T ′ is tighter than T . • Now, let us assume that v is an internal node of T . We consider exactly the same new q-search-tree T ′ as in the second item of case a. The only difference is that using lemma 2, we only get δ(η ′ v) ≤ δ(η v) and thus wg(T ′) ≤ wg(T). However, in T ′ , the edge {u, v} is monotone. Moreover, the only edges that were monotone in T , and that could have become dirty are the edges {v, u i } for 2 ≤ i ≤ p. Since p ≤ n+1 and dist({v,

The q-search-tree T ′ is tighter than T .

If a q-search-tree of width k has a dirty edge, we can algorithmically turn it into a new qsearch-tree of width at most k which is tighter. Since there are no infinitely decreasing sequences for this relation, there exists a monotone q-search-tree of width at most k. ⊓ ⊔

From monotone search-trees to tree decompositions

The two following lemmas conclude the third step of the proof of Theorem 2.

Lemma 4. Let G be a connected graph and T = (T, α, β, r) be a monotone search-tree on G. For any edge {u, v} of T , α(u, {u, v}) = β(T v) with T v the connected component of T \ {u, v} that contains v.

Proof. We prove this by induction of |V (T v)|.

• otherwise, let w 1 , . . . , w p be the neighbours of v in T v and for 1 ≤ i ≤ p, let T wi be the connected components of T v \ {v, w i } that contains w i . By induction hypothesis, α(v, {v,

Since T is a search-tree, the sets β(v), α(v, {u, v}) and β(T w1), . . . , β(T wp) induce a partition of

which finishes the proof. ⊓ ⊔ Lemma 5. Let G be a connected graph, q ≥ 0 and k ≥ 2, (iii) ⇒ (iv).

iii. There is a monotone q-search-tree of width k on G; iv. There is a q-tree decomposition of width at most k -1 on G.

Proof. Let T = (T, α, β, r) be a q-search-tree of width k.

We claim that Θ = T, X , r with X = {χ v | v node of T } is a tree decomposition of width at most k -1.

Since G is connected and |E| > 0, condition ii. of a tree decomposition implies condition i.

Let {x, y} ∈ E be an edge of G. Since T is monotone, for every edge {u, v} of T , {x, y} belongs to either α(u, {u, v}) or α(v, {u, v}). Suppose {x, y} ∈ α(u, {u, v}), by lemma 4, {x, y} ∈ β(T v) with T v the connected component of T \ {u, v} that contains v. The edge {x, y} thus belongs to at least one β(w) for some node w of T v . By definition of χ w , {x, y} ⊆ χ w .

Let u, v, w be three nodes of T with v on the path {u, u ′ , . . . , v, . . . , w ′ , w} from u to w. Let T u (resp., T w) be the connected component of T \ {u, u ′ } (resp., T \ {w, w ′ }) that contains u (resp., w). Let T v u (resp., T v w) be the connected component of T \ v that contains u (resp., w). Let u 1 = u ′ , . . . , u p be the neighbours of u in T and x ∈ χ u . Either there is an edge of G incident to x in β(u), or there exist 1 < i ≤ p such that there is an edge incident to x in α(u, {u, u i }). By lemma 4, there is an edge incident to x in β(T ui) ⊆ β(T u).

Suppose that x ∈ χ u ∩ χ w . There exist an edge incident to x in β(T v u) ⊇ β(T u) and an edge incident to x in β(T v w) ⊇ β(T w). By lemma 4, we get that x ∈ δ(µ v). Thus, x ∈ χ v . This proves that Θ is a tree-decomposition. Moreover, by construction, w(Θ) = wg(T) -1. Since both T and Θ use the same underlying three, Θ is a q-tree decomposition of width at most k -1.

⊓ ⊔

Conclusion

We prove the monotonicity of non-deterministic graph searching. As a consequence, the corresponding decision problem belongs to NP. Moreover, the exact algorithm designed in [START_REF] Fomin | Nondeterministic Graph Searching: From Pathwidth to Treewidth[END_REF] does compute optimal non-deterministic search strategy. However, the problem to know whether computing a monotone optimal non-deterministic search strategy in trees can be done in polynomial time is still open. Another interesting open problem deals with graph searching in digraph. In [START_REF] Obdrzálek | DAG-width: connectivity measure for directed graphs[END_REF], Obdrzálek left open the question of knowing whether recontamination does help to catch a visible fugitive moving in a digraph.