
HAL Id: hal-00351445
https://hal.science/hal-00351445v1

Preprint submitted on 9 Jan 2009 (v1), last revised 11 Apr 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic behaviour of reversible chemical
reaction-diffusion equations

Ivan Gentil, Boguslaw Zegarlinski

To cite this version:
Ivan Gentil, Boguslaw Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion
equations. 2009. �hal-00351445v1�

https://hal.science/hal-00351445v1
https://hal.archives-ouvertes.fr


Asymptotic behaviour of a general reversible

chemical reaction-diffusion equation
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Abstract

In this work, we prove the existence and the exponential decay to equilibrium of a
general reversible chemical reaction-diffusion equation with same but general diffusion.
Moreover, we prove the optimal asymptotic behaviour in the ”two-by-two” case.

Key words: Reaction-diffusion equation, Spectral gap inequality, Poincaré inequality,
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1 Introduction

In this paper we study the asymptotic behaviour of the following reversible chemical
reaction-diffusion

q
∑

i=1

αiAi ⇋

q
∑

i=1

βiAi, (1)

where q is a positive integer and αi, βi ∈ N, with N denoting the set of nonnegative
integers. We assume that for any 1 ≤ i ≤ q, αi − βi 6= 0 which correspond to the case
of a reaction without catalyzer.

First we will introduce the differential equations that describe the evolution of the
species Ai for 1 ≤ i ≤ q in the diagram (1). For some 0 ≤ i ≤ q we will denote by ai the
concentration of the specie Ai. We assume existence of two non-negative real-valued
rate functions

KPq
i=1

αiAi→
Pq

i=1
βiAi

, KPq
i=1

βiAi→
Pq

i=1
αiAi

,

which describe the evolution of the concentration ai in two reactions. In the first one
we lose αi molecules of the specie Ai and in the second there is a gain of βi molecule of
the same specie Ai. We get the opposite for the reverse reaction. Thus we can write

d

dt
ai = (βi − αi)KPq

i=1
αiAi→

Pq
i=1

βiAi
(a) − (βi − αi)KPq

i=1
βiAi→

Pq
i=1

αiAi
(a), (2)

where a = (a1, · · · , aq). We assume the kinetics to be of mass action type, which means
that

KPq
i=1

αiAi→
Pq

i=1
βiAi

(ai) = l

q
∏

j=1

a
αj

j ,



where l is a positive constant called the rate constant of the reaction. The product
form represents the probability which is assumed to be independent, that αi molecules
Ai met the other αj molecules Aj for the reaction. Let us denote by k > 0 the rate
constant for the reverse reaction. Of course l and k could be very different.

We will presume that the pot of the reaction is not stirred. Then concentrations of
species depend on the position in the pot and we have to add a diffusion term which
depends also on the species. We obtain then the problem of the following general form

∂tai = Liai + (βi − αi)



l

q
∏

j=1

a
αj

j − k

q
∏

j=1

a
βj

j



,

where for all i, Li is a diffusion operator.

Throughout the ontire paper we will assume that all species diffuse with the same
speed, i.e. for all i ∈ {1, · · · , q}, Li = L, where L is a diffusion generator. This is a
restrictive case but it we will treat, using semigroup tools, the case of a general diffusion
in the domain.

In more detail we let Ω ⊂ R
n (n > 1) to be an open set and assume that the

boundary ∂Ω of Ω, is C∞ - smooth. Let a diffusion operator L be given by

Lf(x) =
n
∑

i,j=1

bi,j(x)∂2
i,jf(x) +

n
∑

i=1

bi(x)∂if(x),

for any smooth functions f , with bi,j and bi in C∞(Ω) and the matrix (bi,j(x))i,j sym-
metric and positive for all x ∈ Ω. The choice of coefficients bi,j and bi may strongly
depend on the domain Ω.

If we denote by ai(t, x) (t > 0, x ∈ R
n) the concentrations of the species Ai at time

t in the position x, then the following reaction-diffusion system is satisfied:


























∀t > 0, ∀x ∈ Ω, ∂tai(t, x) = Lai + (βi − αi)



l

q
∏

j=1

a
αj

j − k

q
∏

j=1

a
βj

j



,

∀x ∈ Ω, ai(0, x) = a0
i (x)

∀x ∈ ∂Ω, ∀t > 0,
∂ai

∂ν
(t, x) = 0.

(3)

where k, l > 0 are rate constants of the reverse reaction. Initial conditions satisfy for
all 1 ≤ i ≤ q, a0

i > 0 and
∫

a0
i dµ > 0.

The last equation in (3) represents the Neumann boundary conditions which is
natural in the context of chemical reaction-diffusion. Let us denote by D(Ω) the set of
smooth functions f on Ω satisfying the Neumann boundary conditions, such that for
all x ∈ ∂Ω, ∂f

∂ν (t, x) = 0.

In this paper we assume that there exists a probability measure µ such that L is
invariant with respect to µ, i.e. for all functions f ∈ D(Ω),

∫

Lf dµ = 0.

Let (Pt)t> be the semi-group associated to L which is defined for all functions f ∈ D(Ω),











∀t > 0, ∀x ∈ Ω, ∂
∂tPt(f)(x) = LPt(f)(x)

∀x ∈ Ω, P0(f)(x) = f(x)

∀x ∈ ∂Ω, ∀t > 0,
∂Pt(f)

∂ν
(x) = 0.
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We will assume furthermore that the operator L has a spectral gap CSG in D(Ω) between
zero eigenvalue and the rest of its spectrum. Then for all smooth function f ∈ D(Ω),

Varµ(f) :=

∫
(

f −
∫

fdµ

)2

dµ ≤ −CSG

∫

fLfdµ, (4)

which is equivalent to, for all functions f ∈ D(Ω) and t > 0:

Varµ(Ptf) ≤ e
− 1

CSG
t
Varµ(f) . (5)

See for example chapter 2 of [ABC+00] of a review on semigroups tools.

First we study the problem of a steady state of the differential system (3). Let
vi(t, x) = λiai(t, x) for some constant λi > 0, assuming that ai is solution of (3) then
vi satisfies

∂tvi = Lvi + λi(βi − αi)

(

l

q
∏

i=1

(

vi

λi

)αi

− k

q
∏

i=1

(

vi

λi

)βi

)

.

Let us chose constants λi > 0 such that k
∏q

i=1(λi)
αi = l

∏q
i=1(λi)

βi , or equivalently
∏q

i=1(λi)
αi−βi = k/l. We then obtain that vi is solution of











∀t > 0, ∀x ∈ Ω, ∂tvi(t, x) = Lvi(t, x) + ki(βi − αi)G(v1(t, x), · · · , vq(t, x)),

∀x ∈ Ω, vi(0, x) = v0
i (x)

∀x ∈ ∂Ω, ∀t > 0,
∂vi

∂ν
(t, x) = 0

(6)

where G(v1, · · · , vq) =
∏q

j=1 v
αj

j −∏q
j=1 v

βj

j and

ki =
λil

∏q
i=1(λi)αi

. (7)

Let us define the set S =

{

(zi)1≤i≤q, s.t.

q
∑

i=1

ziki(βi − αi) = 0

}

, where ki is defined

in (7). Then for all (zi)1≤i≤q ∈ S one gets

∂t

q
∑

i=1

zivi = L

q
∑

i=1

zivi,

which gives
q
∑

i=1

zivi(t, x) = Pt

(

q
∑

i=1

ziv
0
i

)

(x).

In particular, due to the fact that µ is an invariant measure,
∑q

i=1 zi

∫

vi(t, x)dµ(x) =
∑q

i=1 zi

∫

v0
i dµ.

The goal of this article is to understand the asymptotic behaviour of the reaction-
diffusion problem in the spirit of [DF06, DF08] but for a general diffusion.

We will first define a Steady State of equation (6).

Definition 1.1 A steady state of equation (6) with non-negative initial conditions
(

v0
i

)

1≤i≤q
is a vector (si)1≤i≤q ∈ (R+)

q
such that for all (zi)1≤i≤q ∈ S:

q
∑

i=1

zisi =

q
∑

i=1

zi

∫

v0
i dµ and

q
∏

i=1

sαi

i =

q
∏

i=1

sβi

i .

3



Lemma 1.2 Let (vi)1≤i≤q satisfies equation (6) with initial conditions satisfying v0
i > 0

and
∫

v0
i dµ > 0. Then there exists a unique steady state (si)1≤i≤q of (6) such that for

all i ∈ {1, · · · , q}, si > 0.

Proof

⊳ The steady state (si)1≤i≤n has to satisfy:

∀(zi)1≤i≤q ∈ S,

q
∑

i=1

zisi =

q
∑

i=1

zi

∫

v0
i dµ := Mz.

Let A = {(si)1≤i≤q,
∑q

i=1 zisi = Mz}. Due to the fact that S is a subspace of R
n of

dimension q − 1 we get that A is a manifold of dimension 1. Then one gets

A =

{

(∫

v0
i dµ + tki(βi − αi)

)

1≤i≤q

, t ∈ R

}

.

We have to find t ∈ R such that for all 1 ≤ i ≤ q,
∫

v0
i dµ + tki(βi − αi) > 0 and

q
∏

i=1

(∫

v0
i dµ + tki(βi − αi)

)βi−αi

= 1.

A simple computation gives that the function

ϕ(t) =

q
∏

i=1

(
∫

v0
i dµ + tki(βi − αi)

)βi−αi

is defined on the set [a, b) with














a = inf

{

t, s.t. ∀i,

∫

v0
i dµ + tki(βi − αi) > 0

}

b = sup

{

t, s.t. ∀i,

∫

v0
i dµ + tki(βi − αi) > 0

}

.

For all t ∈ [a, b) one gets

ϕ′(t)

ϕ(t)
=

q
∑

i=1

ki(βi − αi)
2

∫

v0
i dµ + tki(βi − αi)

,

then ϕ is increasing and satisfies ϕ(a) = 0 and ϕ(b) = +∞. Thus there exists a unique
t ∈ (a, b) such that ϕ(t) = 1, which ends the proof. ⊲

The goal of this paper is to prove, using the Poincaré or spectral gap inequality,
that the solution of reaction-diffusion equation (6) converges to the unique steady state
associated to the initial condition.

Due to the fact that all species are moving according to the same diffusion, one can
reduce the problem as follow: for all 1 ≤ i, j ≤ q, one gets

∂t

(

vi

ki(βi − αi)
− vj

kj(βj − αj)

)

= L

(

vi

ki(βi − αi)
− vj

kj(βj − αj)

)

and thus

vi =
ki(βi − αi)

kj(βj − αj)
vj + Pt

(

v0
i − ki(βi − αi)

kj(βj − αj)
v0
j

)

:=
ki(βi − αi)

kj(βj − αj)
vj + Ci,j(t, x).

(8)
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Let us fix 1 ≤ i ≤ q. Then the study of (6) is equivalent to the study of the following
PDE with boundary conditions

∂tvi = Lvi + ki(βi − αi)×




q
∏

j=1

(

kj(βj − αj)

ki(βi − αi)
vj + Cj,i(t, x)

)αj

−
q
∏

j=1

(

kj(βj − αj)

ki(βi − αi)
vj + Cj,i(t, x)

)βj





:= Lvi + ki(βi − αi)F (t, x, vi).

(9)

We will consider different cases. The first one is without diffusion that means that
concentration of different species do not depend on x ∈ Ω. We will prove that there
exists a solution in that case and it converges to the steady state with an exponential
and optimal rate of convergence.

Then we study the following “two-by-two” case

A + B ⇋ C + D,

treated in [DF08] by entropy methods. This case is interesting because it gives a tool
to understand the general cases.

We finish in the last section with the general case

q
∑

i=1

αiAi ⇋

q
∑

i=1

βiAi.

We prove that there exists a non-negative solution and, under the assumption that
αiβi = 0, we get that solution converges with an exponential rate to the steady state.

2 Case without diffusion

Assume that concentrations of species do not depend on x ∈ Ω. It is the case when
the pot used for the chemical reaction is stirred constantly so that its contents remain
spatially homogeneous. This case is important because we can solve it explicitly and it
gives tools to study the general case in the later sections.

The chemical reaction, without diffusion is given by the following system, for all
i ∈ {1, · · · , q},

d

dt
vi = ki(βi − αi)





q
∏

j=1

v
αj

j −
q
∏

j=1

v
βj

j



, (10)

where ki is defined in (7), with initial conditions vi(0) > 0 for 1 ≤ i ≤ q. Equivalently,
using the same method as for (9), for some 1 ≤ i ≤ q fixed,

d

dt
vi = ki(βi − αi)





q
∏

j=1

(

kj(βj − αj)

ki(βi − αi)
vi + Cj,i

)αj

−
q
∏

j=1

(

kj(βj − αj)

ki(βi − αi)
vi + Cj,i

)βj





:= ki(βi − αi)F (vi),

where Cj,i = kj(βj − αj)
(

vj(0)
kj(βj−αj)

− vi(0)
ki(βi−αi)

)

.

Theorem 2.1 Let the initial conditions (vj(0))1≤j≤q be positive. Then equation (10)
has a unique solution defined on [0,+∞), which satisfies for all 1 ≤ i ≤ q,

|vi(t) − si| ≤ eK |vi(0) − si| exp (−Ct),

5



where K is a constant depending on initial conditions, the steady state (si)1≤i≤q is
defined in Lemma 1.2 and

C =

q
∏

i=1

si
αi

q
∑

i=1

ki(βi − αi)
2

si
. (11)

Moreover the constant C is the optimal rate of convergence.

Proof

⊳ Let j0 be such that βj0 −αj0 > 0 and for all i s.t. βi −αi > 0, one has
vj0

(0)

kj0
(βj0

−αj0
) ≤

vi(0)
ki(βi−αi)

. If the set {i; βi − αi > 0} is empty one can use the negative part. Assume
for simplicity that j0 = 1. Then the reaction equation becomes

d

dt
v1 = k1(β1 − α1)×

(

q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
v1 + Ci,1

)αi

−
q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
v1 + Ci,1

)βi

)

. (12)

By the definition of j0 one have, Ci,1 > 0 if βi − αi > 0 and Ci,1 ≤ 0 if βi − αi < 0.

Getting a positive solution (vi)1≤i≤q) of (10) is equivalent to getting a solution v1

of (12) which satisfies the following inequality

∀t ∈ [0,+∞), 0 < v1(t) < M,

where M = v1(0)− k1(β1 −α1)max
{

vi(0)
ki(βi−αi)

; βi − αi < 0
}

. By convention, if the set

{i; βi − αi < 0} is empty, then we have max
{

vi(0)
ki(βi−αi)

; βi − αi < 0
}

= −∞.

Let us denote by

F (X) = k1(β1 − α1)×
(

q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
X + Ci,1

)αi

−
q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
X + Ci,1

)βi

)

. (13)

Lemma 1.2 proves that the polynome F has only one solution s1 in the set (0,M). Let
Q be a factor of F , i.e. we have a factorization F (X) = (X − s1)Q(X). Then a simple
computation yields

F ′(s1) = −
q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
s1 + Ci,1

)αi
q
∑

i=1

ki(βi − αi)
2

ki(βi−αi)
k1(β1−α1)s1 + Ci,1

=

−
q
∏

i=1

si
αi

q
∑

i=1

ki(βi − αi)
2

si
:= −C < 0,

which proves that F ′(s1) = Q(s1) < 0 and then Q(X) < 0 for all X ∈ (0,M).

Function F is locally a Lipschitz function, thus by Cauchy-Lipschitz’s Theorem,
there exists a unique maximal solution starting at v1(0) of the equation

∀t ∈ [0, T ),
dv1(t)

dt
= F (v1(t)) = (v1(t) − s1)Q(v1(t)),

for some T > 0.

6



One has Q(X) < 0 for all X ∈ (0,M), it implies that if v1(0) > s1 then v1 is
non-increasing and moreover v1(t) > s1 for all t ∈ [0, T [, if v1(0) < s1 then v1 is non-
decreasing and moreover v1(t) ≤ s1 for all t ∈ [0, T [ and if v1(0) = s1 then v1(t) = s1

for all t ∈ [0, T [. Then one gets that T = +∞ and for all t > 0, v1(t) ∈ (0,M).
Using the identity

1

F (X)
=

1/Q(s1)

X − s1
+

R(X)

Q(X)
,

with R(X) = (Q(s1) − Q(X))/(Q(s1)(x − s1)) we get for all t > 0

|v1(t) − s1| = |v1(0) − s1| exp

(

Q(s1)t +

∫ v1(t)

v1(0)

Q(a) − Q(s1)

(a − s1)Q(a)
da

)

. (14)

This identity proves that v1 goes to s1 and moreover if

K =

∫ s1

v1(0)

Q(a) − Q(s1)

(a − s1)Q(a)
da,

then for all t > 0,
|v1(t) − s1| ≤ eK |v1(0) − s1| exp (−Ct).

Links between vi and v1 gives the last inequalities for any vi. Moreover, equality (14)
proves that the constant C is the optimal rate. ⊲

3 The “two-by-two” case

The goal of this section is to investigate the asymptotic behaviour of a particular chem-
ical reaction

A + B ⇋ C + D.

We will assume that all species are moving according to the same generator and the
speed of the two reactions are the same, for instance equal to 1.

Note that this case was globally treated in dimension 1, but for the general problem,
in [DF08].

Let Ω ⊂ R
n be a domain, not necessary bounded. Let us consider an infinitesimal

generator L, with a domain DL, associated to a semigroup (Pt)t>0 . As in the intro-
duction, assume that there exists an invariant probability measure µ associated to the
semigroup.

Let us denote by a, b, c and d concentrations of A, B, C and D in the domain Ω. In
this case the functions a, b, c and d are solutions of the following system on Ω,















∂ta = La − ab + cd
∂tb = Lb − ab + cd
∂tc = Lc + ab − cd
∂td = Ld + ab − cd

(15)

with non-negative initial conditions in DL, a0, b0, c0 and d0 such that
∫

a0dµ > 0 and
the same for b0, c0 and d0. The boundaries conditions are contained in the domain DL.

If a, b, c, d are solutions, then a + c = Pt(a0 + c0), a + d = Pt(a0 + d0) and a − b =
Pt(a0 − b0) which gives that the function a is solution of the linear equation

∂ta = La − aDt + Ct,

7



where Ct = Pt(a0 + c0)Pt(a0 + d0) and Dt = Pt(a0 + b0 + c0 + d0).

We will assume in this section that there exists a smooth and positive solution of
the problem. Results about existence are given in section 4.

We also obtain the estimation useful for the asymptotic behaviour.

Lemma 3.1 Solution a, b, c and d of (15) satisfy for all t > 0 and x ∈ Ω,















0 ≤ a(t, x) ≤ min {Pt(a0 + c0),Pt(a0 + d0)}
0 ≤ b(t, x) ≤ min {Pt(b0 + c0),Pt(b0 + d0)}
0 ≤ c(t, x) ≤ min {Pt(c0 + a0),Pt(c0 + b0)}
0 ≤ d(t, x) ≤ min {Pt(d0 + a0),Pt(d0 + b0)}

(16)

Theorem 3.2 Assume that the semigroup (Pt)t>0 satisfies a spectral gap inequality (5)
with respect to the invariant probability measure µ. Let a0, b0, c0 and d0 be non-negative
initial conditions satisfying a0, b0, c0, d0 ∈ L4(dµ).

We set Ma+b+c+d =
∫

(a0 + b0 + c0 + d0)dµ, M4 =
(

∫

(a0 + b0 + c0 + d0)
4dµ
)

1

2

and

CSG denotes the constant in the spectral gap inequality (5).

Let sa is the steady state associated to the initial condition a0, if Ma+b+c+d 6= 1
8CSG

,
then for all t > 0,

√

∫

(a − sa)
2dµ ≤

(
√

∫

(a0 − sa)
2dµ +

∣

∣

∣

∣

∣

5M4

Ma+b+c+d − 1
8CSG

∣

∣

∣

∣

∣

)

×

exp

(

−min

{

Ma+b+c+d,
1

8CSG

}

t

)

, (17)

and if Ma+b+c+d = 1
8CSG

then for all t > 0,

√

∫

(a − sa)
2dµ ≤

(
√

∫

(a0 − sa)
2dµ + 5M4 t

)

exp (−Ma+b+c+dt).

The same inequality holds for b, c and d associated to sb, sc and sd.

If the initial conditions satisfy Ma+b+c+d < 1
8CSG

, then the rate of the convergence
is optimal.

Let us start with a general estimate.

Lemma 3.3 Assume that the semigroup (Pt)t>0 satisfies a spectral gap inequality (5)
with respect to the invariant probability measure µ, then for all functions f ∈ L4(µ) and
all t > 0,

∫
(

Ptf −
∫

fdµ

)4

dµ ≤ 4e
− 1

2CSG
t
∫

f4dµ. (18)

Proof

⊳ Set f̃ = f −
∫

fdµ, then using semigroup properties and the Cauchy-Schwartz
inequality applied to (Pt)t>0, one gets

∫
(

Ptf −
∫

fdµ

)4

dµ=

∫

(

Ptf̃
)4

dµ =

∫

(

Pt
2

Pt
2

f̃
)4

dµ ≤
∫
(

Pt
2

(

Pt
2

f̃
)2
)2

dµ.

8



If we set F = Pt
2

(f̃), then one has

∫

(

Ptf̃
)4

dµ ≤ 2

∫ (

Pt
2

(F 2) −
∫

F 2dµ

)2

dµ + 2

(

∫ (

Pt
2

(f) −
∫

fdµ

)2

dµ

)2

.

We apply twice inequality (5) to F and to f to obtain
∫

(

Ptf̃
)4

dµ ≤ 2e
− t

2CSG Varµ

(

F 2
)

+ 2e
− t

CSG

(

Varµ

(

f2
))2

,

which implies (18). ⊲

Proof of Theorem 3.2

⊳ Is this case, the steady state is the following limit,

sa =

∫

(a0 + c0)dµ
∫

(a0 + d0)dµ
∫

(a0 + b0 + d0 + c0)dµ
= lim

t→+∞

Ct

Dt
, (19)

the limit can be seen in L4(dµ). Let us denote by Ma+c =
∫

(a0 + c0)dµ and define
similarly Ma+d and Ma+b+c+d.

Using (19) one obtains

d

dt

1

2

∫

(a − sa)
2dµ = −

∫

|∇a|2dµ − Ma+b+c+d

∫

(a − sa)
2dµ

+

∫

a(a − sa)(Ma+b+c+d − Dt)dµ +

∫

(a − sa)(Ct − Ma+bMa+d)dµ. (20)

Let us consider the last term:
∫

(a − sa)(Ct − Ma+cMa+d)dµ =

∫

(a − sa)Ma+d(Pt(a0 + c0) − Ma+c)dµ

+

∫

(a − sa)Pt(a0 + b0)(Pt(a0 + d0) − Ma+d)dµ.

Setting ϕ(t) =
√

∫

(a − sa)
2dµ, Cauchy-Schwarz inequality yields

∫

(a − sa)(Ct − Ma+bMa+d)dµ ≤ ϕ(t)

(

Ma+d

√

∫

(Pt(a0 + c0) − Ma+c)2dµ

)

+ϕ(t)

(

(
∫

Pt(a0 + c0)
4dµ

)1/4(∫

(Pt(a0 + d0) − Ma+d)
4dµ

)1/4
)

.

First spectral gap inequality gives
∫

(Pt(a0 + c0) − Ma+c)
2dµ ≤ e

− 1

CSG
t
Varµ(a0 + c0) ≤ e

− 1

CSG
t
∫

(a0 + c0)
2dµ.

Since the semigroup (Pt)t>0 is contractive : d
dt

∫

Pt(a0 + b0)
4dµ ≤ 0, one obtains

(
∫

Pt(a0 + c0)
4dµ

)1/4

≤
(
∫

(a0 + c0)
4dµ

)1/4

.

To finish, Lemma 3.3 gives

(
∫

(Pt(a0 + d0) − Ma+d)
4dµ

)1/4

≤
√

2e
− t

8CSG

(
∫

(a0 + d0)
4dµ

)1/4

,
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which implies for the last term of (20):

∫

(a − sa)(Dt − Ma+bMa+d)dµ ≤ 3ϕ(t) exp

(

− t

8CSG

)(
∫

(a0 + b0 + c0 + d0)
4dµ

) 1

2

For the other term one gets

∫

a(a − sa)(Ma+b+c+d − Ct)dµ ≤ ϕ(t)

(∫

a4dµ

)1/4(∫

(Ma+b+c+d − Dt)
4dµ

)1/4

.

Using (16), we get

(
∫

a4dµ

)1/4

≤ min

{

(
∫

(a0 + c0)
4dµ

)1/4

,

(
∫

(a0 + d0)
4dµ

)1/4
}

,

and (18) gives

∫

a(a − sa)(Ma+b+c+d − Ct)dµ ≤ 2ϕ(t)

(
∫

(a0 + b0 + c0 + d0)
4dµ

) 1

2

exp

(

− t

8CSG

)

.

Then we obtain

ϕ′(t) ≤ −Ma+b+c+dϕ(t) + 5M4 exp

(

− t

8CSG
t

)

,

where M4 =
(

∫

(a0 + b0 + c0 + d0)
4dµ
) 1

2

. Integration of the last differential inequality

yields, if Ma+b+c+d 6= 1
8CSG

, then

√

∫

(a − sa)
2dµ ≤

(
√

∫

(a0 − sa)
2dµ +

∣

∣

∣

∣

∣

5M4

Ma+b+c+d − 1
8CSG

∣

∣

∣

∣

∣

)

×

exp

(

−min

{

Ma+b+c+d,
1

8CSG

}

t

)

,

and if Ma+b+c+d = 1
8CSG

then

√

∫

(a − sa)
2dµ ≤

(
√

∫

(a0 − sa)
2dµ + 5M4 t

)

exp (−Ma+b+c+dt),

which finished the proof of (17).
If Ma+b+c+d < 1

8CSG
, then the rate becomes e−Ma+b+c+dt, one can check that Ma+b+c+d

is equal to the constant C defined in (11) which is optimal. ⊲

Remark 3.4 In the case of equation of diffusion, the optimal rate of convergence, in
L2(dµ), is given by the spectral gap constant and is independent of the initial condition.
In reaction-diffusion equations we can see in Theorem 2.1 and 3.2, that the optimal rate
of convergence strongly depends on the initial conditions.

4 Study of the general case

Let us consider now the general case for q > 1,

q
∑

i=1

αiAi ⇋

q
∑

i=1

βiAi.

10



Assume now that Ω ∈ R
n is bounded domain.

Let consider non-negative initial conditions v0
i > on Ω, for all 1 ≤ i ≤ q. A weak solu-

tion of (6) on the time interval I is q measurable functions (vi)1≤i≤q such that for all t ∈
I, vi(·, t) ∈ L1(Ω), G(v1(·, t), · · · , vq(·, t)) ∈ L1(Ω),

∫ t
0 ‖G(v1(·, s), · · · , vq(·, s))‖L1

ds <
+∞ and moreover for all 1 ≤ i ≤ q, x ∈ R

n and t > 0,

vi(t, x) = Pt

(

v0
i

)

+ ki(βi − αi)

∫ t

0
Pt−s(G(v1(·, s), · · · , vq(·, s)))ds, (21)

which satisfies also for all x ∈ Ω, vi(0, x) = v0
i (x).

Theorem 4.1 Assume that there exist 1 ≤ i0, j0 ≤ q such that βi0 − αi0 > 0 and
βj0 − αj0 < 0.

Then, for any non-negative bounded and measurable initial condition
(

v0
i

)

1≤i≤q
,

there exists a unique non-negative weak solution of the system (6).

Proof

⊳ One of the main problem is to prove that the solution is non-negative. For that we
will use Theorem 4 of Rothe [Rot84]. As for equation (8), for all 1 ≤ i ≤ q we note by

Ci,1(t, x) = Pt

(

v0
i − ki(βi−αi)

k1(β1−α1)v
0
1

)

(x) and consider the following PDE

∂tv1 = Lv1 + F̄ (x, t, v1), (22)

where

F̄ (x, t, v1) = k1(β1 − α1)
(

q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
v1 + Ci,1(t, x)

)αi

+

−
q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
v1 + Ci,1(t, x)

)βi

+

)

,

and for x ∈ R, (x)+ = max {x, 0}.
Function F̄ has to satisfies conditions (F0), (F1) and (F3) of [Rot84].

Since, for all 1 ≤ i ≤ q, Ci,1 is measurable, so for all v1 ∈ R the function F̄ (·, ·, v1) :
(x, t) ∈ Ω × [0,+∞[→ F̄ (x, t, v1) is measurable and thus (F0) holds.

Let γ = max {
∑q

i=1 αi,
∑q

i=1 βi}. If the initial conditions are bounded, then for each
1 ≤ i ≤ q , Ci,1 is bounded uniformly on t > 0, which implies that there exists K > 0
such that

∣

∣F̄ (x, t, v)
∣

∣ ≤ K(1 + |v|)γ ,

for all u, v, x ∈ R and t > 0. The same method gives also that there exists K ′ > 0 such
that for all v, x ∈ R and t > 0,

∣

∣F̄ (x, t, v) − F̄ (x, t, u)
∣

∣ ≤ K ′(1 + |v| + |u|)γ−1|u − v|.

Thus (F1) and (F3) hold.

Let us check now that the PDE satisfies also the last condition of Theorem 4 of
[Rot84], this last condition proves that the solution is defined in R

+.

Let v̄0
1 be a non-negative bounded initial condition and assume that v̄1 is a weak

solution of (22) (with the same definition as for equation (6), replacing G by F in (21)).

Let for all 1 ≤ i ≤ q,

v̄i(t, x) =
ki(βi − αi)

k1(β1 − α1)
v̄1(t, x) + Ci,1(t, x). (23)

11



Then (v̄i)1≤i≤q is a solution of

∂tv̄i = Lv̄i + ki(βi − αi)Ḡ(v̄1, · · · , v̄q), (24)

where

Ḡ(v̄1, · · · , v̄q) =

q
∏

i=1

(v̄i)
αi

+ −
q
∏

i=1

(v̄i)
βi

+ .

We will prove now that for all 1 ≤ i ≤ q, v̄i is non-negative. Let us multiply (24) by
−(v̄i)− := min {v̄i, 0}. After integration, we obtain

d

dt

∫

1

2
((v̄i)−)2dµ = −

∫

|∇(v̄i)−|2dµ − ki(βi − αi)

∫

(v̄i)−Ḡ(v̄1, · · · , v̄q)dµ, (25)

where
∫

|∇(v̄i)−|2dµ =
∫

∇v̄i · ∇(v̄i)−dµ.
On the set {v̄i ≤ 0}, we have

ki(βi − αi)Ḡ(v̄1, · · · , v̄q) = ki(βi − αi)Ḡ(v̄1, · · · , 0, · · · , v̄q),

where we put 0 at the position i. Since for all j, (v̄j)+ > 0 then it is not difficult to see
that in all cases ki(βi − αi)Ḡ(v̄1, · · · , 0, · · · , v̄q) > 0.

All of this gives that
d

dt

∫

1

2
((v̄i)−)2dµ ≤ 0,

and since at time t = 0,
∫

((v̄0
i )−)2dµ = 0 then for all t > 0, v̄i(t) > 0 almost everywhere.

Assume that β1 − α1 > 0. Then, since the solutions are non-negative, we get the
following global estimate of the solution,

0 ≤ v̄1 =
k1(β1 − α1)

kj0(βj0 − αj0)
v̄j0+

Pt

(

v̄0
1 − k1(β1 − α1)

kj0(βj0 − αj0)
v̄0
j0

)

≤
∥

∥v̄0
1

∥

∥

∞
+

∣

∣

∣

∣

k1(β1 − α1)

kj0(βj0 − αj0)

∣

∣

∣

∣

∥

∥v̄0
j0

∥

∥

∞
.

If β1 − α1 > 0 does not hold, we use i0 instead j0 to get the same result with j0.
Then condition (197) of [Rot84] is satisfied and Theorem 4 can be applied (with

q1 = q2 = r1 = r2 = ∞). It gives a global weak solution v̄1 of (22) on [0,+∞). As
before in (23), we are able to build the functions v̄i to get a weak solution of (24).

The same method as above in (25) proves that for all 0 ≤ i ≤ q, v̄i > 0. This
gives that Ḡ(v̄1, · · · , v̄q) = G(v̄1, · · · , v̄q) and then (v̄i)1≤i≤q is also a non-negative weak
solution of (6) which finished the proof of the existence.

Let us prove now the uniqueness of the solution. If (vi)1≤i≤q is a weak non-negative
solution of (6), then v1 is a weak solution of (9) with j = 1. Corollary of Theorem 1 of
[Rot84] insures that v1 is the unique weak solution of (9). ⊲

This corollary is a direct consequence of (8).

Corollary 4.2 Assume that there exist 1 ≤ i0, j0 ≤ q such that βi0 − αi0 > 0 and
βj0 − αj0 < 0.

Let (vi)1≤i≤q be a solution of (6). Then for all 1 ≤ i ≤ q such that βi − αi > 0 one
gets for all t > 0 and x ∈ Ω:

0 ≤ vi(t, x) ≤ ki(βi − αi)min

{

Pt

(

v0
i

ki(βi − αi)
−

v0
j

kj(βj − αj)

)

(x), βj − αj < 0

}
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and for all 1 ≤ i ≤ q such that βi − αi < 0:

0 ≤ vi(t, x) ≤ ki|βi − αi|min

{

Pt

(

v0
i

kj(βj − αj)
− v0

i

ki(βi − αi)

)

(x), βj − αj > 0

}

.

In particular when initial conditions are bounded, solutions of (3) are also bounded with
an explicit upper bound.

Theorem 4.3 Assume that the semigroup (Pt)t>0 satisfies a spectral gap inequality (5)
with respect to the invariant probability measure µ. Assume also that for all 1 ≤ i ≤ q,
αiβi = 0.

Let
(

v0
i

)

1≤i≤q
be a non-negative bounded initial condition. We assume furthermore

that for all 1 ≤ i ≤ q,
∫

v0
i dµ > 0.

Let (si)1≤i≤q be the steady state given by Lemma 1.2. Then for all 1 ≤ i ≤ q, one
gets

√

∫

(vi − si)
2dµ ≤ K exp (−min {a,M}t), (26)

where a > 0 depends on αi, βi and CSG instead M,K > 0 depend on the initial
conditions.

Proof

⊳ The idea is almost the same as in Theorem 3.2 except that we do not obtain the
optimal rate.

Assume that β1 − α1 > 0, the opposite case could be treated in the similar way.
Equation (9) applied for j = 1 reads

∂tv1 = Lv1 + F (t, x, v1),

where

F (t, x, y) = k1(β1 − α1)×
(

q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
y + Ci,1(t, x)

)αi

−
q
∏

i=1

(

ki(βi − αi)

k1(β1 − α1)
y + Ci,1(t, x)

)βi

)

and functions Ci,1(t, x) are defined in (8). Ergodicity property of the semi-group (Pt)t>0

implies that for almost all x ∈ Ω,

lim
t→∞

Ci,1(t, x) =

∫ (

v0
i − ki(βi − αi)

k1(β1 − α1)
v0
1

)

dµ := C∞
i,1.

Denote by F∞(y) the limit of F (t, x, y) when t goes to infinity. Note that F∞ does not
depend on x ∈ Ω. Then, one gets

d

dt

1

2

∫

(a1 − s1)
2dµ ≤ k1(β1 − α1)

∫

(a1 − s1)(F (t, ·, a1) − F∞(a1))dµ

+k1(β1 − α1)

∫

(a1 − s1)F∞(a1)dµ. (27)

Note that F∞ is equal to the polynome F defined in (13) where vi(0) is replaced by the
mean value of initial conditions

∫

v0
i dµ. Let us set

M1(t, x) = k1(β1 − α1)min

{

Pt

(

v0
1

k1(β1 − α1)
−

v0
j

kj(βj − αj)

)

(x), βj − αj < 0

}

,
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and for its limit as t goes to ∞

M∞
1 = k1(β1 − α1)min

{

∫

(

v0
1

k1(β1 − α1)
−

v0
j

kj(βj − αj)

)

dµ, βj − αj < 0

}

.

As it was shown in the proof in Theorem 2.1, F∞(X) = (X−s1)Q(X) with Q(X) < 0
for all X ∈ (0,M∞

1 ). Now using the fact that for all 1 ≤ i ≤ q, αiβi = 0 one gets also
that Q(0) < 0 and Q(M∞

1 ) < 0. Then by continuity of Q there exist ǫ, η > 0 such that
Q(X) ≤ −ǫ for all X ∈ [0,M∞

1 + η].
For the second term in (27), we get

k1(β1 − α1)

∫

(v1 − s1)F∞(v1)dµ ≤ −k1(β1 − α1)ǫ

∫

{v1≤M∞

1
+η}

(v1 − s1)
2dµ

+k1(β1 − α1)

∫

{v1>M∞

1
+η}

(v1 − s1)F∞(v1)dµ,

and then for some constant K depending on initial conditions

k1(β1 − α1)

∫

(v1 − s1)F∞(v1)dµ ≤

− k1(β1 − α1)ǫ

∫

(v1 − s1)
2dµ + Kµ{v1 > M∞

1 + η}.

Corollary 4.2 implies that M1(t, ·) > v1 and then Markov inequality gives

k1(β1 − α1)

∫

(v1 − s1)F∞(v1)dµ ≤

− k1(β1 − α1)ǫ

∫

(v1 − s1)
2dµ + KVarµ(M1(t, ·)) . (28)

Since for q measurable functions gi ∈ L2(µ) one has

Varµ(min {gi, 1 ≤ i ≤ q}) ≤ 1

2

q
∑

i=1

Varµ(gi) ,

so the last term of (28) gives

k1(β1 − α1)

∫

(v1 − s1)F∞(v1)dµ ≤ −k1(β1 − α1)ǫ

∫

(v1 − s1)
2dµ + K ′e−

1

CSG
t,

where K ′ is an another constant depending on initial conditions.
Let us note F (t, x, y) =

∑γ
i=1 Kt,i,xyi and F∞(y) =

∑γ
i=1 K∞,iy

i where we note
γ = max {∑q

i=1 βi,
∑q

i=1 αi}. The first term of (27) gives

∫

(v1 − s1)(F (t, ·, v1) − F∞(v1))dµ ≤
√

∫

(v1 − s1)
2dµ

γ
∑

i=1

√

∫

v2i
1 (Kt,i,x − K∞,i)2dµ.

Let us consider one of them, with 1 ≤ i ≤ q, one has

∫

v2i
1 (Kt,i,x − K∞,i)

2dµ ≤
√

∫

v4i
1 dµ

√

∫

(Kt,i,x − K∞,i)4dµ.

There exist some sets Γi,j and ∆i and constants µi,j,k ∈ R, γi,j,k ∈ N such that

Kt,i,x =
∑

j∈∆i

∏

k∈Γi,j

µi,j,k(Ci,1(t, x))γi,j,k .
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Then for some constant Ki > 0, pi,j,k > 2 and qi,j,k > 0,

∫

(Kt,i,x − K∞,i)
4dµ ≤ Ki

∑

j∈∆i

∏

k∈Γi,j

(∫

((Ci,1(t, ·))γi,j,k −
(

C∞
i,1

)γi,j,k)pi,j,kdµ

)qi,j,k

.

Since the initial conditions are bounded and pi,j,k > 2, one gets for some another
constant K

∫

((Ci,1(t, ·))γi,j,k −
(

C∞
i,1

)γi,j,k)pi,j,kdµ ≤ K

∫

(

Ci,1(t, ·) − C∞
i,1

)2
dµ,

and then spectral gap inequality gives for some K ′,

∫

((Ci,1(t, ·))γi,j,k −
(

C∞
i,1

)γi,j,k)pi,j,kdµ ≤ K ′e
− 1

CSG
t
.

Then we have proved that there exits γi > 0 and Ri > 0 depending on initial conditions
and CSG such that

∫

(Kt,i,x − K∞,i)
4dµ ≤ Rie

−γit.

All of these estimates give for some α > 0 depending on αi, βi and CSG and R > 0
depending on initial conditions the following bound

k1(β1 − α1)

∫

(a1 − s1)(Ft(a1) − F∞(a1))dµ ≤
√

∫

(a1 − s1)
2dµ Re−αt.

If ϕ(t) =
√

∫

(a1 − s1)
2dµ, the equation (27) becomes

ϕ′(t) ≤ −k1(β1 − α1)ǫϕ(t) + Re−αt + K ′e−
1

CSG
t,

which finishes the proof. ⊲

Remark 4.4 One can generalize the last theorem in the following way without assum-
ing that for all i, αiβi = 0. Let consider i+ and j− such that

sup
j, s.t. βj−αj>0

{

−
∫

v0
j dµ

βj − αj

}

= −
∫

v0
i+dµ

βi+ − αi+

and

sup
j, s.t. βj−αj<0

{

−
∫

v0
j dµ

βj − αj

}

= −
∫

v0
j−dµ

βj− − αj−
.

Assume only that αi+βi+ = αj−βj− = 0. Then the computation for the species i+ and
j− are the same as in the proof of Theorem 4.3.
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