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ON THEORIES OF RANDOM VARIABLES

ITAÏ BEN YAACOV

Abstract. Nous étudions des théories d’espaces de variables aléatoires : en un premier temps, nous
considérons les variables aléatoires à valeurs dans l’intervalle [0, 1], puis à valeur dans des structures
métriques quelconques, généralisant la procédure d’aléatoirisation de structures classiques due à Keisler.
Nous démontrons des résultats de préservation et de non-préservation de propriétés modèle-théoriques
par cette construction :

(i) L’aléatoirisée d’une structure ou théorie stable est stable.
(ii) L’aléatoirisée d’une structure ou théorie simple instable n’est pas simple.

Nous démontrons également que dans la structure aléatoirisée, tout type est un type de Lascar.

We study theories of spaces of random variables: first, we consider random variables with values in the
interval [0, 1], then with values in an arbitrary metric structure, generalising Keisler’s randomisation of
classical structures. We prove preservation and non-preservation results for model theoretic properties
under this construction:

(i) The randomisation of a stable structure is stable.
(ii) The randomisation of a simple unstable structure is not simple.

We also prove that in the randomised structure, every type is a Lascar type.

Introduction

Mathematical structures arising in the theory of probabilities are among the most natural examples
for metric structures which admit a model theoretic treatment, albeit not in the strict setting of classical
first order logic. Examples include the treatment of adapted spaces by Keisler & Fajardo [FK02], in
which no logic of any kind appears explicitly (even though many model theoretic notions, such as types,
do appear). Another example, which is the main topic of the present paper, is Keisler’s randomisation
construction [Kei99], in which one considers spaces of random variables whose values lie in some given
structures. The randomisation construction was originally set up in the formalism of classical first order
logic, representing the probability space underlying the randomisation by its probability algebra, namely,
the Boolean algebra of events up to null measure (defined abstractly, a probability algebra is a measure
algebra of total mass one, see Fremlin [Fre04]). We consider that this formalism was not entirely adequate
for the purpose, since the class of probability algebras is not elementary in classical first order logic, a
fact which restricts considerably what can be done or proved (for example, the randomised structure
interprets an atomless Boolean algebra, and can therefore be neither dependent not simple). To the best
of our knowledge, the first model theoretic treatment of a probabilistic structure in which notions such as
stability and model theoretic independence were considered was carried out by the author in [Ben06], for
the class of probability algebras. While this latter formalism was adequate, in the sense that it did allow
one to show that probability algebras are stable and that the model theoretic independence coincides
with the probabilistic one, it was quite cumbersome, and soon to become obsolete.

Continuous first order logic is a relatively new formalism, at least in its present form, developed by
Alexander Usvyatsov and the author [BU10] for a model theoretic treatment of (classes of) complete
metric structures. For example, we observe there that the class of probability algebras is elementary, its
theory admitting a simple set of axioms, and that the theory of atomless probability algebras admits
quantifier elimination, thus simplifying considerably many of the technical considerations contained in
[Ben06]. Viewing probability algebras as metric structures in this fashion, rather than as classical
structures, allowed Keisler and the author [BK09] to present the randomisation as a metric structure,
and we contend that this metric randomisation is the “correct” one. Arguments to this effect include
several preservation results which would be false in the formalism of [Kei99]. For example, in [BK09]
we prove that if a structure is stable then so is its randomisation, while preservation of dependence was
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2 ITAÏ BEN YAACOV

proved by the author in [Ben09a]. Another argument, both æsthetic and practical, is that types in the
metric randomisation are very natural objects, namely regular Borel probability measures on the space
of types of the original theory, also referred to nowadays as Keisler measures [Kei87], and which turn
out to be particularly useful for the study of dependent theories, e.g., in [HPP08].

We still find the current state of knowledge, and existing treatment, of randomisation, wanting on
several points. First, since the randomisation of a discrete structure (or theory) necessarily produces a
metric one, the question of randomising metric structures arises quite naturally. In fact, it is quite easy
to construct the randomisation of a metric structure (or theory) indirectly, by letting its type spaces be
the spaces of regular Borel probability measures as mentioned above, a fact which was used in [Ben09a]
to point out that the preservation of dependence was also proved there for the randomisation of metric
structures, even though the latter had not yet been formally defined. However, the point of view of
theories as type spaces, while a personal favourite of the author (see for example [Ben03a]), is far from
being universally accepted, creating the need for an “ordinary” construction of the randomisation of a
metric structure, with a natural language, axioms, and all. A second point is that the treatment of
randomisation in [BK09] relies greatly on [Kei99], many times referring to it for proofs, even though
some fundamental aspects of the set-up are different, requiring the reader to continually verify that the
arguments do transfer.

The aim of the present paper is to remedy these shortcomings by providing a self-contained treatment
of randomisation in the metric setting, and show (or point out) that the preservation results of [BK09,
Ben09a] hold in the metric setting as well. We also present two new results, that in the randomised
structures types over sets are Lascar types, and that if T is not dependent then its randomisation TR

cannot be simple, and in fact has TP2. (The result regarding Lascar type is, amusingly enough, a
by-product of the increased complexity of stability phenomena in the metric setting, as explained in
Section 4.2.) As a minor point, we simplify the language (and theory), and rather than name in LR (the
randomisation language) the randomisation JϕK of each L-formula ϕ, we name the function symbols and
the randomisations of the relation symbols of L alone.

The paper is organised as follows. In Section 1 we consider formal deductions in propositional con-
tinuous logic, after Rose, Rosser and Church. These are used in Section 2 to give axioms for the theory
of spaces [0, 1]-valued random variables, which play the role played by probability algebras in [BK09].
Model theoretic properties of this theory are deduced from those of the theory of probability algebras,
with which it is biïnterpretable. In Section 3 we define and study the randomisations of metric struc-
tures, namely spaces of random variables whose values lie in metric structures. We give axioms for the
theory of these random structures, prove quantifier elimination in the appropriate language, characterise
types and so on. We also prove a version of Łoś’s Theorem for randomisations, in which the ultra-filter
is replaced with an arbitrary integration functional. In Section 4 we prove several preservation and non
preservation results. In Section 5 we prove that in random structures, types over sets are Lascar types,
so in the stable case they are stationary.

1. On results of Rose, Rosser and Chang

In the late 1950s Rose and Rosser [RR58] proved the completeness of a proof system for Łukasiewicz’s
many-valued propositional logic, subsequently improved and simplified by Chang [Cha58b, Cha58a,
Cha59]. This logic is very close to propositional continuous logic. Syntactically, the notation is quite
different, partially stemming from the fact we identify True with 0, rather than with 1. Also, the con-
nective 1

2 does not exist in Łukasiewicz’s logic. Semantically, we only allow the standard unit interval
[0, 1] as a set of truth values, while some fuzzy logicians allow non-standard extensions thereof (namely,
they allow infinitesimal truth values). We should therefore be careful in how we use their results.

In these references, Propositional Łukasiewicz Logic is presented using Polish (prefix) notation, without
parentheses. A formula is either an atomic proposition, Cϕψ or Nϕ, where ϕ and ψ are simpler formulae.
We shall prefer to use the notation of continuous logic, replacing Cϕψ with ψ −. ϕ and Nϕ with ¬ϕ.

Definition 1.1. Let S0 = {Pi : i ∈ I} be a set distinct symbols, which we view as atomic proposition.
Let S be freely generated from S0 with the formal binary operation −. and unary operation ¬. Then S
is a Łukasiewicz logic.

Definition 1.2. Let S be a Łukasiewicz logic.

(i) For every map v0 : S0 → [0, 1], let v : S → [0, 1] be the unique map extending v0 such that
v(ϕ −. ψ) = v(ϕ) −. v(ψ) and v(¬ϕ) = 1 − v(ϕ). We call v the truth assignment defined by v0,
and v(ϕ) is the truth value of ϕ.
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(ii) If v(ϕ) = v(ψ) for every truth assignment v, we say that ϕ and ψ are equivalent, and write
ϕ ≡ ψ.

(iii) If v(ϕ) = 0 we say that v is a model of ϕ, in symbols v � ϕ. If Σ ⊆ S, then v � Σ if v � ϕ for
all ϕ ∈ Σ. We say that ϕ (or Σ) is satisfiable if it has a model.

(iv) Let Σ ⊆ S and ϕ ∈ S. We say that Σ entails ϕ, or that ϕ is a logical consequence of Σ, if every
model of Σ is a model of ϕ. This is denoted Σ � ϕ.

When we wish to make the ambient logic explicit we may write �S , ≡S , and so on.

Notation 1.3. (i) We shall follow the convention that −. , like −, binds from left to right, and
define ψ −. nϕ by induction on n:

ψ −. 0ϕ = ψ, ψ −. (n+ 1)ϕ = ψ −. nϕ−. ϕ = (ψ −. nϕ)−. ϕ.

(ii) We use 1 as abbreviation for ¬(ϕ0 −. ϕ0), where ϕ0 is any formula.
(iii) We also define

ϕ ∧ ψ = ϕ−. (ϕ−. ψ), ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ),

observing that v(ϕ ∧ ψ) = min v(ϕ), v(ψ) and v(ϕ ∨ ψ) = max v(ϕ), v(ψ) for all v.

Remark 1.4. Logical implication in Łukasiewicz logic can be infinitary by nature. Indeed, let ϕn =
1−. 2(1−. nP ). Then ϕn = 0 if and only if 1−. nP ≥ 1

2 , i.e., if and only if P ≤ 1
2n . Letting Σ = {ϕn}n∈N

we have Σ � P even though there is no finite Σ0 ⊆ Σ such that Σ0 � P .

Let S be a Łukasiewicz logic generated by {Pi : i ∈ I}, and ϕ ∈ S. Then the truth assignments to
S are in bijection with [0, 1]I , and every formula ϕ ∈ S can be identified with a continuous function
ϕ̂ : [0, 1]I → [0, 1] by ϕ̂(v) = v(ϕ).

Lemma 1.5. Let S be a Łukasiewicz logic, and assume that Σ ⊆ S has no model. Then there are
n,m ∈ N and ϕi ∈ Σ for i < m such that � 1−. nϕ0 −. . . .−. nϕm−1.

Proof. For every n,m ∈ N and ϕ̄ ∈ Σm, let ψn,ϕ̄ = 1−. nϕ0−. . . .−. nϕm−1, and assume that 6� ψn,ϕ̄ for all
n and ϕ̄. In particular, for all n,m and ϕ̄ ∈ Σm there is v such that v(ψ2n,ϕ̄) > 0, whereby

∑
v(ϕi) <

1
2n

and thus v(ψn,ϕ̄) >
1
2 . Call this vn,ϕ̄. Note that if n ≤ n′ and ϕ̄ ⊆ ϕ̄′ then vn′,ϕ̄′(ψn,ϕ̄) >

1
2 as well. Since

[0, 1]I is compact, we obtain an accumulation point v ∈ [0, 1]I such that v(ψn,ϕ̄) ≥
1
2 for all n,m ∈ N

and ϕ̄ ∈ Σm. It follows that v(ϕ) = 0 for all ϕ ∈ Σ. �1.5

The proof of Lemma 1.5 only uses the presence of the connectives −. and ¬ (the latter in order to
obtain 1) in the language, and the fact that the evaluation ϕ̂ : v 7→ v(ϕ) is continuous for all ϕ. Thus,
if we allowed additional continuous functions f : [0, 1]n → [0, 1] as connectives in Definition 1.1, e.g., the
unary connective 1

2 : x 7→ x
2 , the same proof would hold.

Let us now consider formal deductions in Łukasiewicz logic. Recall that by Notation 1.3, ϕ ∧ ψ is
abbreviation for ϕ −. (ϕ −. ψ) (which would be Aψϕ in the notation of [RR58]). Thus, the four axiom
schemes which, according to [RR58, Cha58b], form a complete deduction system, are:

ϕ−. ψ −. ϕ(A1)

(ρ−. ϕ)−. (ρ−. ψ)−. (ψ −. ϕ)(A2)

(ϕ ∧ ψ)−. (ψ ∧ ϕ)(A3)

(ϕ −. ψ)−. (¬ψ −. ¬ϕ)(A4)

While Modus Ponens becomes:

ϕ, ψ −. ϕ

ψ
(MP)

A deduction sequence from a set of premises Σ in this deduction system is a sequence of formulae,
each of which is either a premise (i.e., a member of Σ), an axiom (i.e., an instance of A1-4, where ϕ, ψ
and ρ can be any formulae), or is deduced by Modus Ponens from two earlier formulae in the sequence.
We say that ϕ is deducible from Σ, in symbols Σ ⊢ ϕ (or Σ ⊢S ϕ if we wish to be explicit) if there exists
a deduction sequence from Σ containing ϕ. Soundness of this deduction system (i.e., Σ ⊢ ϕ =⇒ Σ � ϕ)
is easy to verify. A subset Σ ⊆ S is contradictory if Σ ⊢ ϕ for all ϕ ∈ S. Otherwise it is consistent. The
completeness result we referred to can be now stated as:

Fact 1.6 ([RR58, Cha59]). Let S be a Łukasiewicz logic, and ϕ ∈ S. Then � ϕ if and only if ⊢ ϕ.
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Proposition 1.7. Let S be a Łukasiewicz logic, and let Σ ⊆ S. Then Σ is consistent if and only if it
has a model.

Proof. One direction is by soundness. For the other, assume that Σ has no model. Then by Lemma 1.5
there are n and ϕi ∈ Σ such that letting ψ = 1−. nϕ0 −. . . .−. nϕm−1 we have � ψ. By Fact 1.6 we have
⊢ ψ, and by Modus Ponens Σ ⊢ 1. By Fact 1.6 we also have ⊢ ϕ −. 1 for every formula ϕ, so Σ ⊢ ϕ and
Σ is contradictory. �1.7

Unfortunately, this is not quite what we need, and we shall require the following modifications:

(i) We wish to allow non-free logics, i.e., logics which are not necessarily freely generated from a set
of atomic propositions. In particular, such logics need not be well-founded (i.e., we may have
an infinite sequence {ϕn}n∈N such that each ϕi+1 is a “proper sub-formula” of ϕi).

(ii) The set of connectives {¬,−. } is not full in the sense of [BU10]. We should therefore like to
introduce an additional unary connective, denoted 1

2 , which consists of multiplying the truth
value by one half.

Definition 1.8. A continuous propositional logic is a non empty structure (S,¬, 12 ,−
. ), where −. is a

binary function symbol and ¬, 12 are unary function symbols.

A homomorphism of continuous propositional logics is a map which respects ¬, 1
2 and −. .

A truth assignment to a continuous propositional logic S is a homomorphism v : S → [0, 1], where
[0, 1] is equipped with the natural interpretation of the connectives. Models and logical entailment are
defined in the same manner as above.

We say that S is free (over S0) if there exists a subset S0 ⊆ S such that S if freely generated from
S0 by the connectives {¬, 12 ,−

. }. In that case every map v0 : S0 → [0, 1] extends to a unique truth
assignment.

The new connective 1
2 requires two more axioms:

1
2ϕ−. (ϕ−. 1

2ϕ)(A5)

(ϕ−. 1
2ϕ)−

. 1
2ϕ(A6)

Formal deductions in the sense of continuous propositional logic are defined as earlier, allowing A1-6 as
logical axiom schemes.

Lemma 1.9. For every continuous propositional logic S (not necessarily free), ϕ, ψ ∈ S, Σ ⊆ S and
n ∈ N:

(i) ⊢ ϕ−. ϕ.
(ii) ⊢ (ϕ −. ψ)−. (1 −. n(ψ −. ϕ)).
(iii) If Σ, ϕ−. ψ is contradictory then Σ ⊢ ψ −. ϕ.

Proof. (i) In Łukasiewicz logic we have � P −. P , and by Fact 1.6, ⊢ P −. P . By substitution of ϕ
for P we get a deduction for ϕ−. ϕ in S.

(ii) Same argument.
(iii) If Σ, ϕ −. ψ is contradictory then it is has no model. By the proof of Proposition 1.7 there is

n ∈ N such that Σ ⊢ 1−. n(ϕ−. ψ). Therefore Σ ⊢ ψ −. ϕ. �1.9

Theorem 1.10. Let S be a continuous propositional logic, not necessarily free, and let Σ ⊆ S. Then Σ
is consistent if and only if it is satisfiable.

Proof. Let Sf be the Łukasiewicz logic freely generated by {Pϕ : ϕ ∈ S}, and let:

Σf0 ={P¬ϕ −. ¬Pϕ,¬Pϕ −. P¬ϕ : ϕ ∈ S}

∪ {Pϕ−. ψ −. (Pϕ −. Pψ), (Pϕ −. Pψ)−. Pϕ−. ψ : ϕ, ψ ∈ S}

∪ {P1
2ϕ

−. P
ϕ−.

1
2ϕ
, P

ϕ−.
1
2ϕ

−. P1
2ϕ

: ϕ ∈ S}

Σf ={Pϕ : ϕ ∈ Σ} ∪Σf0 .

Assume that Σf has a model vf . Define v : S → [0, 1] by v(ϕ) = vf (Pϕ). Since vf � Σf0 , v is a truth
assignment in the sense of S, and is clearly a model of Σ.

Thus, if Σ has no model, neither does Σf . By Proposition 1.7 Σf is contradictory. Thus, for every
ψ ∈ S we have Σf ⊢ Pψ. Take any deduction sequence witnessing this, replacing every atomic proposition
Pϕ with ϕ. If a formula was obtained from previous ones using Modus Ponens, the same holds after this
translation. Premises from Σf become translated to one of several cases:
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(i) Premises of the form Pϕ for ϕ ∈ Σ are replaced with ϕ ∈ Σ.

(ii) Premises of the first two kinds from Σf0 are replaced with something of the form ϕ −. ϕ, which
we know is deducible without premises.

(iii) Premises of the last kind from Σf0 are translated to instances of the axioms schemes A5-6.

We conclude that Σ ⊢ ψ for all ψ ∈ S, and Σ is contradictory. The other direction is by easy soundness.
�1.10

Let 2−n be abbreviation for 1
2 · · ·

1
21 (n times), where 1 is still as per Notation 1.3, so v(2−n) = 2−n

for any truth assignment v.

Corollary 1.11. Let S be a continuous propositional logic, not necessarily free, Σ ⊆ S and ϕ ∈ S. Then
Σ � ϕ if and only if Σ ⊢ ϕ−. 2−n for all n.

Proof. Right to left is clear, so assume that Σ � ϕ. Then Σ∪ {2−n−. ϕ} is non-satisfiable, and therefore
contradictory by Theorem 1.10. By Lemma 1.9: Σ ⊢ ϕ−. 2−n. �1.11

Remark 1.12. With some more effort, one can prove that if S is free and Σ is finite, then Σ � ϕ if and
only if Σ ⊢ ϕ. This can be shown to fail if we drop either additional hypothesis, and in any case will not
be required for our present purposes.

These completeness results are extended to the full continuous first order logic in [BP10]. We conclude
with a word regarding the semantics of continuous propositional logics.

Definition 1.13. Let S be a continuous propositional logic. Its Stone space is defined to be the set

S̃ = Hom(S, [0, 1]), namely the space of truth assignments to S. We equip S with the induced topology
as a subset of [0, 1]S (i.e., with the point-wise convergence topology).

For each ϕ ∈ S we define a function ϕ̂ : S̃ → [0, 1] by ϕ̂(v) = v(ϕ).

Proposition 1.14. Let S be a continuous propositional logic, S̃ its Stone space, and let θS denote the
map ϕ 7→ ϕ̂.

(i) The space S̃ is compact and Hausdorff.

(ii) θS ∈ Hom
(
S, C(S̃ , [0, 1])

)
. In particular, each ϕ̂ is continuous.

(iii) For ϕ, ψ ∈ S we have θS(ϕ) = θS(ψ) if and only if ϕ ≡ ψ.

(iv) The image of θS is dense in the uniform convergence topology on C(S̃ , [0, 1]).

Moreover, the properties characterise the pair (S̃, θS) up to a unique homeomorphism.

Proof. That the image is dense is a direct application of a variant of the Stone-Weierstrass theorem
proved in [BU10, Proposition 1.4]. The other properties are immediate from the construction.

We are left with showing uniqueness. Indeed, assume that X is a compact Hausdorff space and

θ : S → C(X, [0, 1]) satisfies all the properties above. Define ζ : X → S̃ by ζ(x)(ϕ) = θ(ϕ)(x). Thus ζ is
the unique map satisfying θS(ϕ)◦ζ = θ(ϕ), and we need to show that it is a homeomorphism. Continuity
is immediate. The image of θ is dense in uniform convergence and therefore separates points, so ζ is
injective. Since X is compact and Hausdorff ζ must be a topological embedding. In order to see that ζ

is surjective it will be enough to show that its image is dense. So let U ⊆ S̃ be a non empty open set,

which must contain a non empty set of the form {v ∈ S̃ : f(v) > 0} for some f ∈ C(S̃, [0, 1]). For n big

enough there is v0 ∈ S̃ such that f(v0) > 2−n+1. By density find ϕ0 ∈ S such that ‖ϕ̂0 − f‖∞ < 2−n.

and let ϕ = ϕ0 − 2−n ∈ S. Then {v ∈ S̃ : v(ϕ) > 0} ⊆ U and v0(ϕ) 6= 0. Since ϕ 6≡ 0 there is x ∈ X
such that ζ(x)(ϕ) = θ(ϕ)(x) 6= 0, i.e., ζ(x) ∈ U . This concludes the proof. �1.14

2. The theory of [0, 1]-valued random variables

From this point and through the end of this paper, we switch to the setting of continuous first order
logic. This means that structures, formulae, theory and so on, unless explicitly qualified otherwise,
should be understood in the sense of [BU10] (or [BBHU08]).

Let (Ω,F , µ) be a probability space. In [Ben06] we considered such a space via its probability algebra
F̄ , namely the Boolean algebra of events F modulo null measure difference. Equivalently, the probability
algebra F̄ can be viewed as the space of {0, 1}-valued random variables (up to equality a.e.). Here we
shall consider a very similar object, namely the space of [0, 1]-valued random variables. This space will be
denoted L1

(
(Ω,F , µ), [0, 1]

)
, or simply L1(F , [0, 1]), where we consider that the measure µ is implicitly

part of the structure of F . We equip this space with the natural interpretation of the connectives ¬, 1
2
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and −. (e.g., (X −. Y )(ω) = X(ω) −. Y (ω)), as well as with the L1 distance d(X,Y ) = E[|X − Y |], for
which it is a complete metric space. It is thus naturally a structure in the random variable language

LRV = {0,¬, 12 ,−
. }.

Throughout, we shall use 1 as an abbreviation for ¬0 and E(x) as an abbreviation for d(x, 0). The
intended interpretation of E(x) is the expectation. Notice that by definition, if M is any LRV -structure
and a ∈M then a = 0 ⇐⇒ d(a, 0) = 0 ⇐⇒ E(a) = 0.

2.1. The theories RV and ARV . We shall use the results of Section 1 to give axioms for the theory
of [0, 1]-valued random variables equipped with the L1 metric, in the language LRV given above.

The term algebra TRV of LRV is a free propositional continuous logic (freely generated by the variables
of the language together with the symbol 0). Similarly, forgetting everything but the operations ¬, 1

2 and
−. , any LRV -structure M is a (ordinarily, non-free) continuous propositional logic. Translating proofs
from TRV to M we have ⊢TRV τ =⇒ ⊢M τ(ā) for all ā ∈ M.

We define the theory RV to consist of the following axioms. In each axiom we quantify universally
on all free variables. Keep in mind also that x ∧ y is abbreviation for x−. (x −. y).

E(x) = E(x−. y) + E(y ∧ x)(RV1)

E(1) = 1(RV2)

d(x, y) = E(x −. y) + E(y −. x)(RV3)

τ = 0 whenever ⊢TRV τ(RV4)

ARV is defined by adding the following axiom:

inf
y

(
E(y ∧ ¬y) ∨

∣∣∣E(y ∧ x)− E(x)
2

∣∣∣
)
= 0.(ARV)

Lemma 2.1. Let M be a model of RV1. Then for every a, b ∈M :

E(a)− E(b) ≤ E(a−. b) ≤ E(a).

In particular M respects Modus Ponens: if b = 0 and a−. b = 0 then a = 0.

Proof. Axiom RV1 implies first that E(a) ≥ E(a−. b). But then E(b) ≥ E(b−. (b−. a)) = E(b∧a) whereby
E(a)− E(b) ≤ E(a)− E(b ∧ a) = E(a−. b). Modus Ponens follows. �2.1

Thus, modulo RV1, the axiom scheme RV4 is equivalent to the finite set:

(x−. y)−. x = 0(RV4.1)

((x−. z)−. (x−. y))−. (y −. z) = 0(RV4.2)

(x ∧ y)−. (y ∧ x) = 0(RV4.3)

(x−. y)−. (¬y −. ¬x) = 0(RV4.4)

1
2x−. (x−. 1

2x) = 0(RV4.5)

(x−. 1
2x)−

. 1
2x = 0(RV4.6)

Furthermore, modulo RV1, RV3 and RV4.1-4, axioms RV4.5-6 are further equivalent to:

1
2x = x−. 1

2x(RV5)

Indeed, left to right is by RV3. Axioms RV1 and RV4.1-4 imply that x −. x = 0 (by Fact 1.6), giving
right to left.

The following is fairly obvious:

Fact 2.2. Let (Ω,F , µ) be a probability space and let M = L1(F , [0, 1]). Then M � RV , and if
(Ω,F , µ) is atomless then M � ARV .

We now aim to prove the converse of Fact 2.2.

Lemma 2.3. Let M � RV , a, b ∈M . Then:

(i) d(a, a−. b) = E(a ∧ b) ≤ E(b). In particular, a−. 0 = a.
(ii) a−. a = 0. In particular, the meaning of 1 here agrees with Notation 1.3(ii).
(iii) a−. 1

2a = 1
2a,

1
2a−

. a = 0 and E(12a) =
1
2E(a).
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(iv) Define by induction 20 = 1 (i.e., 20 = ¬0) and 2−(n+1) = 1
22

−n. Then for all n ∈ N: E(2−n) =
2−n.

(v) a = 0 ⇐⇒ ⊢M a⇐⇒ �M a.
(vi) a = b⇐⇒ a ≡M b.

Proof. (i) From RV4 we have (a−. b)−. a = 0 and using RV3 we obtain d(a, a−. b) = E(a ∧ b). By
RV1 E(a ∧ b) ≤ E(b). The rest follows.

(ii) This was already observed earlier, using Fact 1.6.
(iii) That 1

2a = a −. 1
2a was observed above (RV5). It follows that a ∧ 1

2a = 1
2a, so 1

2a −
. a = 0 by

RV1 (with x = 1
2a, y = a). Again by RV1 (now with x = a, y = 1

2a) we obtain E(a) = 2E
(
1
2a

)
.

(iv) Immediate from the previous item.
(v) Assume that ⊢M a. Then by RV1 (which implies Modus Ponens) and RV4.1-6 we have a = 0.

Thus a = 0 ⇐⇒ ⊢M a. The implication ⊢M a =⇒ �M a is by soundness. Finally assume that
�M a. Then for all n we have ⊢M a−. 2−n, whereby a−. 2−n = 0. Thus E(a) = E(a ∧ 2−n) ≤
E(2−n) = 2−n, for arbitrary n. It follows that E(a) = 0, i.e., that a = 0.

(vi) Assume that a ≡M b, i.e., that �M a−. b and �M b−. a. Be the previous item a−. b = b−. a = 0
whereby a = b. �2.3

Let M̃ be the Stone space of M, viewed as a continuous propositional logic, and let θM : M →

C(M̃, [0, 1]) be as in Proposition 1.14. Recall the notation â = θM(a). By Lemma 2.3(vi) and Proposi-
tion 1.14, θM is injective.

The space C(M̃, [0, 1]) is naturally equipped with the supremum metric, denoted ‖f − g‖∞. We aim

to show now that dM is an L1 distance, i.e., that for an appropriate measure we have dM(a, b) = ‖â− b̂‖1,

which need not be equal to ‖â− b̂‖∞. Nonetheless, we can relate the two metrics as follows (we essentially
say that L∞-convergence of random variables implies L1-convergence).

Lemma 2.4. Assume that {an}n∈N ⊆M is such that {ân}n∈N ⊆ C(M̃, [0, 1]) is a Cauchy sequence in

the supremum metric. Then {an}n∈N converges in M and lim ân = l̂im an.

Proof. By assumption, for every k < ω there is Nk such that for all ‖ân− âm‖∞ ≤ 2−k for all n,m < Nk.
Therefore (ân −. âm) −. 2−k = 0, and since θM is injective: an −. am −. 2−k = 0. Thus E(an −. am) =
E((an −. am) ∧ 2−k) ≤ E(2−k) = 2−k. Similarly E(am −. an) ≤ 2−k, whereby d(an, am) ≤ 2−k+1. Since
M is a (complete) L-structure, it contains a limit a.

Now fix n ≥ Nk and let m→ ∞. Then am → a, and therefore am −. an −. 2−k → a−. an −. 2−k. Thus
a −. an −. 2−k = 0, and by a similar argument an −. a −. 2−k = 0. We have thus shown that ân → â
uniformly as desired. �2.4

Corollary 2.5. The map θM : M → C(M̃, [0, 1]) is bijective.

Proof. We already know it is injective, and by Proposition 1.14 its image is dense. By the previous
lemma its image is complete, so it is onto. �2.5

We shall identify M with C(M̃, [0, 1]).

Lemma 2.6. For all a, b ∈ M and r ∈ R+:

(i) If a+ b ∈ M (i.e., ‖a+ b‖∞ ≤ 1) then E(a+ b) = E(a) + E(b).
(ii) If ra ∈ M (i.e., r‖a‖∞ ≤ 1) then E(ra) = rE(a).

Proof. (i) Let c = a+ b. Then c−. b = a and b−. c = 0, whereby:

E(c) = E(c−. b) + E(b−. (b −. c)) = E(a) + E(b−. 0) = E(a) + E(b).

(ii) For integer r this follows from the previous item, and the rational case follows. If rn → r

then rna→ ra in C(M̃, [0, 1]) and a fortiori in M, so the general case follows by continuity of
E. �2.6

Theorem 2.7. Let M � RV , M̃ its Stone space and θM : M → C(M̃, [0, 1]) as in Proposition 1.14.

(i) As a topological space, M̃ is compact and Hausdorff.

(ii) The map θM : M → C(M̃, [0, 1]) is bijective and respects the operations ¬, 1
2 and −. (i.e., it is

an isomorphism of continuous propositional logics).
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(iii) There exists a regular Borel probability measure µ on M̃ such that the natural map

ρµ : C(M̃, [0, 1]) → L1(µ, [0, 1]) is bijective as well, and the composition ρµ ◦ θM : M →
L1(µ, [0, 1]) is an isomorphism of LRV -structures.

Moreover, these properties characterise (M̃, µ, θM) up to a unique measure preserving homeomorphism.

Proof. The first two properties are already known. By Lemma 2.6 we can extend E by linearity from

C(M̃, [0, 1]) to C(M̃,R), yielding a positive linear functional. By the Riesz Representation Theorem

[Rud66, Theorem 2.14] there exists a unique regular Borel measure µ on M̃ such that E(f) =
∫
f dµ.

Since E(1) = 1, µ is a probability measure.
The map M → L1(µ, [0, 1]) is isometric and in particular injective. Its image is dense (continuous

functions are always dense in the L1 space of a regular Borel measure). Moreover, since M is a complete
metric space the image must be all of L1(µ, [0, 1]), whence the last item.

The uniqueness of M̃ as a topological space verifying the first two properties follows from Proposi-
tion 1.14 and Lemma 2.3.(vi). The Riesz Representation Theorem then yields the uniqueness of µ. �2.7

We may refer to (M̃, µ) (viewed as a topological space equipped with a Borel measure) as the Stone

space of M or say that M is based on (M̃, µ).

Corollary 2.8. Let M be an LRV -structure. Then:

(i) The structure M is a model of RV if and only if it is isomorphic to some L1(F , [0, 1]).
(ii) A structure of the form L1(F , [0, 1]) is a model of ARV if and only if (Ω,F , µ) is an atomless

probability space.

Corollary 2.9. Let M � RV be based on (M̃, µ). Then every Borel function M̃ → [0, 1] is equal almost
everywhere to a unique continuous function.

2.2. Interpreting random variables in events and vice versa. In the previous section we attached
to every probability space (Ω,F , µ) the space L1(F , [0, 1]) of [0, 1]-valued random variables and axio-
matised the class of metric structures arising in this manner. While we cannot quite recover the original
space Ω from L1(F , [0, 1]) we do consider that L1(F , [0, 1]) retains all the pertinent information

An alternative approach to coding a probability space in a metric structure goes through its probability
algebra, namely the space of {0, 1}-valued random variables. It can be constructed directly as the Boolean
algebra quotient F̄ = F/F0 where F0 is the ideal of null measure sets. In addition to the Boolean
algebra structure, it is equipped with the induced measure function µ : F̄ → [0, 1] and the metric
d(a, b) = µ(a△b) (in fact, the measure µ is superfluous and can be recovered as µ(x) = d(x, 0)). The
metric is always complete, so a probability algebra is a structure in the language LPr = {0, 1,∩,∪, ·c, µ}.

Let us define the theory Pr to consist of the following axioms, quantified universally:

The theory of Boolean algebras: (x ∩ y)c = xc ∪ yc, . . .(Bool)

µ(1) = 1(Pr1)

µ(x) + µ(y) = µ(x ∪ y) + µ(x ∩ y)(Pr2)

d(x, y) = µ(x△y).(Pr3)

The theory APr (atomless probability algebras) consists of PA0 along with:

sup
x

inf
y

∣∣∣∣µ(y ∧ x)−
µ(x)

2

∣∣∣∣ = 0(APr)

Fact 2.10. The class of probability algebras is elementary, axiomatised by Pr. The class of atomless
probability algebras is elementary as well, axiomatised by APr.

Moreover, the theory APr eliminates quantifiers (it is the model completion of Pr). It is ℵ0-categorical
(there is a unique complete separable atomless probability algebra), and admits no compact model, whereby
it is complete. It is ℵ0-stable and its notion of independence coincides with probabilistic independence.
All types over sets (in the real sort) are stationary.

Proof. Most of this is shown in [BU10, Example 4.3]. The fact regarding stability and independence
were shown in [Ben06] in the setting of compact abstract theories. The arguments carry nonetheless to
models of APr in continuous logic. �2.10
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We wish to show that these two ways of coding a probability space in a metric structure are equivalent.
Specifically we shall show that for any probability space (Ω,F , µ), the probability algebra F̄ and the
space L1(F , [0, 1]) of [0, 1]-valued random variables are (uniformly) interpretable in one another.

Proposition 2.11. Let M be a model of RV , say M = L1(F , [0, 1]). Then the LPr-structure F̄ is
quantifier-free definable in M in a manner which does not depend on Ω. More precisely:

(i) We may identify an event a ∈ F̄ with its characteristic function 1a ∈M . This identifies F̄ with
the subset L1(F , {0, 1}) ⊆M consisting of all {0, 1}-valued random variables over (Ω,F , µ).

(ii) Under the identification of the previous item, F̄ is a quantifier-free definable subset of M,
that is, the predicate d(x, F̄ ) is quantifier-free definable in M. Moreover, the Boolean algebra
operations of F̄ are definable by terms in M, and the predicates of F̄ (measure and distance)
are quantifier-free definable in M.

(See the first section of [Ben10] for facts regarding definable sets in continuous logic.)

Proof. The first item is a standard fact. For the second item, let g ∈ L1(F , [0, 1]), and let a = {g ≥ 1
2}

(i.e., a = {ω : g(ω) ≥ 1
2}). Then:

d(g, F̄ ) = d(g,1a) = E(g ∧ ¬g).

Given a, b ∈ F̄ we have 1ac = ¬1a and 1arb = 1a −. 1b, from which the rest of the Boolean algebra

structure can be recovered. In addition dF̄ (a, b) = dM(1a,1b) and µ(a) = E(1a). �2.11

Since F̄ is (uniformly) definable we may quantify over it. Thus, modulo the theory RV , axiom ARV
can be written more elegantly as:

inf
y∈F̄

∣∣∣E(y ∧ x) − E(x)
2

∣∣∣ = 0.(ARV′)

The converse is a little more technical, since the interpretation of L1(F , [0, 1]) in the structure F̄

will necessarily be in an imaginary sort. A similar interpretation of the space of [0,∞]-valued random
variables in a hyper imaginary sort has already been discussed in [Ben06, Section 3]. The result we
prove here is a little stronger and easier to work with, using the notion of an imaginary sort in a metric
structure, introduced in [BU10, Section 5].

Let D = {k/2n : n ∈ N, 0 < k < 2n} denote the set of all dyadic fractions in ]0, 1[, D′ = D ∪ {0, 1}.
For r ∈ D′, let n(r) be the least n such that 2nr is an integer (so n(0) = 0, and for r 6= 0, n = n(r)
is unique such that 2nr is an odd integer). We shall now construct by induction on n(r) a family of
LPr-terms (τr)r∈D′ in a sequence of distinct variables X = (xr)r∈D. We start with τ0 = 1 and τ1 = 0.
If n(r) = m > 0 then n(r ± 2−m) < m and we define:

τr =
(
xr ∪ τr−2−m

)
∩ τr+2−m .

We may write such a term as τr(X), where it is understood that only a finite subset of X appears in τr.
Let F̄ be a probability algebra. Let (as)s∈D ⊆ F̄ be any sequence of events, and let br = τr(as)s∈D.
Then the sequence (br)r∈D is necessarily decreasing, and if the original sequence (as)s∈D is decreasing
then the two sequences coincide.

Let us also define:

ϕn(y,X) =
∑

k<2n

2−nµ(y ∩ τk/2n), ϕ = lim
n
ϕn.

Since 0 ≤ ϕn − ϕn+1 ≤ 2−n−1, the limit exists uniformly and ϕ is an LPr-definable predicate.

Proposition 2.12. Let (Ω,F , µ) be a probability space, M = L1(F , [0, 1]). Let F̄ϕ be the sort of
canonical parameters for instances ϕ(y,X) over F̄ . For each random variable f ∈M , let fr = {f ≤ r}

for r ∈ D and let f̃ ∈ F̄ϕ be the canonical parameter of ϕ(y, fr)r∈D.

(i) For every event c ∈ F̄ : ϕ(c, f̃) = ϕ(c, fr)r∈D =
∫
c f .

(ii) The map f 7→ f̃ is a bijection between M and F̄ϕ.
(iii) Identifying M with F̄ in this manner, the LRV -structure on M is definable in F̄ in a manner

which does not depend on Ω.

Moreover, if we compose this interpretation of L1(F , [0, 1]) in F̄ with the definition of F̄ in L1(F , [0, 1])
discussed in Proposition 2.11 above in either order, there is a definable bijection between the original
structure and its interpreted copy in a manner which is uniform in Ω.
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Proof. For the first item, the sequence (fr)r∈D is decreasing so τr(fs)s∈D = fr. It follows that
|ϕn(c, fr)r∈D −

∫
c f | < 2−n and ϕ(x, fr)r∈D =

∫
c f .

We now show the second item. To see that f 7→ f̃ is injective assume that f̃ = g̃. By the previous
item this means that

∫
c
f =

∫
c
g for every c ∈ F̄ , whereby f = g. To see it is surjective let ϕ(x,A) be

any instance of ϕ. Define:

br = τr(A) ∈ F̄ r ∈ D,

fn =
∑

k<2n

2−n1bk/2n
∈M n ∈ N.

One readily checks that d(fn, fm) < 2−min(n,m), so the sequence fn converges to a limit g ∈ M with
d(fn, g) ≤ 2−n. For every event c ∈ F̄ we have ϕn(c, A) =

∫
c fn. It follows that |ϕn(c, A) −

∫
c g| ≤ 2−n

and therefore ϕ(c, A) =
∫
c
g. In other words, g̃ is a canonical parameter for ϕ(x,A).

Let us now prove the third item. In order to prove that (f̃ , g̃) 7→ f̃ −. g is definable it is enough to

show that we can define the predicate ϕ
(
x, f̃ −. g

)
uniformly from f̃ and g̃. Indeed:

ϕ
(
x, f̃ −. g

)
=

∫

x

(f −. g) = sup
y

[∫

x∩y

f −.
∫

x∩y

g

]

= sup
y

[
ϕ(x ∩ y, f̃)−. ϕ(x ∩ y, g̃)

]
.

Similarly:
∫

x

0 = 0,

∫

x

¬f = ¬

∫

x

f,

∫

x

1
2f = 1

2

∫

x

f.

It follows that all the connectives which one can construct from these primitives are definable, and in

particular (x, y) 7→ |x− y|. Thus the distance d(f, g) = ϕ
(
1, ˜|f − g|

)
is definable.

We leave the moreover part to the reader. �2.12

The intrinsic distance on the imaginary sort F̄ϕ is by definition:

dϕ(f, g) = sup
b∈F̄

∣∣∣∣
∫

b

(f − g)

∣∣∣∣ = max
(
‖f −. g‖1, ‖g −. f‖1

)
.

The distance dϕ is easily verified to be uniformly equivalent to the L1 metric on the space of [0, 1]-valued
random variables. This is a special case of the general fact that any two definable distance functions on
a sort are uniformly equivalent. At the cost of additional technical complexity we could have arranged to
recover L1(F , [0, 1]) on an imaginary sort in which the intrinsic distance is already the one coming from
L1. Indeed, we could have defined a formula ψ(y, z, xr)r∈D such that ψ(b, c, fr)r∈D =

∫
b f +

∫
crb ¬f ,

obtaining further down the road:

dψ(f, g) = sup
b,c∈F̄

∣∣∣∣
∫

b

(f − g) +

∫

crb

(g − f)

∣∣∣∣ = ‖f − g‖1.

2.3. Additional properties of RV and ARV . Models of RV admits quantifier-free definable continu-
ous functional calculus.

Lemma 2.13. If θ : [0, 1]ℓ → [0, 1] is a continuous function, then the function f̄ 7→ θ ◦ (f̄) is uniformly
quantifier-free definable in models of RV . By “quantifier-free definable” we mean that for every definable
predicate P (ȳ, z), the definable predicate P (ȳ, θ ◦ (x̄)) is definable with the same quantifier complexity.
Specifically, d(y, θ ◦ (x̄)) is quantifier-free definable.

Proof. We can uniformly approximate θ by a sequence of terms τn(x̄) in ¬, 12 ,−
. , in which case P (ȳ, θ ◦

(x̄)) = limP (ȳ, τn(x̄)) uniformly. �2.13

For example, the predicates E(xp) or E(|x − y|p) are definable for every p ∈ [1,∞[, and thus the
Lp distance ‖x − y‖p = E(|x − y|p)1/p is definable as well, all the definitions being quantifier-free and
uniform.

For A ⊆ L1(F , [0, 1]), let σ(A) ⊆ F denote the minimal σ-sub-algebra by which every member of A
is measurable, i.e., such that A ⊆ L1(σ(A), [0, 1]) (For this to be entirely well-defined we may require
σ(A) to contain the null measure ideal of F .)
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Lemma 2.14. Let M be a model of RV , say M = L1(F , [0, 1]). Then for every σ-sub-algebra F1 ⊆ F ,
the space L1(F ′, [0, 1]) is a sub-structure of M. Conversely, every sub-structure N ⊆ M arises in this
manner as L1(σ(N), [0, 1]).

Proof. The first assertion is clear, so we prove the converse. It is also clear that N ⊆ L1(σ(N), [0, 1]).
Let f ∈ N , and define ṁf = f ∔ . . . ∔ f (m times). Then ṁf ∈ N , and as m → ∞ we have

ṁf → 1{f>0} in L1, so 1{f>0} ∈ N . Since N is complete and closed under ¬ and −. , it follows that

1A ∈ N for every A ∈ σ(N). Considering finite sums of the form (12 )
k1A0

∔ · · ·∔ (12 )
k1An−1

we see that

every simple function in L1(σ(N), [0, 1]) whose range consists solely of dyadic fractions belongs to N .
Using the completeness of N one last time we may conclude that L1(σ(N), [0, 1]) ⊆ N . �2.14

Lemma 2.15. Let M and N be two models of RV , say M = L1(F , [0, 1]), N = L1(Ω′, [0, 1]). Then
two ℓ-tuples f̄ ∈ M ℓ and ḡ ∈ N ℓ have the same quantifier-free type in LRV if and only if they have the
same joint distribution as random variables.

Proof. Assume that f̄ ≡qf ḡ. By the previous Lemma we have E(θ ◦ (f̄)) = E(θ ◦ (ḡ)) for every
continuous function θ : [0, 1]ℓ → [0, 1], which is enough in order to conclude that f̄ and ḡ have the
same joint distribution. Conversely, assume that f̄ and ḡ have the same joint distribution. Then
E(τ(f̄ )) = E(τ(ḡ)) for every term τ(x̄). It follows that f̄ ≡qf ḡ. �2.15

Let F̄a denote the set of atoms in F̄ , which we may enumerate as {Ai : i ∈ I}. Then I is necessarily
countable and every f ∈ L1(F , [0, 1]) can be written uniquely as f0 +

∑
i∈I αi1Ai , where f0 is over the

atomless part and αi ∈ [0, 1].

Lemma 2.16. The set F̄a ∪ {0} is uniformly definable in F̄ . In L1(F , [0, 1]), both the sets F̄a ∪ {0}
(i.e., {1A : A ∈ F̄a} ∪ {0}) and {α1A : α ∈ [0, 1], A ∈ F̄a} are uniformly definable.

Proof. For the first assertion let ϕ(x) be the LPr-formula supy
(
µ(x ∩ y) ∧ µ(x r y)

)
. If A is an atom

or zero then clearly ϕ(A) = 0. If A is an event which is not an atom then the nearest atom to A is
the biggest atom in A (or any of them if there are several of largest measure, or 0 if A contains no
atoms). Let us construct a partition of A into two events A1 and A2 by assigning the atoms in A (if any)
sequentially to A1 or to A2, whichever has so far the lesser measure, and by splitting the atomless part
of A equally between A1 and A2. If B ⊆ A is an atom of greatest measure (or zero if there are none)
then |µ(A1)− µ(A2)| ≤ µ(B) and:

ϕ(A) ≥ µ(A1) ∧ µ(A2) ≥
1
2µ(A) −

1
2µ(B) = 1

2µ(ArB)

= 1
2d

(
A, F̄a ∪ {0}

)
.

Thus F̄a ∪ {0} is definable.
For the second assertion, F̄a∪{0} is relatively definable in F̄ which is in turn definable in L1(F , [0, 1]),

so F̄a ∪ {0} is definable in L1(F , [0, 1]). We may therefore quantify over F̄a ∪ {0}, and define:

ψn(x) = inf
A∈F̄a∪{0}

∧

k≤2n

d
(
x, k2n 1A

)
.

Then limψn defines the distance to the last set. �2.16

If follows that for each n, the set of events which can be written as the union of at most n atoms is
definable, as is the set of all finite sums

∑
i<n α1Ai where each Ai is an atom (or zero). These definitions

cannot be uniform in n, though. Indeed, an easy ultra-product argument shows that the set of all atomic
events (i.e., which are unions of atoms) cannot be definable or even type-definable, and similarly for the
set of all random variables whose support is atomic.

The atoms of a probability space always belong to the algebraic closure of the empty set (to the
definable closure if no other atom has the same measure). They are therefore rather uninteresting from
a model theoretic point of view, and we shall mostly consider atomless probability spaces.

Theorem 2.17. (i) The theory ARV is complete and ℵ0-categorical.
(ii) The theory ARV eliminates quantifiers.
(iii) The universal part of ARV is RV , and ARV is the model completion of RV .
(iv) If M = L1(F , [0, 1]) � ARV and A ⊆M then dcl(A) = acl(A) = L1(σ(A), [0, 1]) ⊆M .
(v) Two tuples f̄ and ḡ have the same type over a set A (all in a model of ARV ) if and only if they

have the same joint conditional distribution over σ(A).
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(vi) The theory ARV is ℵ0-stable, independence coinciding with probabilistic independence, i.e.:
A |⌣B

C ⇐⇒ σ(A) |⌣σ(B)
σ(C). Moreover, types over any sets in the home sort (i.e., not over

imaginary elements) are stationary.

Proof. Categoricity and completeness of ARV follow from the analogous properties for APr.
Assume that f̄ and ḡ are two ℓ-tuples in models of ARV , f̄ =qf ḡ. By Lemma 2.15 they have the

same joint distribution. For every (r, i) ∈ D × ℓ define events af,i = {fi ≤ r}, br,i = {gi ≤ r}. The
joint distribution implies that (ar,i)(r,i)∈D×ℓ ≡qf (br,i)(r,i)∈D×ℓ, and since APr eliminates quantifiers:

(ar,i)(r,i)∈D×ℓ ≡ (br,i)(r,i)∈D×ℓ. Under the interpretation of Proposition 2.12 we have fi ∈ dcl
(
(ar,i)r∈D

)
,

gi ∈ dcl
(
(br,i)r∈D

)
, so f̄ ≡ ḡ. In other words, the quantifier-free type of a type determines its type,

whence quantifier elimination.
The theory RV is universal and all its models embed in models of ARV , whereby RV = ARV∀. Since

ARV eliminates quantifiers it is the model completion of its universal part.
Let now M = L1(F , [0, 1]) � ARV , and let A ⊆ M . By Lemma 2.14, 〈A〉 (the sub-structure

generated by A in M) is L1(σ(A), [0, 1]). Identifying F̄ with its definable copy in M we obtain 〈A〉 =
〈σ(A)〉 = L1(σ(A), [0, 1]) and dcl(A) = dcl(σ(A)) ⊇ L1(σ(A), [0, 1]). On the other hand, σ(A) is a
complete sub-algebra of F̄ � APr and therefore definably and even algebraically closed there. By
our biïnterpretability result, σ(A) is relatively algebraically closed in the definable copy of F̄ in M.
Therefore, if g ∈ acl(A) = acl(σ(A)) then σ(g) ⊆ σ(A), i.e., g ∈ L1(σ(A), [0, 1]).

Let us identify F̄ with its definable copy in M, and let A = σ(A). By the previous item we have
tp(f̄ /A) ≡ tp(f̄ /A ). When A = {a0, . . . , am−1} is finite sub-algebra, it is easy to verify that the joint
conditional distribution of f̄ over A is the same as the joint distribution of the (n+m)-tuple f̄ ,1ā. The
result for types over infinite algebras follows.

Stability and the characterisation of independence for ARV follow from the analogous properties for
APr via biïnterpretability. �2.17

3. Keisler randomisation

In this section we use earlier results to extends H. Jerome Keisler’s notion of a randomisation of a
classical structure, or of a classical theory, to continuous ones. For the original constructions we refer
the reader to [Kei99, BK09]. Throughout, we work with a fixed continuous signature L. For the sake of
simplicity we shall assume that L is single-sorted, but everything we do can be carried out in a multi
sorted setting.

3.1. Randomisation. We shall want to consider some notion of probability integration of functions
on a space Ω, which is going to be additive, although not always σ-additive (i.e., possibly failing the
Monotone Convergence Theorem and its consequences). We do this by replacing the usual measure space
apparatus with an abstract integration functional.

Definition 3.1. A finitely additive probability integration space, or simply an integration space, is a
triplet (Ω,A , E) where Ω is any set, A ⊆ [0, 1]Ω is non empty and closed under the connectives ¬, 1

2
and −. , and E : A → [0, 1] satisfies E(1) = 1 and E(X + Y ) = E(X) +E(Y ) whenever X , Y and X + Y
are all in A .

In this case we also say that E is a finitely additive probability integration functional, or simply an
integration functional, on A .

Fact 3.2. Let (Ω,F , µ) be a probability space. Let A ⊆ [0, 1]Ω consist of all F -measurable functions
and let E : A → [0, 1] be integration dµ. Then (Ω,A , E) is an integration space.

Similarly if F is a mere Boolean algebra, µ is additive, and A consists of all simple F -measurable
functions.

Lemma 3.3. Let (Ω,A , E) be an integration space. Equip A with the distance d(X,Y ) = E(|X − Y |).
Then E(X) = d(X, 0) for all X ∈ A and (A , 0,¬, 12 ,−

. , d) is a pre-model of RV .

Proof. Indeed, d(X, 0) = E(|X |) = E(X). Now RV1,2 follows from the hypothesis and the fact that
X = (X−. Y )+ (X ∧Y ). RV3 holds by definition. It follows from the hypothesis that E(0) = 2E(0) = 0,
whence RV4. �3.3

In this situation we shall say that (A , E) is a pre-model of RV , or that E renders A a pre-model of
RV . If E renders A a pre-model of ARV then we say that (Ω,A , E) is atomless.
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Let Ω be an arbitrary set and let M = MΩ = {Mω}ω∈Ω be a family of L-structures. The product∏
M =

∏
ω∈ΩMω consists of all functions a : Ω →

⋃
Mω which satisfy a(ω) ∈ Mω for all ω ∈ Ω.

Function symbols and terms of L are interpreted naturally on
∏

M . For an L-formula ϕ(x̄) we define

〈〈ϕ(ā)〉〉 ∈ Ω[0,1], 〈〈ϕ(ā)〉〉 : ω 7→ ϕMω (ā(ω)).

Definition 3.4. Let Ω be a set, MΩ = {Mω}ω∈Ω a family of L-structures. Let also M ⊆
∏

M ,
A ⊆ [0, 1]Ω and E : A → [0, 1]. We say that (M,A , E) is a randomisation based on MΩ if

(i) The triplet (Ω,A , E) is an integration space.
(ii) The subset M ⊆

∏
M is non empty, closed under function symbols, and 〈〈P (ā)〉〉 ∈ A for every

n-ary predicate symbol P ∈ L and ā ∈ Mn.

We equip M with the pseudo-metric d(a,b) = E〈〈d(a,b)〉〉 and A with the L1 pseudo-metric d(X,Y ) =
E
(
|X − Y |

)
.

We may choose to consider E as part of the structure on A , in which case the randomisation is
denoted by the pair (M,A ) alone.

If (Ω,F , µ) is a probability space, every X ∈ A is F -measurable and E[X ] =
∫
X dµ then we say

that (M,A ) is based on the random family M(Ω,F ,µ) (and then we almost always omit E from the
notation).

The randomisation signature LR is defined as follows:

• The sorts of LR include the sorts of L, referred to as main sorts, plus a new auxiliary sort.
• Every function symbol of L is present in LR, between the corresponding main sorts. It is

equipped with the same uniform continuity moduli as in L.
• For every predicate symbol P of L, LR contains a function symbol JP K from the corresponding

main sorts into the auxiliary sort. It is equipped with the same uniform continuity moduli as
P in L.

• The auxiliary sort is equipped with the signature LRV .

A randomisation (M,A ) admits a natural interpretation as an LR-pre-structure (M,A ). The corres-

ponding structure will be denoted (M̂, Â ), and the canonical map [·] : (M,A ) → (M̂, Â ). We also

say that the randomisation (M,A ) is a representation of the structure (M̂, Â ).

Example 3.5. A special case of a randomisation is when M =
∏

M (i.e., the set of all sections from Ω
into MΩ), A = [0, 1]Ω, U is an ultra-filter on Ω, and EU : [0, 1]Ω → [0, 1] is the integration functional

corresponding to limits modulo U , i.e., EU (X) = limω→U X(ω). In this case Â = [0, 1] and M̂ can be
identified with the ultra-product

∏
U M .

Definition 3.6. We say that a randomisation (M,A ) is full if for every a,b ∈ M and X ∈ A , there is
a function c ∈ M satisfying:

c(ω) =





a(ω) X(ω) = 1,

b(ω) X(ω) = 0,

anything otherwise.

We shall sometimes write c = 〈X, a,b〉, even though there is no uniqueness here.
We say that (M,A ) is atomless if A is a pre-model of ARV (i.e., if (Ω,A , E) is atomless).

Example 3.7 (Randomisation of a single structure). Let M be a structure, (Ω,F , µ) an atomless prob-
ability space. Let Mc ⊆ MΩ consist of all functions a : Ω → M which take at most countably many
values in M , each on a measurable set. Define Ac ⊆ [0, 1]Ω similarly, equipping it with integration with
respect to µ. Then (Mc,Ac) is a full atomless randomisation.

Assume now that (Ω,F , µ) is merely a finitely additive probability space, namely that F is a mere
Boolean algebra and µ is finitely additive. Let Mf ⊆ MΩ and Af ⊆ [0, 1]Ω consist of functions which
take at most finitely many values, each on a measurable set. Again, (Mf ,Af) is an atomless, full
randomisation.

If (Ω,F , µ) is a true (i.e., σ-additive) probability space then both constructions are possible and

(Mf ,Af) ⊆ (Mc,Ac). It is not difficult to check that they have the same completion (M̂f , Âf ) =

(M̂c, Âc). In particular, Âf = Âc = L1(F , [0, 1]).
Moreover, the resulting structure only depends on A = L1(F , [0, 1]), and we denote it by (MA ,A )

(or just MA ).
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3.2. The randomisation theory. Our first task is to axiomatise the class of LR-structures which can
be obtained from full atomless randomisations (and in particular show that it is elementary). We shall
use x, y, . . . to denote variables of L, x,y, . . . to denote the corresponding variables in the main sort of LR

and U, V, . . . to denote variables in the auxiliary sort of LR. For simplicity of notation, an LR-structure
(M,A ) may be denoted by M alone. In this case, the auxiliary sort will be denoted by A M and we
may write somewhat informally M = (M,A M). When A M � RV we shall refer to the probability
algebra of A M as FM (so A M = L1(FM, [0, 1])).

The “base theory” for randomisation, which will be denoted by TRa0 , consists of the theory RV for the
auxiliary sort along with the following additional axioms (we recall that a−. b−. c = (a−. b)−. c):

(
δf,i(ε)−. Jd(x,y)K

)
∧
(
Jd(f(x̄′,x, ȳ′), f(x̄′,y, ȳ′))K −. ε

)
= 0(R1f ) (

δP,i(ε)−. Jd(x,y)K
)
∧
(
JP (x̄′,x, ȳ′)K −. JP (x̄′,y, ȳ′)K −. ε

)
= 0(R1P )

d(x,y) = EJd(x,y)K(R2)

sup
U∈F

inf
z
E
[(

Jd(x, z)K ∧ U
)
∨
(
Jd(y, z)K ∧ ¬U

)]
(R3)

In axiom R1, δs,i denotes the uniform continuity modulus of the symbol s with respect to its ith argument,
with |x̄′| = i and |ȳ′| = ns− i− 1. In axiom R3, F denotes the probability algebra of the auxiliary sort,
over which, modulo RV , we may quantify.

The role of axiom R1 is to ensure that the values of JP (ā)K(ω), f(ā)(ω) only depends on ā(ω) and
respect the uniform continuity moduli prescribed by L. Axiom R2 is straightforward, requiring the
distance in the main sort of be the expectation of the random variable associated to L-distance. Axiom
R3 is a gluing property, corresponding to fullness of a randomisation. It can be informally stated as

(∀xy)(∀U ∈ F )(∃z)
(
Jd(x, z)K ∧ U = Jd(y, z)K ∧ ¬U = 0

)
,(R3’)

where the existential quantifier is understood to hold in the approximate sense. We prove in Lemma 3.10
below that it actually holds in the precise sense.

Lemma 3.8. Let (M,A ) be a randomisation. Then (M,A ) is a pre-model of RV (in the auxiliary
sort) and of R1,2. If (M,A ) is full then (M,A ) is a pre-model of TRa0 .

Proof. All we have to show is that if (M,A ) is full then (M,A ) verifies R3, or equivalently, (M̂, Â )
does. However, we chose to write R3 using a quantifier over a definable set, a construct which need not
have the apparent semantics in a pre-structure such as (M,A ), and we find ourselves forced to work

with (M̂, Â ). (Indeed, since A is a mere pre-model of RV , the algebra of characteristic functions in A

may well be trivial.)

Let F̂ denote the probability algebra of Â and let A ∈ F̂ , a,b ∈ M̂. First, choose X ∈ A and
a′,b′ ∈ M such that [a′] and [b′] are very close to 1A, a and b, respectively. Define (recalling that for
t ∈ [0, 1] and n ∈ N, ṅt = (nt) ∧ 1):

Y = 2̇(X −. 1/4) ∈ A ,

c = 〈Y, a′,b′〉 ∈ M (by fullness),

W =
(
Jd(a′, c)K ∧ Y

)
∨
(
Jd(b′, c)K ∧ ¬Y

)
∈ A .

For every ω ∈ Ω we have Y (ω) ∈ {0, 1} =⇒ W (ω) = 0, or in other words, W (ω) 6= 0 =⇒ 0 < Y (ω) <
1 =⇒ 1/4 < X(ω) < 3/4. Thus W ≤ (4̇X)∧(4̇¬X). Having chosen our approximations good enough (we
allow ourselves to skip the detailed epsilon chase here), we see that [W ] ≤ (4̇[X ])∧ (4̇¬[X ]) is arbitrarily
close to 0 and [Y ] close to 1A. We conclude that

(
Jd(a, [c])K ∧A

)
∨
(
Jd(b, [c])K ∧ ¬A

)
can be arbitrarily

close to 0 in Â , which is what we needed to prove. �3.8

In order to prove a converse we need to construct, for every model M � TRa0 , a corresponding
randomisation.

Definition 3.9. Assume (M,A ) � TRa0 . Let (Ω, µ) = (ΩM, µM) be the Stone space of A as per
Theorem 2.7. Then we say that (M,A ) is based on (Ω, µ).

We recall that Ω is a compact Hausdorff topological space, µ is a regular Borel probability measure
and we may identify A = C(Ω, [0, 1]) = L1(µ, [0, 1]). Under this identification

∫
Ω
X dµ = E(X) for all

X ∈ A .
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For each ω ∈ Ω we define an L-pre-structure M0,ω. Its underlying set is M0,ω = M and the inter-
pretations of the symbols are inherited naturally from M:

fM0,ω = fM : Mn → M, PM0,ω (ā) = JP (ā)K(ω) ∈ [0, 1].

Notice that axiom R1d implies that Jd(x,y)K −. Jd(x, z)K ≤ Jd(y, z)K and axiom R2 implies Jd(x,x)K = 0.
Symmetry of Jd(x,y)K and the usual form of the triangle inequality follow, so dM0,ω is a pseudo-metric
for every ω. Other instances of axiom R1 imply that M0,ω respects uniform continuity moduli prescribed
by L. Thus M0,ω is indeed an L-pre-structure. The structure associated to M0,ω will be denoted Mω.
Let M denote the family {Mω}ω∈Ω and let aω denote the image of a in Mω.

Assume that a,b ∈ M are distinct. Then EJd(a,b)K > 0, whereby Jd(a,b)K(ω) > 0 for some ω ∈ Ω.
Thus aω 6= bω and the maps ω 7→ aω, ω 7→ bω are distinct. In other words, we may identify a ∈ M

with the map a : ω 7→ aω. Viewed in this manner we have M ⊆
∏

M . By construction, if f ∈ L is a
function symbol then its coordinate-wise action on M as a subset of

∏
M coincides with fM. Similarly,

if P ∈ L is a predicate symbol then 〈〈P (ā)〉〉 =
(
ω 7→ PMω (ā(ω))

)
= JP (ā)K ∈ A . We have thus identified

(M,A ) with a randomisation base on (Ω, µ). This randomisation is called the canonical representation
of (M,A ).

Lemma 3.10. Let M � TRa0 , a,b ∈ M and A ∈ FM. Then there exists (a unique) c = 〈A, a,b〉 ∈ M

which is equal to a over A and to b elsewhere:

Jd(a, c)K ∧ A = Jd(b, c)K ∧ ¬A = 0.

Identifying (M,A M) with its canonical representation based on Ω, A is identified with a (unique) clopen
set A ⊆ Ω and we have:

c(ω) =

{
a(ω) ω ∈ A,

b(ω) ω /∈ A.

Proof. By axiom R3, for every ε > 0, there is cε such that:

E
[(

Jd(a, cε)K ∧ A
)
∨
(
Jd(b, cε)K ∧ ¬A

)]
< ε.

Passing to the canonical representation it is easy to check that d(cε, cε′) < ε+ ε′ for any ε, ε′ > 0. Thus
(cε)ε→0+ is a Cauchy sequence whose limit c = 〈A, a,b〉 is as desired. Uniqueness is clear. �3.10

Theorem 3.11. An LR-structure is a model of TRa0 if and only if it has a full representation, i.e., if

and only if it is isomorphic to a structure (M̂, Â ) associated to a full randomisation (M,A ).
Moreover, let (M,A ) be a model of TRa0 . Then the canonical representation of (M,A ) is full, and

as an LR-pre-structure it is isomorphic to (M,A ). In particular, the LR-pre-structure associated to the
canonical representation is already a structure.

Proof. One direction is Lemma 3.8, so it is enough to prove the moreover part. It is clear that the
identity map is an isomorphism between the structure (M,A ) and the pre-structure associated to the
canonical representation, so all that is left to show is that the latter is full.

Let a,b ∈ M, X ∈ A . The set {X ≤ 1
2} ⊆ Ω is Borel and therefore equal outside a null measure set

to some clopen set U ⊆ Ω. We now have

X −. 1{X≥1/2} ≤ 1
2 =⇒ X −. 1U ≤ 1

2 , =⇒ U ⊇ {X = 1},

1{X≥1/2} −
. X ≤ 1

2 =⇒ 1U −. X ≤ 1
2 , =⇒ U ∩ {X = 0} = ∅.

Thus c = 〈U, a,b〉 will do as 〈X, a,b〉. �3.11

From now on we shall identify a model of TRa0 with its canonical representation whenever that is
convenient and without further mention.

3.3. Quantifiers. It is a classical fact that A = L1(F , [0, 1]) is a complete lattice. More precisely,
let A ⊆ A be any subset. We may assume that A is closed under ∧. Let r = inf{E(X) : X ∈ A}
and let (Xn)n∈N ⊆ A satisfy E(Xn) → r. By hypothesis E(Xn ∧ Xm) ≥ r whereby d(Xn, Xm) ≤
|E(Xn)− r|+ |E(Xm)− r|. The sequence (Xn)n∈N is therefore Cauchy and its limit is infA.

Let now (M,A ) be a model of TRa0 ,
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Definition 3.12. Let (M,A ) � TRa0 , t : Mn → A a function. We say that t is local if it is always true
that:

t(. . . , 〈A, a,b〉, . . .) = t(. . . , a, . . .) ∧ A+ t(. . . ,b, . . .) ∧ ¬A.

For a function t : Mn+1 → A we define infy t(x̄,y) : M
n → A by

infy t(ā,y) = inf{t(ā,b) : b ∈ M} ∈ A .

Lemma 3.13. Let t(x̄,y) be a uniformly definable local function in models of TRa0 from the main sort
into the auxiliary sort. Then the function s(x̄) = infy t(x̄,y) is uniformly definable and local as well,
and TRa0 implies that:

infz d
(
infy t(x̄,y), t(x̄, z)

)
= 0.

Moreover, for every ā in a model of TRa0 and ε > 0 there is b such that:

t(ā,b) ≤ infy t(ā,y) + ε

(Similarly for supy t.)

Proof. It follows directly from the definition that if t is local then so is infy t (no definability is needed
here).

We start by proving the moreover part. Let (M,A ) � TRa0 , ā ∈ Mn. Following the discussion of
the completeness of the lattice structure on A there is a sequence {cn}n∈N such that infy t(ā,y) =
infn t(ā, cn). Let us define a sequence {bn} by:

b0 = c0, bn+1 =
〈
{t(ā,bn)− t(ā, cn+1) > ε}, cn+1,bn

〉
.

In other words, when passing from bn to bn+1 we use cn+1 only where this means a decrease of more
than ε, and elsewhere keep bn.

Clearly
∑

n µ{t(ā,bn) − t(ā, cn+1) > ε} ≤ 1/ε. By construction, d(bn,bn+1) ≤ µ{t(ā,bn) −
t(ā, cn+1) > ε}, so the sequence {bn} converges to some b. Since t is local, we have t(ā,b) ≤ t(ā, cn)+ε,
whence t(ā,b) ≤ infy t(ā,y) + ε, as desired.

We can now prove the first assertion. Indeed, it follows from the moreover part that the graph of
infy t is uniformly definable as:

X = infy t(ā,y) ⇐⇒

{
supzE

(
X −. t(ā, z)

)
= 0,

infzE
(
t(ā, z)−. X

)
= 0.

Once we know that infy f is definable, the sentence in the second assertion is expressible, and holds true
by the moreover part. �3.13

We now proceed to define by induction, for every L-formula ϕ(x̄), a TRa0 -definable local function
Jϕ(x̄)K to the auxiliary sort, in the following natural manner:

• Atomic formulae: JP (τ̄ )K = JP K ◦ (τ̄ ) is a term, the composition of the function symbol JP K
with the L-terms τ̄ , which are also LR-terms. These are local by Theorem 3.11.

• Connectives: Jϕ −. ψK = JϕK −. JψK, and so on. Locality is clear.
• Quantifiers: Jinfy ϕ(x̄, y)K = infyJϕ(x̄,y)K, Jsupy ϕ(x̄, y)K = supyJϕ(x̄,y)K. Locality follows

from Lemma 3.13.

Our somewhat minimalist approach differs from that of Keisler, who introduces a function symbol
Jϕ(x̄)K for every L-formula ϕ (see [Kei99, BK09]). Keisler’s Boolean Axioms and Fullness Axiom are
valid in our setting by definition of JϕK (using Lemma 3.13 for fullness). Keisler’s Distance Axiom for
the main sort is our R2. While not entirely equivalent, Keisler’s Event Axiom corresponds to our axiom
R3. (More precisely, Keisler’s Event Axiom is equivalent to R3 plus supx,y d(x,y) = 1. We do not find
it necessary or desirable to assume the latter.) Other axioms related to the auxiliary sort, with the
exception of atomlessness, are coded in RV . We shall add atomlessness later on, when it is needed for
Theorem 3.32. We are left with the Validity Axioms which we also claim follow from TRa0 .

Theorem 3.14. Let (M,A ) be a model of TRa0 which we identify as usual with its canonical repres-
entation, based on (Ω, µ). Then for every formula ϕ(x̄) and tuple ā of the appropriate length we have
〈〈ϕ(ā)〉〉 = Jϕ(ā)K as functions on Ω (and not merely up to a null measure set).
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Proof. We prove by induction on ϕ. If ϕ is atomic this is known by construction and the induction
step for connectives is immediate. We are left with the case of a formula infx ϕ(x, ȳ). First of all, by
construction, we have:

〈〈infx ϕ(x, ā)〉〉 = infs
{
〈〈ϕ(b, ā)〉〉 : b ∈ M

}
,

Jinfx ϕ(x, ā)K = infxJϕ(x, ā)K = infL
1{

Jϕ(b, ā)K : b ∈ M
}
.

Here infs means the simple, or point-wise, infimum of functions on Ω. By definition Jinfx ϕ(x, ā)K ≤
Jϕ(b, ā)K for all b, and by the induction hypothesis for ϕ we have Jinfx ϕ(x, ā)K ≤ 〈〈ϕ(b, ā)〉〉. It follows
that Jinfx ϕ(x, ā)K ≤ 〈〈infx ϕ(x, ā)〉〉. Conversely, by Lemma 3.13, for every ε > 0 there exists b such that
Jinfx ϕ(x, ā)K + ε ≥ Jϕ(b, ā)K. Using the induction hypothesis again we obtain:

Jinfx ϕ(x, ā)K + ε ≥ 〈〈ϕ(b, ā)〉〉 ≥ 〈〈infx ϕ(x, ā)〉〉.

Equality follows. �3.14

Corollary 3.15. Let M � TRa0 and assume its canonical representation is based on the family M =
{Mω}ω∈Ω. Then for every L-sentence ϕ:

M � JϕK = 0 ⇐⇒ Mω � ϕ for all ω ∈ Ω.

Proof. Immediate from the fact that JϕK = 〈〈ϕ〉〉 on Ω. �3.15

Definition 3.16. Let T be a set of L-sentences. We define its randomisation TRa to be the LR-theory
consisting of the base theory along with the translation of T (Keisler’s Transfer Axioms):

TRa = TRa0 ∪ {JϕK = 0}ϕ∈T .

Corollary 3.17. Let T be arbitrary set of sentences, ϕ a sentence. Then T ⊢ ϕ⇐⇒ TRa ⊢ JϕK = 0.

Proof. Immediate. �3.17

Corollary 3.18 (Keisler’s Validity Axiom). Assume ϕ is a valid L-sentence. Then TRa0 ⊢ JϕK = 0.

3.4. A variant of Łoś’s Theorem.

Theorem 3.19 (Łoś’s Theorem for randomisation). Let MΩ be a family of structures, M =
∏

M , and

let E be an integration functional on A = [0, 1]Ω. Let (M̂, Â ) denote the structure associated to the
randomisation (M,A ).

Then (M,A ) is full and for every formula ϕ(x̄) and every ā ∈ Mn:
[
〈〈ϕ(ā)〉〉

]
= Jϕ([ā])K.

Proof. Fullness is immediate. We claim that
[
〈〈infy ϕ(ā, y)〉〉

]
= infb∈M

[
〈〈ϕ(ā,b)〉〉

]
for every formula

ϕ(x̄, y) and every ā ∈ Mn, where the infimum on the right hand side is in the sense of the lattice Â .
Indeed, the inequality ≤ is immediate. For ≥ observe that using the Axiom of Choice, for every ε > 0
we can find b ∈ M such that 〈〈infy ϕ(ā, y)〉〉+ ε ≥ 〈〈ϕ(ā,b)〉〉, whereby

[
〈〈infy ϕ(ā, y)〉〉

]
+ ε ≥

[
〈〈ϕ(ā,b)〉〉

]
.

We now prove the main assertion. First of all, we may replace ϕ with an equivalent formula ψ.
Indeed, on the left hand side we have immediately 〈〈ϕ(ā)〉〉 = 〈〈ψ(ā)〉〉. For the right hand side, we have
|JϕK−JψK| = J|ϕ−ψ|K, whereby TRa0 ⊢ JϕK = JψK. We may therefore assume that ϕ is in prenex form. We
now proceed by induction on the number of quantifiers. If ϕ is quantifier-free then

[
〈〈ϕ(ā)〉〉

]
= Jϕ([ā])K

by construction. For the induction step, recall that

Jinfy ϕ([ā], y)K = infyJϕ([ā],y)K = inf
b∈M̂

Jϕ([ā],b)K = inf
b∈M

Jϕ([ā], [b])K.

We conclude using the claim and the induction hypothesis. �3.19

Let us go back to the ultra-product example (Example 3.5), where M =
∏

M and M̂ =
∏

U M . By
construction EJinfy ϕ([ā], y)K = infb∈MEJϕ([ā], [b])K. One also always has EJ¬ϕ([ā])K = ¬EJϕ([ā])K,
EJ12ϕ([ā])K =

1
2EJϕ([ā])K. Since E = EU is given by an ultra-filter, we have moreoverEJϕ([ā])−. ψ([ā])K =

EJϕ([ā])K −. EJψ([ā])K. Thus the truth value of ϕ([ā]) in the ultra-product is precisely EJϕ([ā])K in the
sense of the randomised structure. Now the last item of Theorem 3.19 yields the classical version of Łoś’s
Theorem:

ϕ([ā]) = EU

[
〈〈ϕ(ā)〉〉

]
= lim

U
ϕ(a(ω)).
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Let us pursue a little further this analogy with classical ultra-products. Classical ultra-product con-
structions consist of fixing a family MΩ and a filter F on Ω with certain desired properties, then extending
this filter to an ultra-filter and taking the ultra-product. A filter on Ω can be viewed as a partial 0/1
measure: some sets have measure zero, some measure one, and for some the measure is not known. The
[0, 1]-valued analogue is a partial integration functional on [0, 1]Ω.

Definition 3.20. A partial integration space is a triplet (Ω,A0, E0) where Ω is a set, A0 ⊆ [0, 1]Ω is any
subset, and E0 : A0 → [0, 1] is a functional satisfying that for every finite sequence {(Xi,mi)}i<ℓ ⊆ A0×Z

and k ∈ Z: ∑
miXi ≥ k =⇒

∑
miE0(Xi) ≥ k.

In this case we say that E0 is a partial integration functional.

Clearly every integration functional is a partial integration functional. Conversely,

Fact 3.21. Let (Ω,A0, E0) be a partial integration space. Then E0 can be extended to a total integration
functional E on A = [0, 1]Ω, rendering (Ω,A , E) a (total) integration space.

Moreover, if (Ω,A0, E0) is an integration space, and atomless as such, then (Ω,A , E) is atomless as
well.

Proof. See [BK09, Section 5]. �3.21

Definition 3.22. A partial randomisation based on a family MΩ is a triplet (M,A0, E0) satisfying
all the properties of an ordinary (total) randomisation, with the exception that we do not require that
〈〈P (ā)〉〉 ∈ A0. We say that a partial randomisation is atomless if (A0, E0) � ARV .

By Fact 3.21 we may extend E0 to an integration functional E on A = [0, 1]Ω. We say that the (full)
randomisation (M,A ) = (M,A , E) is a totalisation of (M,A0, E0) and that the associated structure

(M̂, Â ) is a structure associated to (M,A0, E0). (It is an associated structure rather than the associated
structure because of the arbitrary choices involved.)

Definition 3.23. We recall that a random family of structures M(Ω,F ,µ) consists of a family of structures
MΩ = {Mω}ω∈Ω indexed by a probability space (Ω,F , µ). To every such random family we associate a
natural partial randomisation (M,A0, E0) where M =

∏
M and (Ω,A0, E0) is the integration space of

F -measurable functions on Ω. It is atomless if and only if (Ω,F , µ) is an atomless probability space.

If (M̂, Â ) is a structure associated to (M,A0, E0) then we also say that it is a structure associated
to the random family M(Ω,F ,µ).

Corollary 3.24. Let M(Ω,F ,µ) be a random family of structures and let (M,A ) be an associated

structure. Then for every ā in
∏

M and every formula ϕ(x̄), if 〈〈ϕ(ā)〉〉 ∈ [0, 1]Ω is F -measurable then

EJϕ([ā])KM =

∫

Ω

〈〈ϕ(ā)〉〉 dµ

Proof. Immediate from Theorem 3.19 and the construction. �3.24

This can be improved to construct extensions containing elements with desired properties.

Definition 3.25. An embedding σ : (M,A ) → (M1,A1) will be called a J·K-embedding if σJϕ(ā)KM =
Jϕ(σā)KM1 for every ā ∈ Mn and formula ϕ(x̄).

Definition 3.26. A morphism of integration spaces π : (Ω′,A ′, E′) → (Ω,A , E) is a projection π : Ω′ ։

Ω such that X ◦ π ∈ A ′ and E′(X ◦ π) = E(X) for all X ∈ A .

Corollary 3.27. Let (M,A ) � TRa0 with canonical representation (M,A ) based on M(Ω,F ,µ), so in
particular A = C(Ω, [0, 1]).

Let π : (Ω′,A ′
0 , E

′
0) → (Ω,A , E) be a morphism of integration spaces and let M ′

Ω′ = {M′
ω′}ω′∈Ω′ be

a family of elementary extensions Mπω′ � M′
ω′ . Set M′ =

∏
M ′

Ω′ , A ′ = [0, 1]Ω
′

, and for a ∈ M and
X ∈ A define

σa = a ◦ π = (ω′ 7→ a(πω′)) ∈ M′, σX = X ◦ π ∈ A
′.

Let (M̂′, Â ′) be an associated structure to the partial randomisation (M′,A ′
0 , E

′
0), and let

[σ] : (M,A ) → (M̂′, Â ′) be the map a 7→ [σa], X 7→ [σX ]. Then

(i) The map [σ] is a J·K-embedding.
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(ii) For every ā in
∏

M ′ and every ϕ(x̄), if 〈〈ϕ(ā)〉〉 ∈ A ′
0 then

EJϕ([ā])KM̂
′

= E′
0〈〈ϕ(ā)〉〉.

Proof. For the first item it is easy to check that [σ] is indeed an embedding. In order to see that [σ]
is a J·K-embedding let ā ∈ Mn and let ϕ(x̄) be a formula. Then 〈〈ϕ(ā)〉〉 = Jϕ(ā)K ∈ A ⊆ [0, 1]Ω by
Theorem 3.14, so

[
σJϕ(ā)K

]
=

[
σ〈〈ϕ(ā)〉〉

]
=

[
〈〈ϕ(σā)〉〉

]
= Jϕ([σā])K.

The second item is an immediate consequence of Theorem 3.19. �3.27

3.5. Quantifier elimination and types. Let TR0 consist of TRa0 along with the atomlessness axiom
ARV. In other words, TR0 consists of the theory ARV for the auxiliary sort plus axioms R1-3. Similarly,
we define TR = TRa +ARV = TR0 ∪ {JϕK = 0}ϕ∈T .

Example 3.28. Let M � T and let (Ω,F , µ) be any atomless probability space. Let (M,A ) be an
associated structure to the constant random family M(Ω,F ,µ) = {M}ω∈Ω. Then (M,A ) � TRa by

Corollary 3.24 and A is atomless, whereby (M,A ) � TR.

Lemma 3.29. Every model (M,A ) � TRa admits a J·K-embedding σ : (M,A ) → (M1,A 1) � TR.
In particular, TRa and TR are companions (which, as in classical logic, means that every model of one
embeds in a model of the other, or equivalently, that the two theories have the same universal consequences
supx̄ ϕ for quantifier-free ϕ).

Proof. Let ([0, 1],B, λ) denote the Lebesgue measure on [0, 1]. Apply Corollary 3.27 to (Ω′,F ′, µ′) =
(Ω,F , µ) × ([0, 1],B, λ) and M′

ω,r = Mω. The resulting embedding σ : (M,A ) → (M1,A 1) is a

J·K-embedding and A 1 is atomless. If ϕ ∈ T is a sentence then JϕKM
1

= σJϕKM = σ0 = 0. Thus
(M1,A 1) � TR, as desired. �3.29

Let us now fix an L-theory T . As usual, Sn(T ) (or sometimes Sx̄(T )) denotes the space of n-types of
T . Similarly, Sn(T

R) (or Sx̄(T
R)) denotes the space of n-types of the LR-theory TR.

Let us fix some additional notation. For a compact Hausdorff space X , let R(X) denote the space of
regular Borel probability measures on X . For ϕ ∈ C(X,C) and µ ∈ R(X) let 〈ϕ, µ〉 =

∫
ϕdµ and equip

R(X) with the weak topology, namely µs → µ if 〈ϕ, µs〉 → 〈ϕ, µ〉 for all ϕ. It is a classical (and easy)
fact that this renders R(X) a compact Hausdorff space as well.

Let p(x̄) ∈ Sn(T
R). It is not difficult to verify (e.g., using the Riesz Representation Theorem) that

there exists a unique regular Borel probability measure νp ∈ R(Sn(T )) characterised by the identity
EJϕ(x̄)Kp = 〈ϕ, νp〉 for every L-formula ϕ(x̄). The map p 7→ νp is continuous by definition of the
topology on R(Sn(T )).

We next claim that p 7→ νp is surjective. Indeed, let µ ∈ R(Sn(T )). For each p ∈ Sn(T ) choose a
model Mp and a realisation āp ∈Mn

p of p (we do not assume that T is complete so Mp may have to vary
with p). Let (M,A ) be a structure associated to the random family M = M(Sn(T ),µ) = {Mp}p∈Sn(T ).
Let ā ∈

∏
M be given by ā(p) = āp. By Corollary 3.24, for every formula ϕ(x̄):

EJϕ([ā])K = E[〈〈ϕ(ā)〉〉] = 〈ϕ, µ〉.

In particular, if ϕ ∈ T is a sentence then EJϕK = 0, so (M,A ) � TRa. By Lemma 3.29 we can embed

(M,A ) in a model (M1,A 1) � TR, and if p = tpM
1

(ā) then νp = µ. We argued above for types in
finitely many variables, but in exactly the same manner we associate to each p ∈ SI(T

R) a regular Borel
probability measure νp ∈ R(SI(T )) and this map is surjective, for an arbitrary index set I.

For quantifier elimination we shall require the following fact from [BV75].

Fact 3.30. Let S be any set, (Ω,F , µ) an atomless probability space. For each x ∈ S let us be given
a weight wx ≥ 0 and an event Cx ∈ F . For T ⊆ S let wT =

∑
x∈T wx, CT =

⋃
x∈T Cx. Then the

following are equivalent:

(i) For all T ⊆ S: µ(CT ) ≥ wT .
(ii) There exists a disjoint family {Dx}x∈S such that Dx ⊆ Cx and µ(Dx) = wx.

If wS = 1 then {Dx}x∈S is a partition of Ω (up to null measure).

Lemma 3.31. Let (M,A ) � TR0 be ℵ0-saturated, ā ∈ Mn, and let νā be an abbreviation for νtp(ā). Let
θ : Sn+1(L) → Sn(L) be the restriction to the first n variables. Then:

(i) For every b ∈ M, νā is the image measure of νā,b under θ.
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(ii) Conversely, let η ∈ R(Sn+1(L)) by such that its image measure under θ is νā. Then there is
b ∈ M such that η = νā,b.

Proof. The first item is immediate. For the second, it is enough to show that for every finite family
ϕi(x̄, y), i < ℓ, and for every ε > 0, there is b ∈ M such that

∣∣〈ϕi, η〉 − EJϕi(ā,b)K
∣∣ < ε for i < ℓ.

Let S = {sj}j<k be a partition of [0, 1]ℓ into finitely many Borel subsets, diam(si) < ε. For j < k let
wj = η{ϕ̄ ∈ sj}. Choose also t̄j ∈ sj and let ψj =

∨
i<ℓ |ϕi − tj,i|. Notice that

∣∣∣∣∣∣
〈ϕi, η〉 −

∑

j<k

wjtj,i

∣∣∣∣∣∣
≤

∑

j<k

wj diam(sj) < ε.

Let Cj ∈ F be the event
{
Jinfy ψj(ā, y)K < ε}. Following the notations of Fact 3.30, we claim that

µ(CT ) ≥ wT for all T ⊆ k. Indeed, notice that {ϕ̄ ∈ sj} ⊆ θ−1{ψj < ε}, whereby:

wT =
∑

j∈T

η{ϕ̄ ∈ sj} = η


⋃

j∈T

{ϕ̄ ∈ sj}


 ≤ η


⋃

j∈T

θ−1{ψj < ε}




= νā


⋃

j∈T

{ψj < ε}


 = µ(CT ).

By Fact 3.30 there are events Dj ⊆ Cj such that wT = µ(DT ) for all T ⊆ k. Since the total weight
is one, {Dj}j<k is a partition. By Lemma 3.13 and saturation of M there are bj ∈ M such that
Jinfy ψj(ā, y)K = Jψj(ā,bj)K. Notice that:

J|ϕi(ā,bj)− tj,i|K1Dj ≤ Jinf
y
ψj(ā, y)K1Cj < ε.

Let b =
〈
D0,b0, 〈D1,b1, . . .〉

〉
, i.e., b(ω) = bj(ω) when ω ∈ Dj. Now:

∣∣∣∣∣∣
∑

j<k

wjtj,i − EJϕi(ā,b)K

∣∣∣∣∣∣
≤

∑

j<k

∣∣wjtj,i − E
(
Jϕi(ā,b)K1Dj

)∣∣

=
∑

j<k

∣∣∣E
[(
tj,i − Jϕi(ā,bj)K

)
1Dj

]∣∣∣

≤ E


∑

j<k

∣∣tj,i − Jϕi(ā,bj)K
∣∣1Dj


 < ε.

Thus
∣∣〈ϕi, η〉 − EJϕi(ā,b)K

∣∣ < 2ε, which is good enough. �3.31

Theorem 3.32. (i) The theories of the form TR (and in particular TR0 ) eliminate quantifiers in
the main sort down to formulae of the form EJϕ(x̄)K.

(ii) The map p 7→ νp defined by 〈ϕ, νp〉 = EJϕKp induces a homeomorphism Sx̄(T
R) ≃ R(Sx̄(T )).

(iii) Let f : n → m be any map. Let f∗ : Sm(T ) → Sn(T ) be the map tp(a0, . . . , am−1) 7→
tp(af(0), . . . , af(n−1)) and similarly f∗,R : Sm(TR) → Sn(T

R). Let f̃∗ : R(Sm(T )) → R(Sn(T ))

be the image measure map corresponding to f̃∗. Then the following diagram commutes:

Sm(TR)

Sn(T
R)

R(Sm(T ))

R(Sn(T ))

...........................................................................................................
......
......
......

f∗,R

...........................................................................................................

......

......
......

f̃∗

........................................................................................................................................................................................................ ............
∼=

............................................................................................................................................................................................................. .....
.......

∼=

(iv) The completions of TR are in bijection with regular Borel probability measures on the space of
completions of T . In particular, if T is complete then so is TR.

Proof. The first item follows from Lemma 3.31 via a standard back-and-forth argument. For the second
item, we have already seen that the map p 7→ νp is continuous and surjective. From the first item it
follows that it is injective. Since both spaces are compact and Hausdorff, it is a homeomorphism. The
third item is easily verified. The last item is a special case of the second item for 0-types. �3.32
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Corollary 3.33. Assume that T eliminates quantifiers. Then so does TR, and it is the model completion
of TRa. If T is merely model complete then TR is model complete as well, and is the model companion
of TRa.

Proof. The case where T eliminates quantifiers is easy. The case where T is model complete requires
a bit more attention to details which we leave to the reader (see [Ben09b, Appendix A] for basic facts
regarding model completeness in continuous logic). �3.33

We have described formulae and types on the main sort. In order to handle the auxiliary sort, add to
L a sort S[0,1] for the set [0, 1], equipped with the tautological predicate id : S[0,1] → [0, 1] and with the
usual distance d(r, s) = | id(r) − id(s)|. This is a compact structure and therefore the unique model of
its theory, and adding it to models of T as a new sort does not add any structure on the original sorts.
Call the resulting signature L+ and the corresponding theory T+. It is easy to check that T+ eliminates
quantifiers if T does. Passing to TR+ , JidK is an isometric bijection between the main sort SR[0,1] of TR+
and the auxiliary sort, so questions about types and definability in the auxiliary sort can be settled by
applying Theorem 3.32 to the sort SR[0,1].

Corollary 3.34. Every LR-definable predicate on the auxiliary sort of TR, possibly with parameters ā

from the main sorts, is equivalent to one in the pure language of the auxiliary sort and with parameters
in

σ(ā) = σ
(
Jϕ(ā)K

)
ϕ(x̄)∈Lω,ω

⊆ F .

Consequently, the auxiliary sort is stable and stably embedded in models of TR, and if X̄ is a tuple in
the auxiliary sort then

tp(X̄/ā) ≡ tp(X̄/σ(ā)).

Proof. We may assume that T eliminates quantifiers, in which case so does T+ and therefore TR+ . It is

therefore enough to show that for a tuple of variables r̄ in the sort SR[0,1] and for any possible additional

parameters ā, any atomic formula in r̄ and ā is equivalent to a formula entirely in SR[0,1], possibly using

parameters in JidK−1(σ(ā)). Given the minimalistic structure we put on S[0,1], such an atomic formula
can either involve precisely one free variable ri or some of the parameters but no free variable. In the
first case we have Jid(ri)K which is as desired. In the second we have Jϕ(ā)K where ϕ(x̄) is an atomic
L-formula. In this case let X = JidK−1 ◦ Jϕ(ā)K ∈ SR[0,1], so Jϕ(ā)K = Jid(X)K, and the latter is again as

desired. �3.34

3.6. Types in TR when T is incomplete. Theorem 3.32 provides us with a complete description
of types in TR, whether T is complete or not. In various situations we shall encounter later on, this
description turns out to be much more useful when T is complete. What follows here is a brief discussion
of the general case and a reduction of sorts to the special case of a complete theory.

Let T be an incomplete theory and let p ∈ Sn(T
R). By Theorem 3.32 we may identify p with a regular

Borel probability measure νp ∈ R(Sn(T )). Let Ap = L1
(
(Sn(T ), νp), [0, 1]

)
and let (Ωp, µp) be its Stone

space. We have a natural identification of C(Ωp, [0, 1]) with Ap, so in particular every n-ary L-formula
ϕ(x̄) gives rise to a continuous function ϕ : Sn(T ) → [0, 1] with image ϕp ∈ Ap = C(Ωp, [0, 1]). Thus
for every ω ∈ Ωp we may define a complete type πpω ∈ Sn(T ) by ϕπpω = ϕp(ω). We obtain a map
πp : (Ωp, µp) → (Sn(T ), νp) which is continuous and sends µp to νp (as an image measure). It follows
that the image of πp is precisely the support of νp there, i.e., the smallest closed measure one set. This
discussion holds in particular when n = 0, i.e., when T = p ∈ S0(T

R) is a completion of TR.
Let now T be a completion of TR and p(x̄) ∈ Sn(T). There is a natural LRV -inclusion AT ⊆ Ap

giving rise to a projection (Ωp, µp) → (ΩT, µT) where µT is the image of µp. As in [BK09, Section 5] this
projection gives rise to a conditional expectation map E[·|T] : Ap → AT. In particular, to every formula
ϕ(x̄) we associated ϕp which in turn gets sent to E[ϕp|T] ∈ AT = C(ΩT, [0, 1]). Let us fix ω ∈ ΩT. It is
not difficult to check that ϕ 7→ E[ϕp|T](ω) is an integration functional on Sn(T ). Therefore there exists

a unique type pω ∈ Sn(T
R) verifying for all ϕ(x̄):

EJϕKpω = 〈ϕ, νpω 〉 = E[ϕp|T](ω).

The map ω 7→ pω has the following properties:

(i) It is determined by p (in particular, the completion T is determined by p).
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(ii) Conversely, it determines p as follows:

EJϕKp =

∫

ΩT

EJϕKpω dµT(ω).

(iii) Let πT : ΩT → S0(T ) be as in the previous paragraph, associating to each ω ∈ ΩT a completion
πTω of T . Then pω ∈ Sn

(
(πTω)

R
)
.

(iv) The map ω 7→ pω is continuous in the appropriate weak topology. Specifically, for every formula
ϕ(x̄) the map ω 7→ 〈ϕ, νpω 〉 is continuous on ΩT.

We therefore write

p =

∫

ΩT

pω dµT(ω),

saying this is an integral of a continuous family. (Conversely, every integral of a continuous or even
measurable family of TR-types gives rise to a TR-type.)

A special case of this situation is a type over parameters. Let (M,A ) � TR, A ⊆ M and p ∈ Sn(A).
Let us enumerate A = {aα}α∈I . Let A = {aα}α∈I be a set of new constant symbols and let LA = L∪A.
Even if T is a complete L-theory it is incomplete as an LA-theory. We view (M,A ) as an LRA-structure
naming A byA. It is then the model of a complete LRA-theory T and p ∈ Sn(T). Each ω ∈ ΩT gives rise to
an LA-completion πTω of T . In other words, each ω determines, so to speak, the L-type of the constants
A. Let Aω be an actual set in a model of T realising this type. Then pω ∈ R

(
Sn

(
πTω

))
= R(Sn(Aω)).

4. Preservation and non-preservation results

4.1. Categoricity. The theory ARV is ℵ0-categorical but not uncountably categorical, so this is the
most we can hope for from TR. We shall use the following criterion for ℵ0-categoricity.

Fact 4.1 (Ryll-Nardzewski Theorem for metric structures). A complete countable theory T is ℵ0-
categorical if and only if Sn(T ) is metrically compact for all n, if and only if the logic topology on
Sn(T ) coincides with the metric for all n.

Proof. This was originally stated and proved by C. Ward Henson for Banach space structures. For the
proof in continuous logic see [BU07, Fact 1.14]. Notice that it is customary to exclude the case of a
complete theory with a compact model (which is its unique model) from the definition of ℵ0-categoricity,
as well as from the statement of this theorem, but the theorem holds as stated if we do not. �4.1

Theorem 4.2. Assume T is a complete ℵ0-categorical theory in a countable language. Then so it TR.

Proof. It is enough to show that Sn(T
R) is totally bounded, i.e., that it can be covered by finitely many

ε-balls for every ε > 0. Let us therefore fix ε > 0. By assumption we can cover Sn(T ) with finitely many
ε-balls, say Sn(T ) =

⋃
i<k B(pi, ε). Fix N > k

ε , and let R = {m̄ ∈ Nk :
∑
mi = N}. Then R is finite,

and for every m̄ ∈ R we may define pm̄ =
∑ mi

N pi ∈ Sn(T
R). Let also Ci = B(pi, ε)r

⋃
j<iB(pj , ε), so

Sn(T ) =
⋃
iCi is a partition of Sn(T ) into a finite disjoint union of Borel sets of diameter ≤ ε.

Now let q ∈ Sn(T
R) be any type. Find a tuple m̄ ∈ R such that E = ‖m̄/N − (νq(Ci))i<k‖1 is

minimal. We can do this so that at each coördinate the difference is at most 1
N , so E < k

N < ε. We
claim that d(q,pm̄) < 2ε, which will conclude the proof.

Let a ∈ M realise q, and as usual let us identify M with its canonical representation, based on
M(Ω,µ). Let Di = {ω ∈ Ω: tp(a(ω)) ∈ Ci}, so µ(Di) = νq(Ci), and Ω =

⋃
Di is a partition of Ω into

disjoint Borel sets. We can now choose another such partition Ω =
⋃
D′
i such that each D′

i is comparable
with Di (i.e., either Di ⊆ D′

i or D′
i ⊆ Di) and µ(D′

i) = mi

N , so µ(Di△D′
i) = |mi

N − νq(Ci)|. For each
ω ∈ D′

i choose M′
ω � Mω and b(ω) ∈ M′

ω realising pi. If ω ∈ Di ∩D′
i then we arrange that in addition

d
(
b(ω), a(ω)) < ε. Apply Corollary 3.27 to obtain an elementary extension M

′ � M and b ∈ M
′ such

that tp(b) = pm̄ and d(b, a) ≤ ε(1− E) + E < 2ε, as desired. �4.2

Corollary 4.3. Assume T is a countable theory, possibly incomplete, with countably many completions,
all of which are ℵ0-categorical. Then every completion of TR is ℵ0-categorical.

Proof. Let {Tn}n∈α, denote the set of completions of T , where α ≤ ℵ0. The completions of T are in
bijection with measures on α, namely with sequences λ̄ ∈ [0, 1]α such that

∑
λn = 1. Every model M of

such a completion can be identified with a combination
∑
λnMn where Mn � (Tn)

R, and is uniquely
determined by M except where λn = 0. If M is separable then so is Mn (when λn > 0), whence the
uniqueness of M. �4.3
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Of course, in this case TR may admit continuum many completions, and yet it is not too difficult
to see that every completion of (TR)R is still ℵ0-categorical. On the other hand, the are theories T
with uncountably many completions, all of which are ℵ0-categorical, such that TR admits a non ℵ0-
categorical completion. Indeed, let T be the classical theory saying that there exist precisely 2 elements,
in a language with constants a and bn for n ∈ N. Using a as reference, a completion of T is determined
by whether bn = a or not for each n, so the space of completions of T is homeomorphic to 2N. Let T be
the completion of TR saying that Jbn = aK are independent events all of measure 1

2 . Let pn ∈ S1(T) be

the type x = bn. Then d(pn,pm) = 1
2 for all n 6= m and S1(T) is not metrically compact.

4.2. Stability. For all facts regarding stability in continuous logic, and in particular local stability, we
refer the reader to [BU10]. For topometric Cantor-Bendixson ranks see [Ben08].

When proving the preservation of stability in [BK09] we considered ϕ-types over arbitrary sets in
models of T and of TR, calculating averages over the finite set of non forking extensions of such types.
In doing so we proved not only that the randomisation of a stable theory is stable, but also that in such
a randomised theory all types over sets (in sorts of the original theory) were stationary.

In continuous logic the situation is, at least on the surface, much more complicated. Assume A ⊆M ,
p ∈ Sϕ(A), and let P ⊆ Sϕ(M) be the set of non forking extensions of p. Rather than being a finite
set, as in classical logic, P is merely known to be a transitive compact metric space (in the standard

metric on Sϕ(M), namely d(q, q′) = sup
{
|ϕ(x, b)q −ϕ(x, b)q

′

| : b ∈M
}
). By transitive we mean that the

action of the isometry group of P is transitive, which leads to the existence of a canonical probability
measure on P and thus to a canonical notion of an average value of a function on P . With this notion of
average we could, in principle, translate the entire argument of [BK09] to the case where T is continuous.
However, calculating averages over a transitive compact metric space is significantly more involved than
merely averaging over a finite set, rendering the translated argument quite difficult to follow.

We therefore choose to split the argument in two, and at a first time restrict our attention to types
over models, in which case the non forking extension is unique and no averaging is required. In Section 5
we prove quite independently that for any theory T (stable or not), types in TR coincide with Lascar
types. It follows that if T is stable then all types in TR are stationary.

As in [BK09] we shall use Shelah ranks, this time adapted to continuous logic. Let us fix for the time
being a monster model M containing all the parameters under consideration. We define the (k, ϕ)-rank
of a partial type π(x), denoted Rk(π, ϕ), and its multiplicity at rank s, denoted Mk(π, ϕ, s):

(i) If π is consistent then Rk(π, ϕ) ≥ 0.
(ii) Having defined when Rk(π, ϕ) ≥ s we define Mk(π, ϕ, s). We say that Mk(π, ϕ, s) ≥M if there

are types π(x) ⊆ πn(x) for n < M such that for every n < m < M there exists bnm for which

πn(x) ∪ πm(x′) ⊢ |ϕ(x, bnm)− ϕ(x′, bnm)| ≥ 2−k,

and in addition Rk(πn, ϕ) ≥ s for all i < M .
(iii) If Mk(π, ϕ, s) = ∞ then Rk(π, ϕ) ≥ s+ 1.

It is not difficult to see that if [π]ϕ denotes the closed set π defines in Sϕ(M), then:

Rk(π, ϕ) = CBf,2−k([π]ϕ) = CBb,2−k([π]ϕ),

where CBf,ε and CBb,ε are the topometric Cantor-Bendixson ranks defined in [Ben08, Section 3]. (Or
almost: these are the ranks we would obtain if we replaced there “≤ ε” with “< ε” and “> ε” with “≥ ε”.
Since we consider ranks for all ε > 0 this makes no difference.)

Let W denote a possibly infinite tuple of variables, π(x,W ) a partial type and k, s ∈ N. Then
Rk(π(x,W ), ϕ) ≥ s is a property of W , holding for A (of the appropriate size) if Rk(π(x,A), ϕ) ≥ s.
We may think of Rk(·, ϕ(x, y)) as a quantifier binding the variable x. Let also Rk(x/W,ϕ) ≥ s be the
property of xW which holds for aA if Rk(tp(a/A), ϕ) ≥ s.

Fact 4.4. The properties Rk(π(x,W ), ϕ) ≥ s and Rk(x/W,ϕ) ≥ s are type-definable (in W and in xW ,
respectively).

Proof. Both are shown using a standard “there exists a tree such that. . . ” argument. The second can
be deduced from the first since it may be re-written as Rk(x

′ ≡W x, ϕ(x′, y)) ≥ s where x′ is the bound
variable and xW the parameter variables. �4.4
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For α ≤ ω let R<α(π, α) denote the (finite or infinite) sequence
(
Rk(π, ϕ)

)
k<α

. Given a sequence

σ ∈ Nα and a partial type π(x) let

Sϕ(M)(σ) =
{
q ∈ Sϕ(M) : R<α(q, ϕ) ≥ σ

}

=
{
q ∈ Sϕ(M) : Rk(q, ϕ) ≥ σ(k) for all k < α

}
,

[π](σ)ϕ = [π]ϕ ∩ Sϕ(M)(σ) =
{
q ∈ Sϕ(M) : R<α(q ∪ π, ϕ) ≥ σ

}
.

We observe that Sϕ(M)(σ) and therefore [π]
(σ)
ϕ are closed sets (either directly or using properties of the

topometric Cantor-Bendixson ranks).
Before going further let us recall (e.g., from Bourbaki [Bou66, Chapter IV.6]) that for a topological

space X , a map f : X → R is upper (respectively, lower) semi-continuous if inf f(A) = inf f(A) (re-
spectively, sup f(A) = sup f(A)) for every non empty A ⊆ X . We shall require the following relatively
basic result, which we failed to find in topology textbooks (except for “if” part of the first item, [Bou66,
Corollary to Theorem IV.6.4]).

Fact 4.5. Let X be a compact Hausdorff space.

(i) A function f : X → R is lower semi-continuous if and only if it can be written as the point-wise
supremum of a family of continuous functions on X.

(ii) Assume that f : X → R is lower semi-continuous, g : X → R is upper semi-continuous, and
g < f . Then there is a continuous function h : X → R such that g < h < f .

Proof. let F ⊆ C(X,R) consist of all continuous functions smaller than f . If f = supF point-wise then
for all ∅ 6= A ⊆ X

sup f(A) = sup
g∈F

sup g(A) = sup
g∈F

sup g(A) = sup f(A).

Conversely, assume f is lower semi-continuous, and it will be enough to show that f ≤ supF point-wise.
Let x ∈ X , r < f(x), and let K = {x : f(x) ≤ r}. It follows from the assumptions that K = K is
compact. By Urysohn’s Lemma there exists a continuous function g : X → [0, r] verifying g↾K = 0 and
g(x) = r, so in particular g ∈ F . Thus supF(x) ≥ r, which is enough.

For the second item let us first fix x ∈ X . Since g(x) < f(x) there is a continuous function fx < f
such that g(x) < fx(x). Let Ux = {y : g(y) < fx(x)}. Notice that fx−g is lower semi-continuous so Ux is
open. By compactness there is a finite family {xi}i<n ⊆ X such that X =

⋃
i<n Uxi . Then h =

∨
i<n fxi

is as desired. �4.5

At this point let us fix ε > 0. For a finite sequence σ ∈ N<ω we define Ξσ to be the set of all formulae
ξ(x, w̄) such that for any ā ∈ M the diameter of [ξ(x, ā) < 1](σ) ⊆ Sϕ(M) is smaller than ε. (This is
analogous to Ξs,2 as defined in [BK09].)

Lemma 4.6. Let σ ∈ Nk, ξ(x, w̄) ∈ Ξσ. Then there exists a formula ξ̂σ(y, w̄) such that:

{ξ(x, w̄) ≤ 1
2} ∪ {R<k(x/w̄y, ϕ) ≥ σ} ⊢ |ξ̂σ(y, w̄)− ϕ(x, y)| < ε.

Proof. Let Y ⊆ Sx,y,w̄(T ) consist of all types q(x, y, w̄) for which the left hand side holds. Let X ⊆
Sx,w̄(T ) consist of all types verifying ξ(x, w̄) ≤ 1

2 and R<k(x/w̄, ϕ) ≥ σ. The restriction map π : Y → X
is surjective.

For p(x, z̄) ∈ X let a, c̄ � p and define

f(p) = max
{
ϕ(x, y)q : q ∈ π−1(p)

}
,

f(p) = min
{
ϕ(x, y)q : q ∈ π−1(p)

}
.

Let us make a few remarks regarding this definition. Since π is surjective the set π−1(p) is non empty
and compact. The maximum and minimum are therefore attained and f(p) ≤ f(q). Moreover, there

are types (not necessarily uniquely determined) p(x), p(x) ∈ [p(x, c̄)](σ) such that ϕ(x, b)p = f(p) and

ϕ(x, b)p = f(p). By hypothesis ξ(x, z̄)p ≤ 1
2 , so d(p, p) < ε and thus f(p) < f(p) + ε.

Letting p vary over X it is easy to check that f(p) is upper semi-continuous and similarly f is lower

semi-continuous. Thus there is a continuous function h : X → [0, 1] verifying f < h < f + ε. By

Tietze’s Extension Theorem there exists a continuous function h̃ : Sx,w̄(T ) → [0, 1] extending h and we

may identify h̃ with a definable predicate ξ̂σ(x, w̄) (or, if we insist on having an actual formula, we take

ξ̂σ(x, w̄) to be a formula close enough to h so that f < ξ̂σ(x, w̄) < f + ε on X).
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It is left to show that ξ̂σ(y, w̄) is as desired. Indeed, assume that a, b, c̄ � q ∈ Y . Then f(q↾x,w̄) ≤

ϕ(a, b) ≤ f(q↾x,w̄), whereby

ϕ(a, b) ≤ f(q↾x,w̄) < ξ̂σ(a, c̄) < f(q↾x,w̄) + ε ≤ ϕ(a, b) + ε. �4.6

We now turn to showing that members of Ξσ are, in a sense, plenty enough.

Lemma 4.7. Let M be a model of T , p ∈ Sx(M) a type, and let η = R<ω(p, ϕ).

(i) Let M � M be a very homogeneous and saturated extension and let [p](η) ⊆ Sϕ(M) be defined

as above. Then [p](η) = {q} where q is the unique non forking ϕ-extension of p.
(ii) There are k ∈ N, ξ(x, w̄) ∈ Ξη↾k and c̄ ∈ M such that ξ(x, c̄) ∈ p. Moreover, for any dense

subset M0 ⊆M we may arrange our choices so that c̄ ⊆M0.

Proof. The argument for the first item essentially appears in [BU10], although the Cantor-Bendixson
ranks used there are different. It goes through the following steps. The set [p](η) is topologically
and therefore metrically closed. By construction it is non empty and totally bounded, and therefore
metrically compact. Clearly it is also M -invariant, and it follows that every q ∈ [p](η) is definable over
acleq(M) =M . We conclude there is a unique such q which follows the definition of p.

For the second item consider the following partial type over M :

p(x) ∪ p(x′) ∪ {|ϕ(x, y) − ϕ(x′, y)| ≥ ε} ∪ {R<ω(x/My, ϕ) ≥ η} ∪ {R<ω(x
′/My, ϕ) ≥ η}.

By the first item this type is contradictory. Let us re-write p(x) as p(x,M) where p(x,W ) ∈ Sx,W (T ) is
a complete type. Then the following is inconsistent:

p(x,W ) ∪ p(x′,W ) ∪ {|ϕ(x, y) − ϕ(x′, y)| ≥ ε} ∪ {R<ω(x/Wy, ϕ) ≥ η} ∪ {R<ω(x
′/Wy, ϕ) ≥ η}.

Thus by compactness there are k ∈ N and ξ0(x, w̄) ∈ p(x,W ) such that the following is inconsistent:

{ξ(x, w̄) ≤ 2−k} ∪ {ξ(x′, w̄) ≤ 2−k} ∪ {|ϕ(x, y)− ϕ(x′, y)| ≥ ε}

∪ {R<k(x/w̄y, ϕ) ≥ η↾k} ∪ {R<k(x
′/w̄y, ϕ) ≥ η↾k}.

Let ξ = ξ0 ∔ · · · ∔ ξ0 (2k many times) and let c̄ ⊆ M correspond to w̄ ⊆ W . Then ξ, k and c̄ are as
desired.

For the moreover part first notice that p is equivalent to its restriction to M0 (where M0 ⊆M is any
dense subset), so the argument above holds just as well with M0 in place of M . �4.7

Lemma 4.8. Let T be any theory in a countable language. Let M � TR be a model based on (Ω, µ) and
let M0 � M be a countable elementary pre-sub-structure. For ω ∈ Ω let M0(ω) = {a(ω)}a∈M0

⊆ M(ω).
Then M0(ω) � M(ω) as L-pre-structures for all ω outside a null measure set.

Proof. Let us fix a formula ϕ(x, w̄) and b̄ ∈ M0. By Theorem 3.14 we have supx ϕ(x, b̄(ω))
M(ω) =

Jsupx ϕ(x, b̄)K
M(ω) for all ω ∈ Ω, where Jsupx ϕ(x, b̄)K

M is viewed as a continuous function Ω → [0, 1].
On the other hand we have

Jsupx ϕ(x, b̄)K
M =

(
supxJϕ(x, b̄)K

)M̂0

= supL1

{
Jϕ(a, b̄)KM̂0 : a ∈ M̂0

}
= supL1

{
Jϕ(a, b̄)KM : a ∈ M0

}
.

Thus we have outside a null measure set

Jsupx ϕ(x, b̄)K
M(ω) = sup

{
ϕ(a(ω), b̄(ω))M(ω) : a ∈ M0

}
.

There are countably many formulae ϕ(x, b̄) to be considered, so outside a null measure set the Tarski-
Vaught Criterion holds and M0(ω) � M(ω). �4.8

Theorem 4.9. Let ϕ(x, y) be a stable formula for a theory T . Then the formula EJϕ(x,y)K is stable
for TR. If T is stable the so is TR.

Proof. We may assume that the language of T is countable (for if not, we may restrict to a sub-language
containing just the symbols appearing in ϕ). It will therefore be enough to show that for every separable
model M � TR, every type p ∈ Sx(M) is EJϕK-definable. For this purpose let a ∈ M

′ � M realise p.
Let also M0 = {cn}n∈N ⊆ M be a dense pre-sub-structure. By Lemma 4.8 there is a measure one set
Ω0 ⊆ Ω such that M0(ω) � M(ω) for all ω ∈ Ω0.
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Let Υ consist of all triplets (σ, ξ, c̄) where σ ∈ N<ω, ξ(x, w̄) ∈ Ξσ and c̄ ∈ M0 with |w̄| = |c̄|. For
(σ, ξ, c̄) ∈ Υ define subsets of Ω as follows:

Aσ = {ω : R<|σ|(a(ω)/Mω , ϕ) ≥ σ},

Bσ,ξ,c̄ = {ω ∈ Aσ : ξ(a(ω), c̄(ω)) < 1}.

The set Aσ is closed and each Bσ,ξ,c̄ is relatively open in Aσ, so in particular Borel. Moreover, by
Lemma 4.7 every ω ∈ Ω0 belongs to some Bσ,ξ,c̄.

Given all our countability assumptions we may enumerate Υ = {(σm, ξm, c̄m)}m∈N. Let us also write

ξm explicitly as ξm(x, w̄m). By Lemma 4.6 there is a formula ξ̂mσm(y, w̄m) such that

{ξm(x, w̄m) < 1} ∪ {R<|σm|(x/w̄
my, ϕ) ≥ σm} ⊢ |ξ̂mσm(y, w̄m)− ϕ(x, y)| < ε.

For m ∈ N let Dm = Bσm,ξm,c̄m r
⋃
k<mBσk,ξk,c̄k . Then {Dm}m∈N is a family of disjoint Borel sets

and µ (
⋃
Dm) = µ(Ω0) = 1. In addition, for all ω ∈ Dm ⊆ Bσm,ξm,c̄m and b ∈ M we have

|ξ̂mσm(b(ω), c̄m(ω))− ϕ(a(ω),b(ω))| < ε.

For each m let Xm = P[Dm|FM] ∈ A M and let

ψ(y) =
∑

m

E
[
XmJξ̂mσm(y, c̄m)K

]
.

Since
∑
Xm = 1 this infinite sum converges uniformly to an M-definable predicate. We now claim that

ψ is ε-close to a EJϕK-definition for p. Indeed, for b ∈ M we have Jξ̂mσm (y, c̄m)K ∈ A M, whereby

ψ(b) =
∑

m

∫

Dm

Jξ̂mσm (b, c̄m)K dµ.

We obtain

∣∣ψ(b)− EJϕ(a,b)K
∣∣ ≤

∑

m

∫

Dm

|ξ̂mσm(b, c̄m)− ϕ(a,b)| dµ < ε.

We have shown that the predicate b 7→ EJϕ(x,b)Kp is arbitrarily well approximated on M0, and therefore
on M0, by an M0-definable predicate. It follows that p admits an EJϕK-definition. Since this holds for
every type p over a model the formula EJϕ(x,y)K is stable.

The second assertion follows from the first using quantifier elimination down to formulae of the form
EJϕK (Theorem 3.32), since continuous combinations of stable formulae are stable. �4.9

4.3. Dependence. Recall that a formula ϕ(x̄, ȳ) is ε-independent in a theory T for some ε > 0 one can
find in some model of T an indiscernible sequence (b̄n)n∈N and ā such that:

∨

n

ϕ(ā, b̄2n) + ε <
∧

n

ϕ(ā, b̄2n+1).

The formula ϕ is independent if it independent for some ε > 0. The theory T is dependent if every
formula is dependent, i.e., if every formula is ε-dependent for every ε > 0.

Theorem 4.10. A theory T is dependent if and only if its randomisation TR is.

Proof. It is immediate to check that if ϕ(x̄, ȳ) is ε-independent in T then EJϕ(x̄, ȳ)K is ε-independent in
TR. The converse is [Ben09a, Theorem 5.3]. �4.10

For the converse, let us extend the so-called TP2 to continuous logic:

Definition 4.11. We say that a theory T has the tree property of the second kind, or TP2, if there exists
a formula ϕ(x̄, ȳ), and in a model of T an array (b̄n,m)n,m∈N, such that:

(i) The sequences In = (bn,m)m∈N are mutually indiscernible, i.e., each is indiscernible over the
others.

(ii) The sequence of sequences (In)n∈N is indiscernible.
(iii) The set of conditions {ϕ(x̄, b̄n,m) = 0}m∈N is inconsistent for one, or equivalently all, n.
(iv) The set of conditions {ϕ(x̄, b̄n,f(n)) = 0}n∈N is consistent for one, or equivalently every, map

f : N → N.
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Let us also recall that a theory is simple (Shelah [She80]) if every complete type over a set A does not
divide over a subset A0 ⊆ A with |A0| ≤ |T |. Shelah [She90, Chapter III.7] proves that TP2 implies both
independence and non simplicity (and more), via the study of the relations between associated cardinal
invariants. Since this is proved for classical logic, let us give a quick argument why the same is true in
continuous logic (since there is no treatment of simplicity in continuous logic as such, we refer the reader
to [Ben03b] for a treatment of simplicity in the even larger context of compact abstract theories).

Proposition 4.12. Assume T has TP2. Then T is neither simple nor dependent.

Proof. By compactness we may extend the indiscernible sequence of lines to length κ = |T |+, and find
ā such that ϕ(ā, b̄i,0) = 0 for all i < κ. Then tp(ā/b̄<κ,0) divides over every subset of size ≤ |T |, so T
is not simple. By compactness, there exists ε > 0 such that {ϕ(x̄, b̄n,m) ≤ ε}m∈N is inconsistent for all
n ∈ N. Let c̄n = b̄n,0 for even n, and for odd n let c̄n = b̄n,m such that ϕ(ā, b̄n,m) > ε. Then J = (c̄n) is
indiscernible, and along with ā witnesses that T is independent. �4.12

Theorem 4.13. Assume T is independent. Then TR has the tree property of the second kind, and is in
particular neither dependent nor simple.

Proof. After a few standard manipulations of the independent formula ϕ, we may assume that there is
a model M � T and in there an indiscernible sequence (bm) as well as a such that ϕ(a, b2m) = 0 and
ϕ(a, b2m+1) = 1. Assuming M to be saturated enough, it follows that for every w ⊆ N there exists
aw ∈M such that ϕ(aw, bm) = 0 if m ∈ w and = 1 otherwise. Let A � ARV and M = MA � TR, and
let us identify members of M with constant random variables in M. In A we may find an array (An,m)
of independent events of measure 1

2 , which in fact forms an indiscernible set, and by Corollary 3.34 it is
an indiscernible set over M (the constants). Let us consider the array (bnAn,m)n,m in M, in which bn
occurs repeatedly throughout the nth line In = (bnAn,m)m. Then the lines are mutually indiscernible,
and form an indiscernible sequence (In)n.

Consider now the formula ψ(x,yU) = d
(
Jϕ(x,y)K, U

)
. For n ∈ N and w ⊆ n let Bw,n =

∧
i<nA

i∈w
i,0 ,

where A⊤ = A and A⊥ = ¬A. By fullness we may construct an such that for each w ⊆ n, an = aw
on Bw,n, and observe that ψ(an, biAi,0) = 0 for all i < n. In a saturated elementary extension we may
therefore find a such that ψ(a, bnAn,0) = 0 for all n. On the other hand, if ψ(a′, b0A0,0) = 0 then
ψ(a′, b0A0,1) =

1
2 . Thus TR has TP2. �4.13

Question 4.14. Say that a continuous theory T has the strict order property (SOP) if there exists a
formula ϕ(x̄, ȳ) which defines a continuous pre-ordering with infinite ε-chains for some ε > 0, i.e.,
satisfies:

• Reflexivity: ϕ(ā, ā) = 0.
• Transitivity: ϕ(ā, c̄) ≤ ϕ(ā, b̄) + ϕ(b̄, c̄).
• Infinite ε-chain: There exists ε > 0 and a sequence (ān)n∈N in a model of T such that:

∨

n<m

ϕ(ān, ām) + ε <
∧

n>m

ϕ(ān, ām).

One can show that T is unstable if and only if it is independent or has the strict order property. Indeed, a
straightforward translation of the proof for classical first order theories, as can be found in Poizat [Poi85],
would work, keeping in mind that every formula of the form ϕ(x, x′) = supy

(
ψ(x, y)−. ψ(x′, y)

)
defines a

continuous pre-ordering, in analogy with formulae of the form ∀y
(
ψ(x, y) → ψ(x′, y)

)
in classical logic.

(i) Assume T is independent. Does TR has the strict order property?
(ii) Alternatively, is it true that if T does not have the strict order property then neither does TR?

Corollary 4.15. Randomisation cannot produce simple unstable theories: if TR is simple then it is in
fact stable.

Proof. As in classical logic, the strict order property implies non simplicity, so a simple dependent theory
is stable. �4.15

5. Lascar types

Definition 5.1. Let a and b be two tuples, possibly infinite, in a structure M. We say that dL(a, b) ≤ 1
if in some (every) sufficiently saturated elementary extension N � M there exists an elementary sub-
structure N0 � N such that a ≡N0

b. We say that dL(a, b) ≤ n if in some (every) sufficiently saturated
elementary extension there exist a0 = a, a1, . . . , an = b such that dL(ak, ak+1) ≤ 1 for k < n.
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If dL(a, b) < ∞, i.e., if dL(a, b) ≤ n for some n, then we say that a and b have the same Lascar type,
in symbols a ≡L b.

The following is by now essentially folklore, and in any case quite easy.

Fact 5.2. (i) For every n, the relation dL(x, y) ≤ n is a reflexive, symmetric type-definable relation.
(ii) The relation ≡L is the transitive closure of dL(x, y) ≤ n for any n > 0. It is the finest bounded

automorphism-invariant equivalence relation on the sort in question.
(iii) If dL(a, b) ≤ n in some sufficiently saturated structure M then for every other tuple a′ there

exists b′ such that dL(a′a, b′b) ≤ n.

Definition 5.3. Let (M,A ) � TR. An A -type in (M,A ) is a complete type over a subset of A which
has a unique extension to a type over A . We define the A -type of ā ∈ Mn to be tpA (ā) = tp(ā/σ(ā)).

Lemma 5.4. A type p(x̄) over a subset of A is an A -type if and only if it is equivalent to tpA (ā) for
some ā, if and only if it determines Jϕ(ā)K for every formula ϕ(x̄). It is then axiomatised by the set of
all conditions of the form Jϕ(x̄)K = Jϕ(ā)K. Moreover, tpA (ā) = tpA (b̄) if and only if, in the canonical
representation, ā(ω) ≡ b̄(ω) for all ω.

Proof. Easy, using Corollary 3.34. �5.4

We may therefore write ā ≡A b̄ to say that ā and b̄ have the same A -type. Similarly, if p(x̄) is an
A -type we may write Jϕ(x̄)Kp ∈ A for the value of Jϕ(x̄)K as determined by p.

Lemma 5.5. Let T be any theory, (M,A ) a sufficiently saturated model of TR. Let a,b ∈ M, a ≡ b.
Then there exists c ∈ M such that dL(a, c) ≤ 1 (so a ≡L c) and c ≡A b.

Proof. Let A0 ⊆ A be the sub-structure generated by JϕK where ϕ varies over all sentences. Then
A0 ⊆ dcl(∅) in (M,A ). Let Φ be the collection of all formulae ϕ(x) with the appropriate variable. For
ϕ ∈ Φ let Xϕ = Jϕ(a)K and let X̄ = (Xϕ)ϕ∈Φ. Define Ȳ = (Yϕ)ϕ∈Φ = (Jϕ(b)K)ϕ∈Φ similarly. Then by
assumption X̄ ≡ Ȳ in (M,A ), whereby X̄ ≡A0

Ȳ .
Let (M1,A1) � (M,A ) be a small elementary sub-structure. Then necessarily A0 ⊆ A1. By our

saturation assumption we may find A2 ⊆ A such that A2 ≡A0
A1 and A2 |⌣A0

X̄, Ȳ , both in the sense

of A (as a model of ARV ). By Corollary 3.34 we have A2 ≡ A1 in the structure (M,A ) so again by
saturation there is M2 ⊆ M such that (M2,A2) ≡ (M1,A1), and in particular (M2,A2) � (M,A ).

By construction we have X̄ ≡A2
Ȳ in the sense of A and applying Corollary 3.34 again we obtain

X̄ ≡(M2,A2) Ȳ . Thus dL(X̄, Ȳ ) ≤ 1. By Fact 5.2 there is c such that dL(aX̄, cȲ ) ≤ 1. In particular

aX̄ ≡ cȲ whereby Yϕ = Jϕ(c)K for all ϕ(x). Thus c ≡A b as desired. �5.5

We now turn to consider the case where a ≡A b. We shall require an additional technical result.

Lemma 5.6. Let Ω be a set, τ : Ω → Ω a bijection. Then there exists an integration functional E on
A = [0, 1]Ω which is moreover invariant under τ : E[X ] = E[X ◦ τ ] for all X ∈ A .

Proof. This is a special case of a general fact that if an amenable group G (in our case, (Z,+)) acts on
a space Ω then Ω admits a G-invariant probability integration functional. �5.6

Lemma 5.7. Let T be any theory, (M,A ) � TR. Let a,b ∈ M, a ≡A b. Then dL(a,b) ≤ 1 (so in
particular a ≡L b).

Proof. Let (M,A ) be the canonical representation of (M,A ), based on M = {Mω}ω∈Ω. Then for
every ω ∈ Ω we have a(ω) ≡ b(ω) in Mω, so there exists an elementary extension M′

ω � Mω and
hω ∈ Gω = Aut(M′

ω) such that hωa(ω) = b(ω). Let Ḡ =
∏
Gω, h̄ = (hω)ω ∈ Ḡ. Let Ω′ = Ω × Ḡ,

and let π : Ω′ → Ω be the projection on the first coördinate. By Fact 3.21 there exists an integration
functional E1 on A1 = [0, 1]Ω which extends integration of Borel functions. The left action of h̄ on Ḡ

is bijective, so [0, 1]Ḡ admits an integration functional EG which is invariant under the left action of h̄.

Let A ′ = [0, 1]Ω
′

, and for X ′ ∈ A ′ define E′[X ′] = E
[
ω 7→ EG[X

′(ω, ·)], which we may also write as

Eω[EḡG[X
′(ω, ḡ)]] or simply E[EG[X ]]. Then E′ is easily checked to be an integration functional.

For (ω, ḡ) ∈ Ω′ let M′
(ω,ḡ) = M′

ω, thus obtaining a family M ′
Ω′ = {M′

ω′}ω′∈Ω′ with Mπω′ � M′
ω′ .

Let σω′ : Mπω′ →֒ M′
ω′ denote this elementary inclusion. For (ω, ḡ) = (ω, gζ)ζ∈Ω ∈ Ω′ define η(ω,ḡ) =

gω ◦ σ(ω,ḡ) : Mω →֒ M′
(ω,ḡ), which is another elementary embedding. With M′ =

∏
M ′

Ω′ , we obtain two

maps σ, η : M → M′, given by

(σc)(ω, ḡ) = σ(ω,ḡ)(c(ω)) = c(ω),

(ηc)(ω, ḡ) = η(ω,ḡ)(c(ω)) = gω(c(ω)).
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We are now in the situation described in Corollary 3.27. In particular, the triplet (M′,A ′, E′) is a

randomisation, and we obtain two J·K-embeddings, [σ], [η] : (M,A ) → (M̂′, Â ′), where [σc] and [ηc]

are the images in M̂
′ of σc and ηc defined above, and [σX ] = [ηX ] = [X ◦ π]. By quantifier elimination

for TR these embeddings are elementary.
We claim that [σa] ≡[ηM] [σb]. Indeed, let c̄ ∈ M, ϕ(x, ȳ) any formula, and let X = 〈〈ϕ(σa, ηc̄)〉〉 and

Y = 〈〈ϕ(σb, ηc̄)〉〉, both members of [0, 1]Ω
′

. Fix ω ∈ Ω, and let ḡ ∈ Ḡ vary freely. Then:

X(ω, ḡ) = ϕ
(
a(ω), η(ω,ḡ)c̄(ω)

)

= ϕ
(
hωa(ω), hωη(ω,ḡ)c̄(ω)

)

= ϕ
(
b(ω), η(ω,h̄ḡ)c̄(ω)

)

= Y (ω, h̄ḡ).

Since EG was chosen invariant under the left action of h̄ on Ḡ we obtain that EG[X(ω, ·)] = EG[Y (ω, ·)]
for all ω, whereby E′[X ] = E′[Y ]. We obtain

EJϕ([σa], [ηc̄])K = E′〈〈ϕ(σa, ηc̄)〉〉 = E′〈〈ϕ(σb, ηc̄)〉〉 = EJϕ([σb], [ηc̄])K,

proving our claim. Since [η] is an elementary embedding we have dL([σa], [σb]) ≤ 1, and since [σ] is an
elementary embedding we conclude that dL(a,b) ≤ 1. �5.7

Theorem 5.8. Let T be any theory, (M,A ) � TR, a,b ∈ M, and let A ⊆ M be any set of parameters.
Then the following are equivalent:

(i) a ≡LA b.
(ii) a ≡A b.
(iii) dLA(a,b) ≤ 2, where dLA is defined as dL, over parameters in A.

Proof. First of all we may name A in the language (at no point did we assume that T was complete),
so we may assume that A = ∅. For the implication (ii) =⇒ (iii), just apply Lemma 5.5 followed by
Lemma 5.7. The implications (iii) =⇒ (i) =⇒ (ii) are standard and holds in arbitrary structures. �5.8

Corollary 5.9. Let M � TR, A ⊆ M. Let dcleq,R denote the definable closure in the sense of (TR)eq,

and similarly for acleq,R. Then dcleq,R(A) = acleq,R(A) in M.

Notice that even though dcleq,R(A) and acleq,R(A) may contain imaginary elements in the sense TR,
the set A is required to consist of real elements, i.e., elements coming from sorts of T .

Corollary 5.10. For every theory T , the theory TR is G-compact, which means that for every set of
parameters A and for every tuple length α, the relation ā ≡LA b̄ between tuples of length α is type-definable
over A.

Proof. Since the relation dLA(x̄, ȳ) ≤ 2 is type-definable. �5.10
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