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ON THEORIES OF RANDOM VARIABLES

ITAÏ BEN YAACOV

Abstract. Nous étudions des théories d’espaces de variables aléatoires : en un pre-
mier temps, nous considérons les variables aléatoires à valeurs dans l’intervalle [0, 1],
puis à valeur dans des structures métriques quelconques, généralisant la procédure
d’aléatoirisation de structures classiques due à Keisler. Nous démontrons des résultats
de préservation et de non-préservation de propriétés modèle-théoriques par cette con-
struction :

(i) L’aléatoirisée d’une structure ou théorie stable est stable.
(ii) L’aléatoirisée d’une structure ou théorie simple instable n’est pas simple.

Nous démontrons également que dans la structure aléatoirisée, tout type est un type de
Lascar.

We study theories of spaces of random variables: first, we consider random variables
with values in the interval [0, 1], then with values in an arbitrary metric structure,
generalising Keisler’s randomisation of classical structures. We prove preservation and
non-preservation results for model theoretic properties under this construction:

(i) The randomisation of a stable structure is stable.
(ii) The randomisation of a simple unstable structure is not simple.

We also prove that in the randomised structure, every type is a Lascar type.

Introduction

Mathematical structures arising in the theory of probabilities are among the most
natural examples for metric structures which admit a model theoretic treatment, albeit
not in the strict setting of classical first order logic. Examples include the treatment
of adapted spaces by Keisler & Fajardo [FK02], in which no logic of any kind appears
explicitly (even though many model theoretic notions, such as types, do appear). An-
other example, which is the main topic of the present paper, is Keisler’s randomisation
construction [Kei99], in which one considers spaces of random variables whose values lie
in some given structures. The randomisation construction was originally set up in the
formalism of classical first order logic, viewing probability algebras as classical structures.
We consider that this formalism was not entirely adequate for the purpose, and that it
restricted considerably what could be done or proved. To the best of our knowledge,

Key words and phrases. random variables; continuous logic; metric structures.
Research supported by ANR chaire d’excellence junior THEMODMET (ANR-06-CEXC-007) and by

Marie Curie research network ModNet.
Revision 785 of 11 January 2009.

1



2 ITAÏ BEN YAACOV

the first model theoretic treatment of a probabilistic structure in which notions such
as stability and model theoretic independence were considered was carried out by the
author in [Ben06], in which probability spaces were considered via their probability al-
gebras, in the formalism of compact abstract theories. While this latter formalism was
adequate, in the sense that it did allow one to show that probability algebras are stable
and that the model theoretic independence coincides with the probabilistic one, it was
quite cumbersome, and soon to be obsolete.

Continuous first order logic is a relatively new formalism, at least in its present form,
developed by Alexander Usvyatsov and the author [BU] as a formalism for a model
theoretic treatment of (classes of) complete metric structures. For example, we observe
there that the class of probability algebras is elementary, its theory admitting a simple
set of axioms, and that the theory of atomless probability algebras admits quantifier
elimination, thus simplifying considerably many of the technical considerations contained
in [Ben06]. Viewing probability algebras as metric structures in this fashion, rather than
as classical structures, allowed Keisler and the author [BK] to present randomisation
as metric structures. With the metric formalism one can prove several preservation
results, e.g., if a structure is stable then so is its randomisation, which are false in the
old formalism of [Kei99]. In addition, types in the metric randomisation correspond to
Borel probability measures on the space of types of the original theory, also referred
to nowadays as Keisler measures, and which turned out to be particularly useful for the
study of dependent theories, e.g., in [HPP08]. A preservation result for dependence (i.e.e,
if a theory is dependent then so is its randomisation) was proved by the author in [Bena].

The present paper comes to fill in and complete the state of knowledge regarding the
randomisation in some points where we find it wanting. One point regards the formal-
ism. As we pointed above, the correct formalism for the randomised structures is that
of metric structures and continuous logic, even when the original structures are classi-
cal. It is therefore natural to extend the construction of [BK], which only randomises
classical structures and theories, to randomisation of metric structures and of continuous
theories. This extension is quite straightforward, with one technical complication that
probability algebras need to be replaced with spaces of [0, 1]-valued random variables,
whose theory, while again relatively straightforward, has not yet been looked at. (It is
worthwhile to point out that the description of random types as Borel probability mea-
sures on the original type spaces holds just as well for randomisation of metric structures,
allowing the preservation of dependence to be proved in [Bena] for the randomisation of
metric structures even before the latter was formally defined.) Another point is that
the treatment of randomisation in [BK] is closely based on [Kei99], many times referring
to it for proofs. In the present paper we seek to develop the theory of randomisation
directly in the metric setting, rather than as a modification of a development in another
formalism. We even gain a little doing that. For example, the classical formalism used
in [Kei99] makes it necessary to name the randomisation of each L-formula in LR (the
randomisation language), so TR (the randomisation theory) must contain axioms which
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deal explicitly with the relations between the randomised formulae, an approach also
adopted in [BK]. Here we observe that it is enough to put in LR the randomisations of
the relation symbols of L, leading to much more compact language and set of axioms.
A third and relatively minor point is that our proof of preservation of stability in [BK]
had a corollary that types over arbitrary sets are stationary, or equivalently, are Lascar
types. In the present paper we prove that in an arbitrary randomisation (stable or not),
a type over any set is a Lascar type.

Let us also point out, even though this is not treated in the present paper, that
the work of Fajardo & Keisler [FK02] on adapted spaces can also be translated to a
true metric model theoretic setting. To a probability space (Ω,F , µ) equipped with a
filtration (Fi)i∈I we can associate a structure consisting of the probability algebra F̄ of
Ω, equipped with unary predicates measuring the distances to the sub-algebras in the
filtration: Pi(A) = inf{µ(A△B) : B ∈ Fi}. If each sub-algebra Fi in the filtration is
in addition atomless over the previous ones, we obtain a structure in which types, in
the sense of continuous logic, coincide with the abstract types defined by Fajardo and
Keisler. Such a structure is a model of the theory of “beautiful tuples” of probability
algebras (defined for classical structures by Bouscaren and Poizat [BP88]). It is stable,
and its notion of independence can be characterised similarly to the characterisation
of independence in beautiful and lovely pairs given by Pillay, Vassiliev and the author
[BPV03]. If we replace probability algebras with spaces of [0, 1]-valued random variables,
whose basic model theoretic properties are studied in Section 2 below, we can replace
the distance predicates Pi with function symbols for conditional expectation Ei(X) =
E[X|Fi]. In this functional language the theory of atomless adapted spaces admits
quantifier elimination.

The present paper is organised as follows. In Section 1 we consider formal deductions
in propositional continuous logic, after Rose, Rosser and Church. These are used to
give axioms for the theory of spaces [0, 1]-valued random variables in Section 2. Model
theoretic properties of this theory are deduced from those of the theory of probability
algebras, with which it is bi-interpretable. In Section 3 we define and study the randomi-
sations of metric structures, namely spaces of random variables whose values lie in metric
structures. We give axioms for the theory of these random structures, prove quantifier
elimination in the appropriate language, characterise types and so on. We also prove a
version of  Loś’s Theorem for randomisations, in which the ultra-filter, which is a finitely
additive 0/1 measure, is replaced with an arbitrary finitely additive probability measure.
In Section 4 we prove several preservation and non-preservation results, e.g., that the
randomisation of a stable theory (or structure) is again stable, but the randomisation of
a simple unstable structure or theory is not simple. In Section 5 we prove that in random
structures, types over sets are Lascar types, so in the stable case they are stationary.
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1. On results of Rose, Rosser and Chang

In the late 1950s Rose and Rosser [RR58] proved the completeness of a proof system
for  Lukasiewicz’s many valued propositional logic, subsequently improved and simplified
by Chang [Cha58b, Cha58a, Cha59]. This logic is very close to propositional continuous
logic. Syntactically, the notation is quite different, partially stemming from the fact
we identify True with 0, rather than with 1. Also, the connective 1

2
does not exist in

 Lukasiewicz’s logic. Semantically, we only allow the standard unit interval [0, 1] as a set
of truth values, while some fuzzy logicians allow non-standard extensions thereof (namely,
they allow infinitesimal truth values). We should therefore be careful in how we use their
results.

In these references, Propositional  Lukasiewicz Logic is presented using Polish (prefix)
notation, without parentheses. A formula is either an atomic proposition, Cϕψ or Nϕ,
where ϕ and ψ are simpler formulae. We shall prefer to use the notation of continuous
logic, replacing Cϕψ with ψ −. ϕ and Nϕ with ¬ϕ.

Definition 1.1. Let S0 = {Pi : i ∈ I} be a set distinct symbols, which we view as atomic
proposition. Let S be freely generated from S0 with the formal binary operation −. and
unary operation ¬. Then S is a  Lukasiewicz logic.

Definition 1.2. Let S be a  Lukasiewicz logic.

(i) For every mapping v0 : S0 → [0, 1], let v : S → [0, 1] be the unique mapping
extending v0 such that v(ϕ−. ψ) = v(ϕ) −. v(ψ) and v(¬ϕ) = 1 − v(ϕ). We call
v the truth assignment defined by v0, and v(ϕ) is the truth value of ϕ.

(ii) If v(ϕ) = 0 we say that v is a model of ϕ, in symbols v � ϕ. If Σ ⊆ S, then
v � Σ if v � ϕ for all ϕ ∈ Σ. We say that ϕ (or Σ) is satisfiable if it has a model.

(iii) Let Σ ⊆ S and ϕ ∈ S. We say that Σ entails ϕ, or that ϕ is a logical consequence
of Σ, if every model of Σ is a model of ϕ. This is denoted Σ � ϕ.

Let S be a  Lukasiewicz logic generated by {Pi : i ∈ I}, and ϕ ∈ S. Then the truth
assignments to S are in bijection with [0, 1]I , and every formula ϕ ∈ S can be identified
with a continuous function ϕ̂ : [0, 1]I → [0, 1] by ϕ̂(v) = v(ϕ).

Let us start with a few observations concerning the semantics of the  Lukasiewicz logic.

Notation 1.3. (i) We define ψ −. nϕ by induction on n:

ψ −. 0ϕ = ψ, ψ −. (n+ 1)ϕ = (ψ −. nϕ) −. ϕ.

We shall follow the convention that −. binds from left to right, so ϕ−. nψ −. mχ
should be read as (ϕ−. nψ) −. mχ.

(ii) We use 1 as abbreviation for ¬(ϕ0 −. ϕ0), where ϕ0 is any formula.

Lemma 1.4. Let S be a  Lukasiewicz logic, and assume that Σ ⊆ S has no model. Then
there are n,m < ω and ϕi ∈ Σ for i < m such that � 1 −. nϕ0 −. . . .−. nϕm−1.
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Proof. For every n,m < ω and ϕ̄ ∈ Σm, let ψn,ϕ̄ = 1 −. nϕ0 −. . . . −. nϕm−1, and assume
that 6� ψn,ϕ̄ for all n and ϕ̄. In particular, for all n,m and ϕ̄ ∈ Σm there is v such that
v(ψ2n,ϕ̄) > 0, whereby v(ψn,ϕ̄) > 1

2
. Call this vn,ϕ̄. Note that if n ≤ n′ and ϕ̄ ⊆ ϕ̄′ then

vn′,ϕ̄′(ψn,ϕ̄) > 1
2

as well. As [0, 1]I is compact, we obtain an accumulation point v ∈ [0, 1]I

such that v(ψn,ϕ̄) ≥ 1
2

for all n,m < ω and ϕ̄ ∈ Σm. It follows that v(ϕ) = 0 for all
ϕ ∈ Σ. �1.4

The previous result is fairly robust in the sense that it remains valid if we extend the
logic by arbitrary continuous connectives (i.e., allow any continuous function f : [0, 1]n →
[0, 1] as an n-ary connective).

The following is more delicate and depends on our connectives being not merely con-
tinuous but in fact piecewise linear. In addition, it requires the set of premises to be
finite.

Lemma 1.5. Let ϕ be a  Lukasiewicz formula, say in the propositional variables {Pi : i <
n}, and let ϕ̂ : [0, 1]n → [0, 1] be the corresponding truth function. Then ϕ̂ is piecewise
affine, that is to say that the space [0, 1]n can be presented as a finite union compact
convex sets on each of which ϕ̂ is affine.

Proof. By induction on the structure of ϕ, using the fact that x 7→ ¬x and (x, y) 7→ x−. y
are piecewise affine in this manner. �1.5

Proposition 1.6. Let S be a  Lukasiewicz logic, ϕ, ψi ∈ S for i < n, Σ = {ψi : i < n}.
Then Σ � ϕ if and only if there exists m such that � ϕ−. mψ0 −. . . .−. mψn−1.

Proof. Right to left is immediate (and holds of course in much more generality). For left
to right we may replace Σ with

{∨
i<k ψi

}
, so we may assume that Σ = {ψ} contains a

single formula. Let {Pi : i < k} be the propositional variables appearing in ϕ,Σ. Thus
our assumption is that for every v ∈ [0, 1]k: v(ψ) = 0 =⇒ ϕ(ϕ) = 0.

For m < ω let χm = ϕ−. mψ and assume for a contradiction that � χm fails for all m.
In other words, for every m there is vm ∈ [0, 1]k such that vm(χm) > 0. This implies that

ψ̂(vm) < 1/m and ϕ̂(vm) > 0. By our assumption ψ̂(vm) > 0 as well.
By Lemma 1.5, there is a compact convex set C ⊆ [0, 1]k and an unbounded set J ⊆ ω

such that ϕ̂ and ψ̂ are both affine on C and vm ∈ C for all m ∈ J . Possibly passing to a
smaller set J we may assume that v = limm∈J vm exists in which case it belongs to C as
well. By continuity and our assumption ψ̂(v) = ϕ̂(0) = 0.

Let J0 ⊆ J be maximal such that {vm : m ∈ J0} is affinely independent over v, so
|J0| ≤ k. Let

b = min{ψ̂(vm) : m ∈ J0} c = max{ϕ̂(vm) : m ∈ J0}.
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Then b > 0 so we may choose m0 ∈ J such that m0 > c/b. We may write vm0
=

v +
∑

m∈J0
dmvm. Then:

ϕ̂(vm0
) = ϕ̂(v) +

∑

m∈J0

dmϕ̂(vm)

≤
∑

m∈J0

cdm ≤
∑

m∈J0

m0bdm ≤ m0

(
ψ̂(v)

∑

m∈J0

dmψ̂(vm)

)

= m0ψ̂(vm0
).

It follows that vm0
(χm0

) = 0 after all. This contradiction concludes the proof. �1.6

Remark 1.7. If we allow non-affine connectives Proposition 1.6 may fail. Indeed, P 2 � P
even though for no m do we have � P −. mP 2.

Remark 1.8. Logical implication in  Lukasiewicz logic can be infinitary by nature. Indeed,
let ϕn = 1−. 2(1−. nP ). Then ϕn = 0 if and only if 1−. nP ≥ 1

2
, i.e., if and only if P ≤ 1

2n
.

Letting Σ = {ϕn : n < ω} we have Σ � P even though there is no finite Σ0 ⊆ Σ such that
Σ0 � P . This means that finiteness assumption in Proposition 1.6 cannot be discarded.

Let us now consider formal deductions in  Lukasiewicz logic. As mentioned in the
introduction, ϕ∧ψ is abbreviation for ϕ−. (ϕ−. ψ) (which would be Aψϕ in the notation
of [RR58]). Thus, the four axiom schemes which, according to [RR58, Cha58b], form a
complete deduction system, are:

(ϕ−. ψ) −. ϕ(A1)

((ρ−. ϕ) −. (ρ−. ψ)) −. (ψ −. ϕ)(A2)

(ϕ ∧ ψ) −. (ψ ∧ ϕ)(A3)

(ϕ−. ψ) −. (¬ψ −. ¬ϕ)(A4)

While Modus Ponens becomes:
ϕ, ψ −. ϕ

ϕ
(MP)

Formal deductions and the relation Σ ⊢ ϕ (ϕ is deducible from Σ) are defined as
usual. Soundness of this deduction system (i.e., Σ ⊢ ϕ =⇒ Σ � ϕ) is easy to verify. A
subset Σ ⊆ S is contradictory if Σ ⊢ ϕ for all ϕ ∈ S. Otherwise it is consistent. The
completeness result we referred to can be now stated as:

Fact 1.9 ([RR58, Cha59]). Let S be a  Lukasiewicz logic, and ϕ ∈ S. Then � ϕ if and
only if ⊢ ϕ.

Using previous results this extends to finite sets of premises:

Proposition 1.10. Let S be a  Lukasiewicz logic, ϕ ∈ S and Σ ⊆ S finite. Then Σ � ϕ
if and only if Σ ⊢ ϕ.
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Proof. Right to left is by soundness (and does not require Σ to be finite). For left to
right, let Σ = {ψi : i < n}. Assuming Σ � ϕ, by Proposition 1.6 there exists m such
that � ϕ −. mψ0 −. . . . −. ψn−1. By Fact 1.9: ⊢ ϕ −. mψ0 −. . . . −. mψn−1. It follows that
Σ ⊢ ϕ. �1.10

On the other hand, by Remark 1.8 and finiteness of formal deduction, Proposition 1.10
may fail for infinite sets of premises. We can still prove a weaker statement:

Proposition 1.11. Let S be a  Lukasiewicz logic, and let Σ ⊆ S. Then Σ is consistent
if and only if it has a model.

Proof. One direction is by soundness. For the other, assume that Σ has no model. Then
by Lemma 1.4 there are n and ϕi ∈ Σ such that letting ψ = 1 −. nϕ0 −. . . .−. nϕm−1 we
have � ψ. By Fact 1.9 we have ⊢ ψ, and by Modus Ponens Σ ⊢ 1. By Fact 1.9 we also
have ⊢ ϕ−. 1 for every formula ϕ, so Σ ⊢ ϕ and Σ is contradictory. �1.11

Unfortunately, this result is still not precisely what we need, and we shall require the
following modifications:

(i) We wish to allow non-free logics, i.e., logics which are not necessarily freely
generated from a set of atomic propositions. In particular, such logics need not
be well-founded (i.e., we may have an infinite sequence {ϕn}n∈N such that each
ϕi+1 is a “proper sub-formula” of ϕi).

(ii) The set of connectives {¬,−. } is not full in the sense of [BU]. We would therefore
like to introduce an additional unary connective, denoted 1

2
, which consists of

multiplying the truth value by one half.

Definition 1.12. A continuous propositional logic is a (non-empty) structure
(S,¬, 1

2
,−. ), where −. is a binary function symbol and ¬, 1

2
are unary function symbols.

Given a continuous propositional logic S, a truth assignment to S is a mapping v : S →
[0, 1] such that for all ϕ, ψ ∈ S:

(i) v(¬ϕ) = 1 − v(ϕ).
(ii) v(1

2
ϕ) = v(ϕ)/2.

(iii) v(ϕ−. ψ) = v(ϕ) −. v(ψ).

Models and logical entailment are defined in the same manner as above.
We say that S is free (over S0) if there exists a subset S0 ⊆ S such that S if freely

generated from S0 by the connectives {¬, 1
2
,−. }. In that case every mapping v0 : S0 →

[0, 1] extends to a unique truth assignment.

The new connective 1
2

requires two more axioms:

1
2
ϕ−. (ϕ−. 1

2
ϕ)(A5)

(ϕ−. 1
2
ϕ) −. 1

2
ϕ(A6)

Formal deductions in the sense of continuous propositional logic are defined as usual,
allowing A1-6 as logical axiom schemes.



8 ITAÏ BEN YAACOV

Theorem 1.13. Let S be a free continuous logic, Σ ⊆ S finite and ϕ ∈ S. Then Σ � ϕ
if and only if Σ ⊢ ϕ.

Proof. Throughout this proof we only consider free continuous propositional logics. We
only prove left to right.

We shall construct a sequence of pairs Σn, ϕn by induction on n, where Σn is finite
and Σn � ϕn. We start with Σ0 = Σ, ϕ0 = ϕ. Assume Σn, ϕn are known. If a formula
of the form 1

2
ψn appears as a sub-formula in Σn ∪ {ϕn}, add a new atomic proposition

Qn, replace every instance of 1
2
ψn with Qn, and add to Σn the formulae ψn −. 2Qn and

Qn−. (ψn−. Qn). We obtain Σn+1 and ϕn+1 such that Σn+1 is still finite and Σn+1 � ϕn+1.
After finitely many steps of this kind we obtain Σn, ϕn in which the connective 1

2
does

not appear. Thus Σn, ϕn consist of  Lukasiewicz formulae, and we can apply Proposi-
tion 1.10 to conclude that Σn ⊢ ϕn in the deduction system consisting of A1-4. Now
undo the translation above, replacing each atomic proposition Qi with 1

2
ψi. Then the

new premises we added become instances of A5-6, so Σ ⊢ ϕ (using all of A1-6). �1.13

Remark 1.14. The assumptions that the logic is free and Σ is finite are both required.
Indeed the argument of Remark 1.8 works just as well in any free continuous propositional
logic S, so we can find and infinite set Σ ⊆ S and ϕ ∈ S such that Σ � ϕ and yet Σ 0 ϕ.
For ψ, χ ∈ S, say that ψ ∼Σ χ if Σ ⊢ ψ −. χ and Σ ⊢ χ −. ψ. By Theorem 1.13 we can
easily show that this is an equivalence and congruence relation. Let SΣ = S/∼Σ and let
[ϕ] denote the equivalence class of ϕ. Then �SΣ

[ϕ] and yet 0SΣ
[ϕ].

Lemma 1.15. For every ϕ, ψ ∈ S, Σ ⊆ S and n < ω:

(i) ⊢ ϕ−. ϕ.
(ii) ⊢ (ϕ−. ψ) −. (1 −. n(ψ −. ϕ)).
(iii) If Σ, ϕ−. ψ is contradictory then Σ ⊢ ψ −. ϕ.

Proof. (i) Work in a  Lukasiewicz logic as in Fact 1.9. Clearly � P −. P for every
atomic proposition P , whereby ⊢ P −. P by the said Fact, and by substitution
we get a deduction for ϕ−. ϕ.

(ii) Same argument.
(iii) If Σ, ϕ −. ψ is contradictory then it is has no model. By the proof of Proposi-

tion 1.11 there is n < ω such that Σ ⊢ 1−. n(ϕ−. ψ). Therefore Σ ⊢ ψ−. ϕ. �1.15

Theorem 1.16. Let S be a (non-free) continuous propositional logic, and let Σ ⊆ S.
Then Σ is consistent if and only if it is satisfiable.

Proof. Let Sf be the  Lukasiewicz logic freely generated by {Pϕ : ϕ ∈ S}, and let:

Σf
0 ={P¬ϕ −. ¬Pϕ,¬Pϕ −. P¬ϕ : ϕ ∈ S}

∪ {Pϕ−. ψ −. (Pϕ −. Pψ), (Pϕ −. Pψ) −. Pϕ−. ψ : ϕ, ψ ∈ S}

∪ {P1
2
ϕ
−. P

ϕ−.
1
2
ϕ
, P

ϕ−.
1
2
ϕ
−. P1

2
ϕ

: ϕ ∈ S}

Σf ={Pϕ : ϕ ∈ Σ} ∪ Σf
0 .
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Assume that Σf has a model vf . Define v : S → [0, 1] by v(ϕ) = vf(Pϕ). As vf � Σf
0 ,

v is a truth assignment in the sense of S, and is clearly a model of Σ.
Thus, if Σ has no model, neither does Σf . By Proposition 1.11 Σf is contradictory.

Thus, for every ψ ∈ S we have Σf ⊢ Pψ. Take any deduction sequence witnessing
this, replacing every atomic proposition Pϕ with ϕ. If a formula was obtained from
previous ones using Modus Ponens, the same holds after this translation. Premises from
Σf become translated to one of several cases:

(i) Premises of the form Pϕ for ϕ ∈ Σ are replaced with ϕ ∈ Σ.

(ii) Premises of the first two kinds from Σf
0 are replaced with something of the form

ϕ−. ϕ, which we know is deducible without premises.
(iii) Premises of the last kind from Σf

0 are translated to instances of the axioms
schemes A5-6.

We conclude that Σ ⊢ ψ for all ψ ∈ S, and Σ is contradictory. The other direction is by
easy soundness. �1.16

As we said earlier Theorem 1.13 fails with infinite sets of premises or non-free logics.
We can prove the full version if we are willing to weaken a little the conclusion that Σ ⊢ ϕ.
Let 2−n be abbreviation for 1

2
· · · 1

2
1 (n times). Clearly, if v is any truth assignment then

v(2−n) = 2−n.

Corollary 1.17. Let S be a continuous propositional logic, Σ ⊆ S and ϕ ∈ S. Then
Σ � ϕ if and only if Σ ⊢ ϕ−. 2−n for all n.

Proof. Right to left is clear.
Assume now that Σ � ϕ. Then Σ ∪ {2−n−. ϕ} is non-satisfiable, and therefore contra-

dictory by Theorem 1.16. By Lemma 1.15: Σ ⊢ ϕ−. 2−n. �1.17

These completeness results are extended to the full continuous first order logic in [BP].
We conclude with a word regarding the semantics of continuous propositional logics.

Definition 1.18. A homomorphism of continuous propositional logics is a mapping
which respects the connectives ¬, 1

2
and −. .

Let S be a continuous propositional logic. Its Stone space is defined to be the set S̃ =
Hom(S, [0, 1]), where [0, 1] is equipped with the natural interpretation of the connectives.

Equivalently, S̃ is the collection of truth assignments to S. We equip S with the induced
topology as a subset of [0, 1]S (i.e., with the point-wise convergence topology).

For each ϕ ∈ S we define a function ϕ̂ : S̃ → [0, 1] by ϕ̂(v) = v(ϕ).

Proposition 1.19. Let S be a continuous propositional logic, S̃ its Stone space, and let
θS denote the mapping ϕ 7→ ϕ̂.

(i) The space S̃ is compact and Hausdorff.

(ii) θS ∈ Hom
(
S, C(S̃, [0, 1])

)
. In particular, each ϕ̂ is continuous.

(iii) For ϕ, ψ ∈ S we have θS(ϕ) = θS(ψ) if and only if ϕ ≡ ψ.
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(iv) The image of θS is dense in the uniform convergence topology on C(S̃, [0, 1]).

Moreover, the properties characterise the pair (S̃, θS) up to a unique homeomorphism.

Proof. That the image is dense is a direct application of a variant of the Stone-Weierstrass
theorem proved in [BU, Proposition 1.4]. The other properties are immediate from the
construction.

We are left with showing uniqueness. Indeed, assume that X is a compact Hausdorff

space and θ : S → C(X, [0, 1]) satisfies all the properties above. Define ζ : X → S̃ by
ζ(x)(ϕ) = θ(ϕ)(x). Thus ζ is the unique mapping satisfying θS(ϕ) ◦ ζ = θ(ϕ), and we
need to show that it is a homeomorphism. Continuity is immediate. The image of θ is
dense in uniform convergence and therefore separates points, so ζ is injective. Since X
is compact and Hausdorff ζ must be a topological embedding. In order to see that ζ

is surjective it will be enough to show that its image is dense. So let U ⊆ S̃ be a non

empty open set, which must contain a non empty set of the form {v ∈ S̃ : f(v) > 0}

for some f ∈ C(S̃, [0, 1]). For n big enough there is v0 ∈ S̃ such that f(v0) > 2−n+1.
By density find ϕ0 ∈ S such that ‖ϕ̂0 − f‖∞ < 2−n. and let ϕ = ϕ0 − 2−n ∈ S.

Then {v ∈ S̃ : v(ϕ) > 0} ⊆ U and v0(ϕ) 6= 0. Since ϕ 6≡ 0 there is x ∈ X such that
ζ(x)(ϕ) = θ(ϕ)(x) 6= 0, i.e., ζ(x) ∈ U . This concludes the proof. �1.19

2. The theory of [0, 1]-valued random variables

Let (Ω,F , µ) be a probability space. In [Ben06] we considered such a space via its
probability algebra F̄ , namely the Boolean algebra of events F modulo null measure
difference. Equivalently, the probability algebra F̄ can be viewed as the space of {0, 1}-
valued random variables (up to equality a.e.). Here we shall consider a very similar
object, namely the space of [0, 1]-valued random variables. This space will be denoted
L1
(
(Ω,F , µ), [0, 1]

)
, or simply L1(F , [0, 1]), where we consider that the measure µ is

implicitly part of the structure of F . We equip this space with the natural interpretation
of the connectives ¬, 1

2
and −. (e.g., (X −. Y )(ω) = X(ω) −. Y (ω)), as well as with the

L1 distance d(X, Y ) = E[|X − Y |], for which it is a complete metric space. It is thus
naturally a structure in the random variable language

LRV = {0,¬, 1
2
,−. }.

Throughout, we shall use 1 as an abbreviation for ¬0 and E(x) as an abbreviation for
d(x, 0). The intended interpretation of E(x) is the expectation. Notice that by definition,
if M is any LRV -structure and a ∈M then a = 0 ⇐⇒ d(a, 0) = 0 ⇐⇒ E(a) = 0.

2.1. The theories RV and ARV . We shall use the results of Section 1 to give axioms
for the theory of [0, 1]-valued random variables equipped with the L1 metric, in the
language LRV given above.

The term algebra TRV of LRV is a free propositional continuous logic (freely generated
by the variables of the language together with the symbol 0). Thus, if τ(x̄) ∈ TRV
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then ⊢TRV
τ ⇐⇒ �TRV

τ by Theorem 1.13. On the other hand, an LRV -structure M is
a non-free continuous propositional logic. Translating proofs from TRV to M we have
⊢TRV

τ =⇒ ⊢M τ(ā) for all ā ∈ M.
We define the theory RV to consist of the following axioms. In each axiom we quantify

universally on all free variables. Keep in mind also that x∧y is abbreviation for x−. (x−. y)).

E(x) = E(x−. y) + E(y ∧ x)(RV1)

E(1) = 1(RV2)

d(x, y) = E(x−. y) + E(y −. x)(RV3)

τ = 0 whenever �TRV
τ(RV4)

ARV is defined by adding the following axiom:

inf
y

(
E(y ∧ ¬y) ∨

∣∣∣E(y ∧ x) − E(x)
2

∣∣∣
)

= 0.(ARV)

Lemma 2.1. Let M be a model of RV1. Then for every a, b ∈M :

E(a) − E(b) ≤ E(a−. b) ≤ E(a).

In particular M respects Modus Ponens: if b = 0 and a−. b = 0 then a = 0.

Proof. Axiom RV1 implies first that E(a) ≥ E(a−. b). But then E(b) ≥ E(b−. (b−. a)) =
E(b∧a) whereby E(a)−E(b) ≤ E(a)−E(b∧a) = E(a−. b). Modus Ponens follows. �2.1

Thus, modulo RV1, the axiom scheme RV4 is equivalent to the finite set:

(x−. y) −. x = 0(RV4.1)

((x−. z) −. (x−. y)) −. (y −. z) = 0(RV4.2)

(x ∧ y) −. (y ∧ x) = 0(RV4.3)

(x−. y) −. (¬y −. ¬x) = 0(RV4.4)
1
2
x−. (x−. 1

2
x) = 0(RV4.5)

(x−. 1
2
x) −. 1

2
x = 0(RV4.6)

Furthermore, modulo RV1, RV3 and RV4.1-4, axioms RV4.5-6 are further equivalent to:
1
2
x = x−. 1

2
x(RV5)

Indeed, left to right is by RV3. Axioms RV1 and RV4.1-4 imply that x −. x = 0, giving
right to left.

The following is fairly obvious:

Fact 2.2. Let (Ω,F , µ) be a probability space and let M = L1(F , [0, 1]). Then M � RV ,
and if (Ω,F , µ) is atomless then M � ARV .

We now aim to prove the converse of Fact 2.2.
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Lemma 2.3. Let M � RV , a, b ∈ M . Then:

(i) d(a, a−. b) = E(a ∧ b) ≤ E(b). In particular, a−. 0 = a.
(ii) a−. a = 0.

(iii) a−. 1
2
a = 1

2
a, 1

2
a−. a = 0 and E(1

2
a) = 1

2
E(a).

(iv) Define by induction 20 = 1 (i.e., 20 = ¬0) and 2−(n+1) = 1
2
2−n. Then for all

n ∈ N: E(2−n) = 2−n.
(v) a = 0 ⇐⇒ ⊢M a⇐⇒ �M a.

(vi) a = b⇐⇒ a ≡M b.

Proof. (i) From RV4 we have (a−. b)−. a = 0 and using RV3 we obtain d(a, a−. b) =
E(a ∧ b). By RV1 E(a ∧ b) ≤ E(b). The rest follows.

(ii) By RV4 we have a−. a = 0.
(iii) Axiom RV4 yields 1

2
a −. a = 1

2
a −. (a −. 1

2
a) = (a −. 1

2
a) −. 1

2
a = 0, and by RV3

1
2
a = a−. 1

2
a. Thus

E(a) = E(a−. 1
2
a) + E(1

2
a−. (1

2
a−. a)) = E(1

2
a) + E(1

2
a−. 0) = 2E(1

2
a).

(iv) Immediate from the previous item.
(v) Assume that ⊢M a. Then by RV1 (which implies Modus Ponens) and RV4.1-6

we have a = 0. Thus a = 0 ⇐⇒ ⊢M a. The implication ⊢M a =⇒ �M a is
by soundness. Finally assume that �M a. Then for all n we have ⊢M a −. 2−n,
whereby a −. 2−n = 0. Thus E(a) = E(a ∧ 2−n) ≤ E(2−n) = 2−n, for arbitrary
n. It follows that E(a) = 0, i.e., that a = 0.

(vi) Assume that a ≡M b, i.e., that �M a −. b and �M b −. a. Be the previous item
a−. b = b−. a = 0 whereby a = b. �2.3

Let M̃ be the Stone space of M, viewed as a continuous propositional logic, and let

θM : M → C(M̃, [0, 1]) be as in Proposition 1.19. Recall the notation â = θM(a). By
Lemma 2.3.(vi) and Proposition 1.19 θM is injective.

The space C(M̃, [0, 1]) is naturally equipped with the supremum metric, denoted ‖f−
g‖∞. On the other hand, we aim is to show that dM is an L1 distance, i.e., that for

an appropriate measure we have dM(a, b) = ‖â − b̂‖1, which need not be equal to ‖â −

b̂‖∞. Nonetheless, we can relate the two metrics as follows (we essentially say that
L∞-convergence of random variables implies L1-convergence).

Lemma 2.4. Assume that {an}n∈N ⊆M is such that {ân}n∈N ⊆ C(M̃, [0, 1]) is a Cauchy

sequence in the supremum metric. Then {an}n∈N converges in M and lim ân = l̂im an.

Proof. By assumption, for every k < ω there is Nk such that for all ‖ân− âm‖∞ ≤ 2−k for
all n,m < Nk. Therefore (ân−. âm)−. 2−k = 0, and since θM is injective: an−. am−. 2−k = 0.
Thus E(an −. am) = E((an −. am) ∧ 2−k) ≤ E(2−k) = 2−k. Similarly E(am −. an) ≤ 2−k,
whereby d(an, am) ≤ 2−k+1. Since M is a (complete) L-structure, it contains a limit a.
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Now fix n ≥ Nk and let m → ∞. Then am → a, and therefore am −. an −. 2−k →
a−. an −. 2−k. Thus a−. an −. 2−k = 0, and by a similar argument an −. a−. 2−k = 0. We
have thus shown that ân → â uniformly as desired. �2.4

Corollary 2.5. The mapping θM : M → C(M̃, [0, 1]) is bijective.

Proof. We already know it is injective, and by Proposition 1.19 its image is dense. By
the previous lemma its image is complete, so it is onto. �2.5

We shall identify M with C(M̃, [0, 1]).

Lemma 2.6. For all a, b ∈ M and r ∈ R+:

(i) If a+ b ∈ M (i.e., ‖a+ b‖∞ ≤ 1) then E(a+ b) = E(a) + E(b).
(ii) If ra ∈ M (i.e., r‖a‖∞ ≤ 1) then E(ra) = rE(a).

Proof. (i) Let c = a+ b. Then c−. b = a and b−. c = 0, whereby:

E(c) = E(c−. b) + E(b−. (b−. c)) = E(a) + E(b−. 0) = E(a) + E(b).

(ii) For integer r this follows from the previous item, and the rational case follows.
If rn → r then rna→ ra in M∗ and a fortiori in M, so the general case follows
by continuity of E. �2.6

Theorem 2.7. Let M � RV , M̃ its Stone space and θM : M → C(M̃, [0, 1]) as in
Proposition 1.19.

(i) As a topological space, M̃ is compact and Hausdorff.

(ii) The mapping θM : M → C(M̃, [0, 1]) is bijective and respects the operations ¬,
1
2

and −. (i.e., it is an isomorphism of continuous propositional logics).

(iii) There exists a regular Borel probability measure µ on M̃ such that the natural

mapping ρµ : C(M̃, [0, 1]) → L1(µ, [0, 1]) is bijective as well, and the composition
ρµ ◦ θM : M → L1(µ, [0, 1]) is an isomorphism of LRV -structures.

Moreover, these properties characterise (M̃, µ, θM) up to a unique measure preserving
homeomorphism.

Proof. The first two properties are already known. By Lemma 2.6 we can extend E
by linearity from C(Ω, [0, 1]) to C(Ω,R), yielding a positive linear functional. By the
Riesz Representation Theorem [Rud66, Theorem 2.14] there exists a unique regular Borel
measure µ on Ω such that E(f) =

∫
f dµ. Since E(1) = 1, µ is a probability measure.

The mapping M → L1(µ, [0, 1]) is isometric and in particular injective. Its image is
dense (continuous functions are always dense in the L1 space of a regular Borel measure).
Moreover, since M is a complete metric space the image must be all of L1(µ, [0, 1]),
whence the last item.

The uniqueness of M̃ as a topological space verifying the first two properties follows
from Proposition 1.19 and Lemma 2.3.(vi). The Riesz Representation Theorem then
yields the uniqueness of µ. �2.7
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We may refer to (M̃, µ) (viewed as a topological space equipped with a Borel measure)

as the Stone space of M or say that M is based on (M̃, µ).

Corollary 2.8. Let M be an LRV -structure. Then:

(i) The structure M is a model of RV if and only if it is isomorphic to some
L1(F , [0, 1]).

(ii) A structure of the form L1(F , [0, 1]) is a model of ARV if and only if (Ω,F , µ)
is an atomless probability space.

Corollary 2.9. Let M � RV be based on (M̃, µ). Then every Borel function M̃ → [0, 1]
is equal almost everywhere to a unique continuous function.

2.2. Interpreting random variables in events and vice versa. In the previous
section we attached to every probability space (Ω,F , µ) the space L1(F , [0, 1]) of [0, 1]-
valued random variables and axiomatised the class of metric structures arising in this
manner. While we cannot quite recover the original space Ω from L1(F , [0, 1]) we do
consider that L1(F , [0, 1]) retains all the pertinent information

An alternative approach to coding a probability space in a metric structure goes
through its probability algebra, namely the space of {0, 1}-valued random variables. It
can be constructed directly as the Boolean algebra quotient F̄ = F/F0 where F0 is the
ideal of null measure sets. In addition to the Boolean algebra structure, it is equipped
with the induced measure function µ : F̄ → [0, 1] and the metric d(a, b) = µ(a△b)
(in fact, the measure µ is superfluous and can be recovered as µ(x) = d(x, 0)). The
metric is always complete, so a probability algebra is a structure in the language
LPr = {0, 1,∩,∪, ·c, µ}.

Let us define the theory Pr to consist of the following axioms, quantified universally:

The theory of Boolean algebras: (x ∩ y)c = xc ∪ yc, . . .(Bool)

µ(1) = 1(Pr1)

µ(x) + µ(y) = µ(x ∨ y) + µ(x ∧ y)(Pr2)

d(x, y) = µ(x△y).(Pr3)

The theory APr (atomless probability algebras) consists of PA0 along with:

sup
x

inf
y

∣∣∣∣µ(y ∧ x) −
µ(x)

2

∣∣∣∣ = 0(APr)

Fact 2.10. The class of probability algebras is elementary, axiomatised by Pr. The class
of atomless probability algebras is elementary as well, axiomatised by APr.

Moreover, the theory APr eliminates quantifiers (it is the model completion of Pr).
It is ℵ0-categorical (there is a unique complete separable atomless probability algebra),
and admits no compact model, whereby it is complete. It is ℵ0-stable and its notion of
independence coincides with probabilistic independence. All types over sets (in the real
sort) are stationary.
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Proof. Most of this is shown in Ben Yaacov & Usvyatsov [BU, Example 4.3]. The fact
regarding stability and independence were shown by the author in [Ben06] using the more
technically involved (and now somewhat obsolete) setting of compact abstract theories.
The arguments carry nonetheless to models of APr in continuous logic. �2.10

We would like to show that these two ways of coding a probability space in a met-
ric structure are equivalent. Specifically we shall show that for any probability space
(Ω,F , µ), the probability algebra F̄ and the space L1(F , [0, 1]) of [0, 1]-valued random
variables are (uniformly) interpretable in one another.

Proposition 2.11. Let M be a model of RV , say M = L1(F , [0, 1]). Then the LPr-
structure F̄ is quantifier-free definable in M in a manner which does not depend on Ω.
More precisely:

(i) We may identify an event a ∈ F̄ with its characteristic function 1a ∈ M . This
identifies F̄ with the subset L1(F , {0, 1}) ⊆ M consisting of all {0, 1}-valued
random variables over (Ω,F , µ).

(ii) Under the identification of the previous item, F̄ is a quantifier-free definable
subset of M, that is, the predicate d(x, F̄ ) is quantifier free definable in M.
Moreover, the Boolean algebra operations of F̄ are definable by terms in M,
and the predicates of F̄ (measure and distance) are quantifier free definable in
M.

(See the first section of [Benb] for facts regarding definable sets in continuous logic.)

Proof. The first item is a standard fact. For the second item, let g ∈ L1(F , [0, 1]), and
let a = {g ≥ 1

2
} (i.e., a = {ω : g(ω) ≥ 1

2
}). Then:

d(g, F̄ ) = d(g,1a) = E(g ∧ ¬g).

Given a, b ∈ F̄ we have 1ac = ¬1a and 1arb = 1a −. 1b, from which the rest of the
Boolean algebra structure can be recovered. In addition dF̄ (a, b) = dM(1a,1b) and
µ(a) = E(1a). �2.11

Since F̄ is (uniformly) definable we may quantify over it. Thus, modulo the theory
RV , axiom ARV can be written more elegantly as:

inf
y∈F̄

∣∣∣E(y ∧ x) − E(x)
2

∣∣∣ = 0.(ARV′)

The converse is a little more technical, since the interpretation of L1(F , [0, 1]) in the
structure F̄ will necessarily be in an imaginary sort. A similar interpretation of the space
of [0,∞]-valued random variables in a hyper imaginary sort has already been discussed in
[Ben06, Section 3]. The result we prove here is a little stronger and easier to work with.
It is based on the notion of imaginary sorts for metric structures, which were introduced
with the development of continuous logic in [BU].

Let D = {k/2n : n ∈ N, 0 < k < 2n} denote the set of all dyadic fractions in ]0, 1[,
D′ = D ∪ {0, 1}. For r ∈ D, let n(r) be the least n such that 2nr is an integer (so
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n(0) = 0, and for r 6= 0, n = n(r) is unique such that 2nr is an odd integer). We
shall now construct by induction on n(r) a family of LPr-terms (τr)r∈D′ in a sequence
of distinct variables (xr)r∈D. We start with τ0 = 1 and τ1 = 0. If n(r) = m > 0 then
n(r ± 2−m) < m and we define:

τr =
(
xr ∪ τr−2−m

)
∩ τr+2−m .

We may write such a term as τr(xs)s∈D, where it is understood that only finitely many of
(xs)s∈D appear in τr. Let F̄ be a probability algebra. Let (as)s∈D′ ⊆ F̄ be any sequence
of events, and let br = τr(as)s∈D. Then the sequence (br)r∈D is necessarily decreasing,
and if the original sequence (as)s∈D is decreasing then the two sequences coincide: br = ar
for all r ∈ D.

Let us also define:

ϕn(y, xr)r∈D =
∑

k<2n

2−nµ(y ∩ τk/2n)

ϕ(y, xr)r∈D = F lim
n

ϕn.

Each ϕn is an LPr-formula (in particular, it only mentions finitely many variables); their
forced limit ϕ(y, xr)r∈D is a definable predicate in LPr.

Proposition 2.12. Let (Ω,F , µ) be a probability space, M = L1(F , [0, 1]). Let F̄ϕ

be the sort of canonical parameters for instances ϕ(y, ar)r∈D over F̄ . For each random

variable f ∈ M , let fr = {f ≤ r} for r ∈ D and let f̃ ∈ F̄ϕ be the canonical parameter
of ϕ(y, fr)r∈D.

(i) For every event c ∈ F̄ : ϕ(c, f̃) = ϕ(c, fr)r∈D =
∫
c
f .

(ii) The mapping f 7→ f̃ is a bijection between M and F̄ϕ.
(iii) Identifying M with F̄ in this manner, the LRV -structure on M is definable in

F̄ in a manner which does not depend on Ω.

Moreover, if we compose this interpretation of L1(F , [0, 1]) in F̄ with the definition of F̄

in L1(F , [0, 1]) discussed in Proposition 2.11 above in either order, there is a definable
bijection between the original structure and its interpreted copy in a manner which is
uniform in Ω.

Proof. For the first item, the sequence (fr)r∈D is decreasing so τr(fs)s∈D = fr. It follows
that |ϕn(c, fr)r∈D−

∫
c
f | < 2−n, and passing to the (forced) limit we obtain ϕ(x, fr)r∈D =∫

c
f .

We now show the second item. To see that f 7→ f̃ is injective assume that f̃ = g̃. By
the previous item this means that

∫
c
f =

∫
c
g for every c ∈ F̄ , whereby f = g. To see it

is surjective let ϕ(x, ar)r∈D be any instance of ϕ. Define:

br = τr(as)s∈D ∈ F̄ r ∈ D,

fn =
∑

k<2n

2−n1bk/2n ∈ M n ∈ N.
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One readily checks that d(fn, fm) < 2−min(n,m), so the sequence fn converges to a limit
g ∈ M , d(fn, g) ≤ 2−n. For every event c ∈ F̄ we have ϕn(c, ar)r∈D =

∫
c
fn. It follows

that |ϕn(c, ar)r∈D −
∫
c
g| ≤ 2−n and passing to the limit ϕ(c, ar)r∈D =

∫
c
g. In other

words, ϕ(x, ar)r∈D ≡ ϕ(x, gr)r∈D, so g̃ is a canonical parameter for ϕ(x, ar)r∈D.

Let us now prove the third item. In order to prove that (f̃ , g̃) 7→ f̃ −. g is definable it

is enough to show that we can define the predicate ϕ
(
x, f̃ −. g

)
uniformly from f̃ and g̃.

Indeed:

ϕ
(
x, f̃ −. g

)
=

∫

x

(f −. g) = sup
y

[∫

x∩y

f −.
∫

x∩y

g

]

= sup
y

[
ϕ(x ∩ y, f̃) −. ϕ(x ∩ y, g̃)

]
.

Similarly:
∫

x

0 = 0,

∫

x

¬f = ¬

∫

x

f,

∫

x

1
2
f = 1

2

∫

x

f.

It follows that all the connectives which one can construct from these primitives are

definable, and in particular (x, y) 7→ |x − y|. Thus the distance d(f, g) = ϕ
(

1, ˜|f − g|
)

is definable.
We leave the moreover part to the reader. �2.12

The intrinsic distance on the imaginary sort F̄ϕ is by definition:

dϕ(f, g) = sup
b∈F̄

∣∣∣∣
∫

b

(f − g)

∣∣∣∣ = max
(
‖f −. g‖1, ‖g −. f‖1

)
.

The distance dϕ is easily verified to be uniformly equivalent to the L1 metric on the space
of [0, 1]-valued random variables. This is a special case of the general fact that any two
definable distance functions on a sort are uniformly equivalent. At the cost of additional
technical complexity we could have arranged to recover L1(F , [0, 1]) on an imaginary
sort in which the intrinsic distance is already the one coming from L1. Indeed, we could
have defined a formula ψ(y, z, xr)r∈D such that ψ(b, c, fr)r∈D =

∫
b
f +

∫
crb

¬f , obtaining
further down the road:

dψ(f, g) = sup
b,c∈F̄

∣∣∣∣
∫

b

(f − g) +

∫

crb

(g − f)

∣∣∣∣ = ‖f − g‖1.

2.3. Additional properties of RV and ARV . Models of RV admits quantifier free
definable continuous functional calculus on models of RV .

Lemma 2.13. If θ : [0, 1]ℓ → [0, 1] is a continuous function, then the function f̄ 7→ θ◦(f̄)
is uniformly quantifier free definable in models of RV . By “quantifier free definable” we
mean that for every definable predicate P (ȳ, z), the definable predicate P (ȳ, θ ◦ (x̄)) is
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definable with the same variable complexity. Specifically, d(y, θ ◦ (x̄)) is quantifier free
definable.

Proof. We can uniformly approximate θ by a sequence of terms τn(x̄) in ¬, 1
2
,−. . Assuming

the sequence converges fast enough we get P (ȳ, θ ◦ (x̄)) = F limP (ȳ, τn ◦ (x̄)). �2.13

For example, the predicates E(xp) or E(|x − y|p) are definable for every p ∈ [1,∞[,
and thus the Lp distance ‖x− y‖p = E(|x− y|p)1/p is definable as well, all the definitions
being quantifier free and uniform.

For A ⊆ L1(F , [0, 1]), let σ(A) ⊆ F denote the minimal σ-sub-algebra by which every
member of A is measurable, i.e., such that A ⊆ L1(σ(A), [0, 1]) (For this to be entirely
well-defined we may require σ(A) to contain the null measure ideal of F .)

Lemma 2.14. Let M be a model of RV , say M = L1(F , [0, 1]). Then for every σ-
sub-algebra F1 ⊆ F , the space L1(F ′, [0, 1]) is a sub-structure of M. Conversely, every
sub-structure N ⊆ M arises in this manner as L1(σ(N), [0, 1]).

Proof. The first assertion is clear, so we prove the converse. It is also clear that N ⊆
L1(σ(N), [0, 1]).

Let f ∈ N , and define ṁf = f ∔ . . . ∔ f (m times). Then ṁf ∈ N , and as m → ∞
we have ṁf → 1{f>0} in L1, so 1{f>0} ∈ N . Since N is complete and closed under ¬
and −. , it follows that 1A ∈ N for every A ∈ σ(N). Considering finite sums of the form
(1

2
)k1A0

∔ · · · ∔ (1
2
)k1An−1

we see that every simple function in L1(σ(N), [0, 1]) whose
range consists solely of dyadic fractions belongs to N . Using the completeness of N one
last time we may conclude that L1(σ(N), [0, 1]) ⊆ N . �2.14

Lemma 2.15. Let M and N be two models of RV , say M = L1(F , [0, 1]), N =
L1(Ω′, [0, 1]). Then two ℓ-tuples f̄ ∈ M ℓ and ḡ ∈ N ℓ have the same quantifier free type
in LRV if and only if they have the same joint distribution as random variables.

Proof. Assume that f̄ ≡qf ḡ. By the previous Lemma we have E(θ ◦ (f̄)) = E(θ ◦ (ḡ))
for every continuous function θ : [0, 1]ℓ → [0, 1], which is enough in order to conclude
that f̄ and ḡ have the same joint distribution. Conversely, assume that f̄ and ḡ have the
same joint distribution. Then E(τ(f̄)) = E(τ(ḡ)) for every term τ(x̄). It follows that
f̄ ≡qf ḡ. �2.15

Let F̄a denote the set of atoms in F̄ , which we may enumerate as {Ai : i ∈ I}.
Then I is necessarily countable and every f ∈ L1(F , [0, 1]) can be written uniquely as
f0 +

∑
i∈I αi1Ai

, where f0 is over the atomless part and αi ∈ [0, 1].

Lemma 2.16. The set F̄a ∪ {0} is uniformly definable in F̄ . In L1(F , [0, 1]), both the
sets F̄a ∪ {0} (i.e., {1A : A ∈ F̄a} ∪ {0}) and {α1A : α ∈ [0, 1], A ∈ F̄a} are uniformly
definable.

Proof. For the first assertion let ϕ(x) be the LPr-formula supy
(
µ(x∩ y)∧µ(xr y)

)
. If A

is an atom or zero then clearly ϕ(A) = 0. If A is an event which is not an atom then the
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nearest atom to A is the biggest atom in A (or any of them if there are several of largest
measure, or 0 if A contains no atoms). Let us construct a partition of A into two events
A1 and A2 by assigning the atoms in A (if any) sequentially to A1 or to A2, whichever
has so far the lesser measure, and by splitting the atomless part of A equally between
A1 and A2. If B ⊆ A is an atom of greatest measure (or zero if there are none) then
|µ(A1) − µ(A2)| ≤ µ(B) and:

ϕ(A) ≥ µ(A1) ∧ µ(A2) ≥ 1
2
µ(A) − 1

2
µ(B) = 1

2
µ(Ar B)

= 1
2
d
(
A, F̄a ∪ {0}

)
.

Thus F̄a ∪ {0} is definable.
For the second assertion, F̄a∪{0} is relatively definable in F̄ which is in turn definable

in L1(F , [0, 1]), so F̄a∪{0} is definable in L1(F , [0, 1]). We may therefore quantify over
F̄a ∪ {0}, and define:

ψn(x) = inf
A∈F̄a∪{0}

∧

k≤2n

d
(
x, k

2n1A) .
Then F limψn defines the distance to the last set. �2.16

If follows that for each n, the set of events which can be written as the union of at
most n atoms is definable, as is the set of all finite sums

∑
i<n α1Ai

where each Ai is
an atom (or zero). These definitions cannot be uniform in n, though. Indeed, an easy
ultra-product argument shows that the set of all atomic events (i.e., which are unions of
atoms) cannot be definable or even type-definable, and similarly for the set of all random
variables whose support is atomic.

The atoms of a probability space always belong to the algebraic closure of the empty
set (to the definable closure if no other atom has the same measure). They are therefore
quite uninteresting from a model theoretic point of view, so we shall mostly consider
atomless probability spaces.

Theorem 2.17. (i) The theory ARV is complete and ℵ0-categorical.
(ii) The theory ARV eliminates quantifiers.

(iii) The universal part of ARV is RV , and ARV is the model completion of RV .
(iv) If M = L1(F , [0, 1]) � ARV and A ⊆ M then dcl(A) = acl(A) =

L1(σ(A), [0, 1]) ⊆M .
(v) Two tuples f̄ and ḡ have the same type over a set A (all in a model of ARV ) if

and only if they have the same joint conditional distribution over σ(A).
(vi) The theory ARV is ℵ0-stable, independence coinciding with probabilistic inde-

pendence, i.e.: A |⌣B
C ⇐⇒ σ(A) |⌣σ(B)

σ(C). Moreover, types over any sets in

the home sort (i.e., not over imaginary elements) are stationary.

Proof. Categoricity and completeness of ARV follow from the analogous properties for
APr.
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Assume that f̄ and ḡ are two ℓ-tuples in models of ARV , f̄ =qf ḡ. By Lemma 2.15 they
have the same joint distribution. For every (r, i) ∈ D × ℓ define events af,i = {fi ≤ r},
br,i = {gi ≤ r}. The joint distribution implies that (ar,i)(r,i)∈D×ℓ ≡

qf (br,i)(r,i)∈D×ℓ, and
since APr eliminates quantifiers: (ar,i)(r,i)∈D×ℓ ≡ (br,i)(r,i)∈D×ℓ. Under the interpreta-

tion of Proposition 2.12 we have fi ∈ dcl
(
(ar,i)r∈D

)
, gi ∈ dcl

(
(br,i)r∈D

)
, so f̄ ≡ ḡ. In

other words, the quantifier-free type of a type determines its type, whence quantifier
elimination.

The theory RV is universal and all its models embed in models of ARV , whereby
RV = ARV∀. Since ARV eliminates quantifiers it is the model completion of its universal
part.

Let now M = L1(F , [0, 1]) � ARV , and let A ⊆ M . By Lemma 2.14, 〈A〉 (the
sub-structure generated by A in M) is L1(σ(A), [0, 1]). Identifying F̄ with its defin-
able copy in M we obtain 〈A〉 = 〈σ(A)〉 = L1(σ(A), [0, 1]) and dcl(A) = dcl(σ(A)) ⊇
L1(σ(A), [0, 1]). On the other hand, σ(A) is a complete sub-algebra of F̄ � APr and
therefore definably and even algebraically closed there. By our bi-interpretability result,
σ(A) is relatively algebraically closed in the definable copy of F̄ in M. Therefore, if
g ∈ acl(A) = acl(σ(A)) then σ(g) ⊆ σ(A), i.e., g ∈ L1(σ(A), [0, 1]).

Let us identify F̄ with its definable copy in M, and let A = σ(A). By the previous
item we have tp(f̄/A) ≡ tp(f̄/A ). When A = {a0, . . . , am−1} is finite sub-algebra, it is
easy to verify that the joint conditional distribution of f̄ over A is the same as the joint
distribution of the (n+m)-tuple f̄ ,1ā. The result for types over infinite algebras follows.

Stability and the characterisation of independence for ARV follow from the analogous
properties for APr via bi-interpretability. �2.17

3. Keisler randomisation

In this section we use earlier results to extends H. Jerome Keisler’s notion of a ran-
domisation of a classical structure, or of a classical theory, to continuous ones. For the
original constructions we refer the reader to [Kei99, BK]. Throughout, we work with
a fixed continuous signature L. For the sake of simplicity we shall assume that L is
single-sorted, but everything we do can be carried out in a multi sorted setting.

3.1. Randomisation. We shall want to consider some notion of probability integration
of functions on a space Ω, which is going to be additive, although not always σ-additive
(i.e., not always verifying the Monotone Convergence Theorem and its consequences).
Thus, even though we do deal with concrete functions, it will be far more convenient
to keep track of an abstract integration functional alone, rather than of the standard
integration theory data (measurable sets, measurable functions, the measure, and the
notion of integration all these give rise to).

Definition 3.1. A finitely additive probability integration space, or simply an integration
space, is a triplet (Ω,A , E) where Ω is any set, A ⊆ [0, 1]Ω is non empty and closed
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under the connectives ¬, 1
2

and −. , and E : A → [0, 1] satisfies E(1) = 1 and E(X+Y ) =
E(X) + E(Y ) whenever X, Y and X + Y are all in A .

In this case we also say that E is a finitely additive probability integration functional,
or simply an integration functional, on A .

Fact 3.2. Let (Ω,F , µ) be a probability space. Let A ⊆ [0, 1]Ω consist of all F -
measurable functions and let E : A → [0, 1] be integration dµ. Then (Ω,A , E) is an
integration space.

The same still holds even if F is a mere Boolean algebra and µ is merely finitely
additive.

Lemma 3.3. Let (Ω,A , E) be an integration space. Equip A with the distance d(X, Y ) =
E(|X−Y |). Then E(X) = d(X, 0) for all X ∈ A and (A , 0,¬, 1

2
,−. , d) is a pre-model of

RV . In this situation we shall say that (A , E) is a pre-model of RV , or that E renders
A a pre-model of RV .

Proof. Indeed, d(X, 0) = E(|X|) = E(X). Now RV1,2 follows from the hypothesis and
the fact that X = (X −. Y ) + (X ∧ Y ). RV3 holds by definition. It follows from the
hypothesis that E(0) = 2E(0) = 0, whence RV4. �3.3

If E renders A a pre-model of ARV then we say that (Ω,A , E) is atomless.
Let Ω be an arbitrary set and let M = MΩ = {Mω}ω∈Ω be a family of L-structures. It

product
∏

M =
∏

ω∈ΩMω consists of all functions a : Ω →
⋃
Mω which verify a(ω) ∈Mω

for all ω ∈ Ω. Function symbols and terms of L are interpreted naturally on
∏

M . For
an L-formula ϕ(x̄) we define

〈〈ϕ(ā)〉〉 ∈ Ω[0,1], 〈〈ϕ(ā)〉〉 : ω 7→ ϕMω(ā(ω)).

Definition 3.4. Let Ω be a set, MΩ = {Mω}ω∈Ω a family of L-structures. Let also
M ⊆

∏
M , A ⊆ [0, 1]Ω and E : A → [0, 1]. We say that (M,A , E) is a randomisation

based on MΩ if

(i) The triplet (Ω,A , E) is an integration space.
(ii) The subset M ⊆

∏
M is non empty, closed under function symbols, and

〈〈P (ā)〉〉 ∈ A for every n-ary predicate symbol P ∈ L and ā ∈ Mn.

We equip M with the pseudo-metric d(a,b) = E〈〈d(a,b)〉〉 and A with the L1 pseudo-
metric d(X, Y ) = E

(
|X − Y |

)
.

We may choose to consider E as part of the structure on A , in which case the ran-
domisation is denoted by the pair (M,A ) alone.

If (Ω,F , µ) is a probability space, every X ∈ A is F -measurable and E[X] =
∫
X dµ

then we say that (M,A ) is based on the random family M(Ω,F ,µ) (and then we almost
always omit E from the notation).

The randomisation signature LR is defined as follows:

• The sorts of LR include of the sorts of L, referred to as main sorts, plus a new
auxiliary sort.
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• Every function symbol of L is present in LR, between the corresponding main
sorts. It is equipped with the same uniform continuity moduli as in L.

• For every predicate symbol P of L, LR contains a function symbol JP K from the
corresponding main sorts into the auxiliary sort. It is equipped with the same
uniform continuity moduli as P in L.

• The auxiliary sort is equipped with the signature LRV .

A randomisation (M,A ) admits a natural interpretation as an LR-pre-structure (MMM,A ).

The corresponding structure will be denoted (M̂MM, Â ). We also say that the randomisation

(M,A ) is a representation of the structure (M̂MM, Â ).

Example 3.5. A special case of a randomisation is when M =
∏

M (i.e., the set of all
sections), A = [0, 1]Ω, U is an ultra-filter on Ω, and EU : [0, 1]Ω → [0, 1] is the integration
functional corresponding to the 0/1 measure defined by U , i.e., EU(X) = limω,U X(ω).

In this case Â = [0, 1] and M̂MM can be identified with the ultra-product
∏

U M .

Definition 3.6. We say that a randomisation (M,A ) is full if for every a,b ∈ M and
X ∈ A , there is a function c ∈ M satisfying:

c(ω) =





a(ω) X(ω) = 1,

b(ω) X(ω) = 0,

anything otherwise.

We shall sometimes refer to it as 〈X, a,b〉, even though there is no uniqueness here.
We say that (M,A ) is atomless if A is a pre-model of ARV (i.e., if (Ω,A , E) is

atomless).

Example 3.7 (Randomisation of a single structure). Let M be a structure, (Ω,F , µ) an
atomless probability space. Let Mc ⊆ MΩ consist of all functions a : Ω → M which
take at most countably many values in M , each on a measurable set. Define Ac ⊆ [0, 1]Ω

similarly, equipping it with integration with respect to µ. Then (Mc,Ac) is a full atomless
randomisation.

Assume now that (Ω,F , µ) is merely a finitely additive probability space, namely that
F is a mere Boolean algebra and µ is finitely additive. Let Mf ⊆ MΩ and Af ⊆ [0, 1]Ω

consist of functions which take at most finitely many values, each on a measurable set.
Again, (Mf ,Af) is an atomless, full randomisation.

If (Ω,F , µ) is a true (i.e., σ-additive) probability space then both constructions are
possible and (MMMf ,Af) ⊆ (MMMc,Ac). It is not difficult to check that they have the same

completion (M̂MMf , Âf) = (M̂MMc, Âc). In particular, Âf = Âc = L1(F , [0, 1]).
Moreover, the resulting structure only depends on A = L1(F , [0, 1]), and we denote

it by (MA ,A ) (or just MA ).

3.2. The randomisation theory. Our first task is to axiomatise the class of LR-
structures which can be obtained from full atomless randomisations (and in particular
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show that it is elementary). We shall use x, y, . . . to denote variables of L, x,y, . . . to
denote the corresponding variables in the main sort of LR and U, V, . . . to denote variables
in the auxiliary sort of LR. For simplicity of notation, an LR-structure (MMM,A ) may be
denoted by MMM alone. In this case, the auxiliary sort will be denoted by A MMM and we
may write somewhat informally MMM = (MMM,A MMM). When A MMM � RV we shall refer to the
probability algebra of A MMM as FMMM (so A MMM = L1(FMMM, [0, 1])).

The “base theory” for randomisation, which will be denoted by TRa0 , consists of the
theory RV for the auxiliary sort along with the following additional axioms:(

δf,i(ε) −. Jd(x,y)K
)
∧
(
Jd(f(x̄′,x, ȳ′), f(x̄′,y, ȳ′))K −. ε

)
= 0(R1f) (

δP,i(ε) −. Jd(x,y)K
)
∧
(
JP (x̄′,x, ȳ′)K −. JP (x̄′,y, ȳ′)K −. ε

)
= 0(R1P )

d(x,y) = EJd(x,y)K(R2)

sup
U∈F

inf
z
E
[(

Jd(x, z)K ∧ U
)
∨
(
Jd(y, z)K ∧ ¬U

)]
(R3)

In axiom R1, δs,i denotes the uniform continuity modulus of the symbol s with respect
to its ith argument, with |x̄′| = i and |ȳ′| = ns − i − 1. In axiom R3, F denotes the
probability algebra of the auxiliary sort, over which, modulo RV , we may quantify.

The role of axiom R1 is to ensure that the values of JP (ā)K(ω), f(ā)(ω) only de-
pends on ā(ω) and respect the uniform continuity moduli prescribed by L. Axiom R2
is straightforward, requiring the distance in the main sort of be the expectation of the
random variable associated to L-distance. Axiom R3 is a gluing property, corresponding
to fullness of a randomisation. It can be informally stated as

(∀xy)(∀U ∈ F )(∃z)
(
Jd(x, z)K ∧ U = Jd(y, z)K ∧ ¬U = 0

)
,(R3’)

where the existential quantifier is understood to hold in the approximate sense. We prove
in Lemma 3.10 below that it actually holds in the precise sense.

Lemma 3.8. Let (M,A ) be a randomisation. Then (MMM,A ) is a pre-model of RV (in
the auxiliary sort) and of R1,2. If (M,A ) is full then (MMM,A ) is a pre-model of TRa0 .

Proof. All we have to show is that if (M,A ) is full then (MMM,A ) verifies R3, or equiva-

lently, (M̂MM, Â ) does. However, we chose to write R3 using a quantifier over a definable
set, a construct which need not have the apparent semantics in a pre-structure such as

(MMM,A ), and we find ourselves forced to work with (M̂MM, Â ). (Indeed, since A is a mere
pre-model of RV , the algebra of characteristic functions in A may well be trivial.)

Let F̂ denote the probability algebra of Â and let A ∈ F̂ , a,b ∈ M. Then there is

X ∈ A whose image X̂ ∈ Â is very close to 1A. Define:

Y = 2̇(X −. 1/4) ∈ A ,

c = 〈Y, a,b〉 ∈ M (by fullness),

W =
(
Jd(a, c)K ∧ Y

)
∨
(
Jd(b, c)K ∧ ¬Y

)
∈ A .
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For every ω ∈ Ω we have Y (ω) ∈ {0, 1} =⇒ W (ω) = 0. In other words, W (ω) 6= 0 =⇒
0 < Y (ω) < 1 =⇒ 1/4 < X(ω) < 3/4. Thus W ≤ (4̇X) ∧ (4̇¬X), and:

Ŵ =
(
Jd(â, ĉ)K ∧ Ŷ

)
∨
(
Jd(b̂, ĉ)K ∧ ¬Ŷ

)
≤ (4̇X̂) ∧ (4̇¬X̂).

Choosing X̂ close enough to 1A (let us write X̂ ∼ 1A), we have:

Ŷ ∼ 1A,
Ŵ ∼

(
Jd(â, ĉ)K ∧A

)
∨
(
Jd(b̂, ĉ)K ∧ ¬A

)
,

(4̇X̂) ∧ (4̇¬X̂) ∼ 0.

Thus
(
Jd(â, ĉ)K ∧A

)
∨
(
Jd(b̂, ĉ)K ∧ ¬A

)
can be arbitrarily close to 0 in Â .

We have shown that for all a,b ∈ M and A ∈ Â :

infz E
[(

Jd(â, z)K ∧ A
)
∨
(
Jd(b̂, z)K ∧ ¬A

)]
= 0.

Since the image of M is dense in M̂ this shows that (M̂MM, Â ) is a model of R3. �3.8

In order to prove a converse we need to construct, for every model MMM � TRa0 , a
corresponding randomisation.

Definition 3.9. Assume (MMM,A ) � TRa0 . Let (Ω, µ) = (ΩMMM, µMMM) be the Stone space of
A as per Theorem 2.7. Then we say that (MMM,A ) is based on (Ω, µ).

We recall that Ω is a compact Hausdorff topological space, µ is a regular Borel proba-
bility measure and we may identify A = C(Ω, [0, 1]) = L1(µ, [0, 1]). Under this identifi-
cation

∫
Ω
X dµ = E(X) for all X ∈ A .

For each ω ∈ Ω we define an L-pre-structure M0,ω. Its underlying set is M0,ω = M

and the interpretations of the symbols are inherited naturally from MMM:

fM0,ω = fMMM : Mn → M, PM0,ω(ā) = JP (ā)K(ω) ∈ [0, 1].

Notice that axiom R1d implies that Jd(x,y)K−. Jd(x, z)K ≤ Jd(y, z)K and axiom R2 implies
Jd(x,x)K = 0. Symmetry of Jd(x,y)K and the usual form of the triangle inequality follow,
so dM0,ω is a pseudo-metric for every ω. Other instances of axiom R1 imply that M0,ω

respects uniform continuity moduli prescribed by L. Thus M0,ω is indeed an L-pre-
structure. The structure associated to M0,ω will be denoted Mω. Let M denote the
family {Mω}ω∈Ω and let aω denote the image of a in Mω.

Assume that a,b ∈ M are distinct. Then EJd(a,b)K > 0, whereby Jd(a,b)K(ω) > 0
for some ω ∈ Ω. Thus aω 6= bω and the mappings ω 7→ aω, ω 7→ bω are distinct. In
other words, we may identify a ∈ M with the mapping a : ω 7→ aω. Viewed in this
manner we have M ⊆

∏
M . By construction, if f ∈ L is a function symbol then its

coordinate-wise action on M as a subset of
∏

M coincides with fMMM. Similarly, if P ∈ L
is a predicate symbol then 〈〈P (ā)〉〉 =

(
ω 7→ PMω(ā(ω))

)
= JP (ā)K ∈ A . We have thus
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identified (M,A ) with a randomisation base on (Ω, µ). This randomisation is called the
canonical representation of (MMM,A ).

Lemma 3.10. Let MMM � TRa0 , a,b ∈ M and A ∈ FMMM. Then there exists (a unique)
c = 〈A, a,b〉 ∈ M which is equal to a over A and to b elsewhere:

Jd(a, c)K ∧ A = Jd(b, c)K ∧ ¬A = 0.

Identifying (MMM,A MMM) with its canonical representation based on Ω, A is identified with
a (unique) clopen set A ⊆ Ω and we have:

c(ω) =

{
a(ω) ω ∈ A,

b(ω) ω /∈ A.

Proof. By axiom R3, for every ε > 0, there is cε such that:

E
[(

Jd(a, cε)K ∧ A
)
∨
(
Jd(b, cε)K ∧ ¬A

)]
< ε.

Passing to the canonical representation it is easy to check that d(cε, cε′) < ε+ ε′ for any
ε, ε′ > 0. Thus (cε)ε→0+ is a Cauchy sequence whose limit c = 〈A, a,b〉 is as desired.
Uniqueness is clear. �3.10

Theorem 3.11. An LR-structure is a model of TRa0 if and only if it has a full repre-

sentation, i.e., if and only if it is isomorphic to a structure (M̂MM, Â ) associated to a full
randomisation (M,A ).

Moreover, let (MMM,A ) be a model of TRa0 . Then the canonical representation of (MMM,A )
is full, and as an LR-pre-structure it is isomorphic to (MMM,A ). In particular, the LR-
pre-structure associated to the canonical representation is already a structure.

Proof. One direction is Lemma 3.8, so it is enough to prove the moreover part. It is
clear that the identity mapping is an isomorphism between the structure (MMM,A ) and
the pre-structure associated to the canonical representation, so all that is left to show is
that the latter is full.

Let a,b ∈ M, X ∈ A . The set {X ≤ 1
2
} ⊆ Ω is Borel and therefore equal outside a

null measure set to some clopen set U ⊆ Ω. We now have

X −. 1{X≥1/2} ≤
1
2

=⇒ X −. 1U ≤ 1
2
, =⇒ U ⊇ {X = 1},1{X≥1/2} −. X ≤ 1

2
=⇒ 1U −. X ≤ 1

2
, =⇒ U ∩ {X = 0} = ∅.

Thus c = 〈U, a,b〉 will do as 〈X, a,b〉. �3.11

From now on we shall identify a model of TRa0 with its canonical representation when-
ever that is convenient and without further mention.



26 ITAÏ BEN YAACOV

3.3. Quantifiers. It is a classical fact that A = L1(F , [0, 1]) is a complete lattice.
More precisely, let A ⊆ A be any subset. We may assume that A is closed under ∧.
Let r = inf{E(X) : X ∈ A} and let (Xn)n∈N ⊆ A satisfy E(Xn) → r. By hypothesis
E(Xn∧Xm) ≥ r whereby d(Xn, Xm) ≤ |E(Xn)−r|+ |E(Xm)−r|. The sequence (Xn)n∈N

is therefore Cauchy and its limit is inf A.
Let now (MMM,A ) be a model of TRa0 ,

Definition 3.12. Let (MMM,A ) � TRa0 , t : Mn → A a function. We say that t is local if
it is always true that:

t(. . . , 〈A, a,b〉, . . .) = t(. . . , a, . . .) ∧A+ t(. . . ,b, . . .) ∧ ¬A.

For a function t : Mn+1 → A we define infy t(x̄,y) : Mn → A by

infy t(ā,y) = inf{t(ā,b) : b ∈ M} ∈ A .

Lemma 3.13. Let t(x̄,y) be a uniformly definable local function in models of TRa0 from
the main sort into the auxiliary sort. Then the function s(x̄) = infy t(x̄,y) is uniformly
definable and local as well, and TRa0 implies that:

infz d
(
infy t(x̄,y), t(x̄, z)

)
= 0.

Moreover, for every ā in a model of TRa0 and ε > 0 there is b such that:

t(ā,b) ≤ infy t(ā,y) + ε

(Similarly for supy t.)

Proof. It follows directly from the definition that if t is local then so is infy t (no defin-
ability is needed here).

We start by proving the moreover part. Let (MMM,A ) � TRa0 , ā ∈ Mn. Following the
discussion of the completeness of the lattice structure on A there is a sequence {cn}n∈N

such that infy t(ā,y) = infn t(ā, cn). Let us define a sequence {bn} by:

b0 = c0,

bn+1 =
〈
{t(ā,bn) − t(ā, cn+1) > ε}, cn+1,bn

〉
.

In other words, when passing from bn to bn+1 we use cn+1 only where this means a
decrease of more than ε, and elsewhere keep bn.

Clearly
∑

n µ{t(ā,bn) − t(ā, cn+1) > ε} ≤ 1/ε. Since t is local, d(bn,bn+1) ≤
µ{t(ā,bn) − t(ā, cn+1) > ε}, so the sequence {bn} converges to some b. For every n
we have t(ā,b) ≤ t(ā, cn) + ε, whence t(ā,b) ≤ infy t(ā,y) + ε, as desired.

We can now prove the first assertion. Indeed, it follows from the moreover part that
the graph of infy t is uniformly definable as:

X = infy t(ā,y) ⇐⇒

{
supzE

(
X −. t(ā, z)

)
= 0,

infzE
(
t(ā, z) −. X

)
= 0.
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Once we know that infy f is definable, the sentence in the second assertion is expressible,
and holds true by the moreover part. �3.13

We now proceed to define by induction, for every L-formula ϕ(x̄), a TRa0 -definable local
function Jϕ(x̄)K to the auxiliary sort, in the following natural manner:

• Atomic formulae: JP (τ̄)K = JP K ◦ (τ̄) is a term, the composition of the function
symbol JP K with the L-terms τ̄ , which are also LR-terms. These are local by
Theorem 3.11.

• Connectives: Jϕ−. ψK = JϕK −. JψK, and so on. Locality is clear.
• Quantifiers: Jinfy ϕ(x̄, y)K = infyJϕ(x̄,y)K, Jsupy ϕ(x̄, y)K = supyJϕ(x̄,y)K. Lo-

cality follows from Lemma 3.13.

Our somewhat minimalist approach differs from that of Keisler, who introduces a
function symbol Jϕ(x̄)K for every L-formula ϕ (see [Kei99, BK]). Keisler’s Boolean Axioms
and Fullness Axiom are valid in our setting by definition of JϕK (using Lemma 3.13 for
fullness). Keisler’s Distance Axiom for the main sort is our R2. While not entirely
equivalent, Keisler’s Event Axiom corresponds to our axiom R3. (More precisely, Keisler’s
Event Axiom is equivalent to R3 plus supx,y d(x,y) = 1. We do not find it necessary
or desirable to assume the latter.) Other axioms related to the auxiliary sort, with the
exception of atomlessness, are coded in RV (with one big difference, namely that here
the auxiliary sort is the full L1(F , [0, 1]) whereas in [Kei99, BK] it only consists of F ).
We shall add atomlessness later on, when it is needed for Theorem 3.32. We are left with
the Validity Axioms which we also claim follow from TRa0 .

Theorem 3.14. Let (MMM,A ) be a model of TRa0 which we identify as usual with its
canonical representation, based on (Ω, µ). Then for every formula ϕ(x̄) and tuple ā of
the appropriate length we have 〈〈ϕ(ā)〉〉 = Jϕ(ā)K as functions on Ω (and not merely up to
a null measure set).

Proof. We prove by induction on ϕ. If ϕ is atomic this is known by construction and
the induction step for connectives is immediate. We are left with the case of a formula
infx ϕ(x, ȳ). First of all, by construction, we have:

〈〈infx ϕ(x, ā)〉〉 = infs
{
〈〈ϕ(b, ā)〉〉 : b ∈ M

}
,

Jinfx ϕ(x, ā)K = infxJϕ(x, ā)K = infL
1{

Jϕ(b, ā)K : b ∈ M
}
.

Here infs means the simple, or point-wise, infimum of functions on Ω. By definition
Jinfx ϕ(x, ā)K ≤ Jϕ(b, ā)K for all b, and by the induction hypothesis for ϕ we have
Jinfx ϕ(x, ā)K ≤ 〈〈ϕ(b, ā)〉〉. It follows that Jinfx ϕ(x, ā)K ≤ 〈〈infx ϕ(x, ā)〉〉. Conversely,
by Lemma 3.13, for every ε > 0 there exists b such that Jinfx ϕ(x, ā)K + ε ≥ Jϕ(b, ā)K.
Using the induction hypothesis again we obtain:

Jinfx ϕ(x, ā)K + ε ≥ 〈〈ϕ(b, ā)〉〉 ≥ 〈〈infx ϕ(x, ā)〉〉.

Equality follows. �3.14
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Corollary 3.15. Let MMM � TRa0 and assume its canonical representation is based on the
family M = {Mω}ω∈Ω. Then for every L-sentence ϕ:

MMM � JϕK = 0 ⇐⇒ Mω � ϕ for all ω ∈ Ω.

Proof. Immediate from the fact that JϕK = 〈〈ϕ〉〉 on Ω. �3.15

Definition 3.16. Let T be a set of L-sentences. We define its randomisation TRa to
be the LR-theory consisting of the base theory along with the translation of T (Keisler’s
Transfer Axioms):

TRa = TRa0 ∪ {JϕK = 0}ϕ∈T .

Corollary 3.17. Let T be arbitrary set of sentences, ϕ a sentence. Then T ⊢ ϕ ⇐⇒
TRa ⊢ JϕK = 0.

Proof. Immediate. �3.17

Corollary 3.18 (Keisler’s Validity Axiom). Assume ϕ is a valid L-sentence. Then
TRa0 ⊢ JϕK = 0.

3.4. A variant of  Loś’s Theorem. Given a randomisation (M,A ), let [·] : (M,A ) →

(M̂, Â ) denote the canonical mapping to the associated structure.

Theorem 3.19 ( Loś’s Theorem for randomisation). Let MΩ be a family of structures,

M =
∏

M , and let E an integration functional on A = [0, 1]Ω. Let (M̂MM, Â ) denote the
structure associated to the randomisation (M,A ).

Then (M,A ) is full and for every formula ϕ(x̄) and every ā ∈ Mn:
[
〈〈ϕ(ā)〉〉

]
= Jϕ([ā])K.

Proof. Fullness is immediate. We claim that
[
〈〈infy ϕ(ā, y)〉〉

]
= infb∈M

[
〈〈ϕ(ā,b)〉〉

]
for

every formula ϕ(x̄, y) and every ā ∈ Mn, where the infimum on the right hand side is in

the sense of the lattice Â . Indeed, the inequality ≤ is immediate. For ≥ observe that
using the Axiom of Choice, for every ε > 0 we can find b ∈ M such that 〈〈infy ϕ(ā, y)〉〉+
ε ≥ 〈〈ϕ(ā,b)〉〉, whereby

[
〈〈infy ϕ(ā, y)〉〉

]
+ ε ≥

[
〈〈ϕ(ā,b)〉〉

]
.

We now prove the main assertion. First of all, we may replace ϕ with an equivalent
formula ψ. Indeed, on the left hand side we have immediately 〈〈ϕ(ā)〉〉 = 〈〈ψ(ā)〉〉. For the
right hand side, we have |JϕK − JψK| = J|ϕ − ψ|K, whereby TRa0 ⊢ JϕK = JψK. We may
therefore assume that ϕ is in prenex form. We now proceed by induction on the number
of quantifiers. If ϕ is quantifier-free then

[
〈〈ϕ(ā)〉〉

]
= Jϕ([ā])K by construction. For the

induction step, recall that

Jinfy ϕ([ā], y)K = infyJϕ([ā],y)K = inf
b∈cM

Jϕ([ā],b)K = inf
b∈M

Jϕ([ā], [b])K.

We conclude using the claim and the induction hypothesis. �3.19
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Let us go back to the ultra-product example (Example 3.5), where M =
∏

M and

M̂MM =
∏

U M . By construction EJinfy ϕ([ā], y)K = infb∈MEJϕ([ā], [b])K. One also always
has EJ¬ϕ([ā])K = ¬EJϕ([ā])K, EJ1

2
ϕ([ā])K = 1

2
EJϕ([ā])K. Since E = EU is given by

an ultra-filter, we have moreover EJϕ([ā]) −. ψ([ā])K = EJϕ([ā])K −. EJψ([ā])K. Thus
the truth value of ϕ([ā]) in the ultra-product is precisely EJϕ([ā])K in the sense of the
randomised structure. Now the last item of Theorem 3.19 yields the classical version of
 Loś’s Theorem:

ϕ([ā]) = EU

[
〈〈ϕ(ā)〉〉

]
= lim

U
ϕ(a(ω)).

Let us pursue a little further this analogy with classical ultra-products. Classical
ultra-product constructions consist of fixing a family MΩ and a filter F on Ω with
certain desired properties, then extending this filter to an ultra-filter and taking the
ultra-product. A filter on Ω can be viewed as a partial 0/1 measure: some sets have
measure zero, some measure one, and for some the measure is not known. The [0, 1]-
valued analogue is a partial integration functional on [0, 1]Ω.

Definition 3.20. A partial integration space is a triplet (Ω,A0, E0) where Ω is a set,
A0 ⊆ [0, 1]Ω is any subset, and E0 : A0 → [0, 1] is a functional satisfying that for every
finite sequence {(Xi, mi)}i<ℓ ⊆ A0 × Z and k ∈ Z:

∑
miXi ≥ k =⇒

∑
miE0(Xi) ≥ k.

In this case we say that E0 is a partial integration functional.

Clearly every integration functional is a partial integration functional. Conversely,

Fact 3.21. Let (Ω,A0, E0) be a partial integration space. Then E0 can be extended to a
total integration functional E on A = [0, 1]Ω, rendering (Ω,A , E) a (total) integration
space.

Moreover, if (Ω,A0, E0) is an integration space, and atomless as such, then (Ω,A , E)
is atomless as well.

Proof. See [BK, Section 5]. �3.21

Definition 3.22. A partial randomisation based on a family MΩ is a triplet (M,A0, E0)
satisfying all the properties of an ordinary (total) randomisation, with the exception that

we do not require that 〈〈P (ā)〉〉 ∈ A0. We say that a partial randomisation is atomless
if (A0, E0) � ARV .

By Fact 3.21 we may extend E0 to an integration functional E on A = [0, 1]Ω. We
say that the (full) randomisation (M,A ) = (M,A , E) is a totalisation of (M,A0, E0)

and that the associated structure (M̂MM, Â ) is a structure associated to (M,A0, E0). (It
is an associated structure rather than the associated structure because of the arbitrary
choices involved.)



30 ITAÏ BEN YAACOV

Definition 3.23. We recall that a random family of structures M(Ω,F ,µ) consists of a
family of structures MΩ = {Mω}ω∈Ω indexed by a probability space (Ω,F , µ). To every
such random family we associate a natural partial randomisation (M,A0, E0) where
M =

∏
M and (Ω,A0, E0) is the integration space of F -measurable functions on Ω. It

is atomless if and only if (Ω,F , µ) is an atomless probability space.

If (M̂MM, Â ) is a structure associated to (M,A0, E0) then we also say that it is a structure
associated to the random family M(Ω,F ,µ).

Corollary 3.24. Let M(Ω,F ,µ) be a random family of structures and let (MMM,A ) be an
associated structure. Then for every ā in

∏
M and every formula ϕ(x̄), if 〈〈ϕ(ā)〉〉 ∈

[0, 1]Ω is F -measurable then

EJϕ([ā])KMMM =

∫

Ω

〈〈ϕ(ā)〉〉 dµ

Proof. Immediate from Theorem 3.19 and the construction. �3.24

This can be improved to construct extensions containing elements with desired prop-
erties.

Definition 3.25. An embedding σ : (MMM,A ) → (MMM1,A1) will be called a J·K-embedding
if σJϕ(ā)KMMM = Jϕ(σā)KMMM1 for every ā ∈ Mn and formula ϕ(x̄).

Definition 3.26. A morphism of integration spaces π : (Ω′,A ′, E ′) → (Ω,A , E) is a
projection π : Ω′ ։ Ω such that X ◦ π ∈ A ′ and E ′(X ◦ π) = E(X) for all X ∈ A .

Corollary 3.27. Let (MMM,A ) � TRa0 with canonical representation (M,A ) based on
M(Ω,F ,µ), so in particular A = C(Ω, [0, 1]).

Let π : (Ω′,A ′
0 , E

′
0) ։ (Ω,A , E) be a morphism of integration spaces and let M ′

Ω′ =
{M′

ω′}ω′∈Ω′ be a family of elementary extensions Mπω′ � M′
ω′. Set M′ =

∏
M ′

Ω′,
A ′ = [0, 1]Ω

′

, and for a ∈ M and X ∈ A define

σa = a ◦ π = (ω′ 7→ a(πω′)) ∈ M′, σX = X ◦ π ∈ A
′.

Let (M̂MM′, Â ′) be an associated structure to the partial randomisation (M′,A ′
0 , E

′
0), and

let [σ] : (MMM,A ) → (M̂MM′, Â ′) be the mapping a 7→ [σa], X 7→ [σX]. Then

(i) The mapping σ : (MMM,A ) → (M̂MM′, Â ′) � TRa0 is a J·K-embedding.
(ii) For every ā in

∏
M ′ and every ϕ(x̄), if 〈〈ϕ(ā)〉〉 ∈ A ′

0 then

EJϕ([ā])K
dMMM′

= E ′
0〈〈ϕ(ā)〉〉.

Proof. For the first item it is easy to check that [σ] is indeed an embedding. In order to
see that [σ] is a J·K-embedding let ā ∈ Mn and let ϕ(x̄) be a formula. Then 〈〈ϕ(ā)〉〉 =
Jϕ(ā)K ∈ A ⊆ [0, 1]Ω by Theorem 3.14, so

[
σJϕ(ā)K

]
=
[
σ〈〈ϕ(ā)〉〉

]
=
[
〈〈ϕ(σā)〉〉

]
= Jϕ([σā])K.

The second item is an immediate consequence of Theorem 3.19. �3.27
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3.5. Quantifier elimination and types. Let TR0 consist of TRa0 along with the atom-
lessness axiom ARV. In other words, TR0 consists of the theory ARV for the auxiliary
sort plus axioms R1-3. Similarly, we define TR = TRa + ARV = TR0 ∪ {JϕK = 0}ϕ∈T .

Example 3.28. Let M � T and let (Ω,F , µ) be any atomless probability space. Let
(MMM,A ) be an associated structure to the random family M(Ω,F ,µ). Then (MMM,A ) � TRa

by Corollary 3.24 and A is atomless, whereby (MMM,A ) � TR.

Lemma 3.29. The theories TRa and TR are companions. Moreover, every model
(MMM,A ) � TRa admits a J·K-embedding σ : (MMM,A ) → (MMM1,A 1) � TR.

Proof. It is enough to prove the moreover part. Let ([0, 1],B, λ) denote the Lebesgue
measure on [0, 1]. Apply Corollary 3.27 to (Ω′,F ′, µ′) = (Ω,F , µ) × ([0, 1],B, λ) and
M′

ω,r = Mω. The resulting embedding σ : (MMM,A ) → (MMM1,A 1) is a J·K-embedding

and A 1 is atomless. If ϕ ∈ T is a sentence then JϕKMMM
1

= σJϕKMMM = σ0 = 0. Thus
(MMM1,A 1) � TR, as desired. �3.29

Let us now fix an L-theory T . As usual, Sn(T ) (or sometimes Sx̄(T )) denotes the
space of n-types of T . Similarly, Sn(TR) (or Sx̄(TR)) denotes the space of n-types of the
LR-theory TR.

Let us fix some additional notation. For a compact Hausdorff space X, let R(X)
denote the space of regular Borel probability measures on X. For ϕ ∈ C(X,C) and
µ ∈ R(X) let 〈ϕ, µ〉 =

∫
ϕdµ and equip R(X) with the weak topology, namely µs → µ

if 〈ϕ, µs〉 → 〈ϕ, µ〉 for all ϕ. It is a classical (and easy) fact that this renders R(X) a
compact Hausdorff space as well.

Let p(x̄) ∈ Sn(TR). It is not difficult to verify (e.g., using the Riesz Representation
Theorem) that there exists a unique regular Borel probability measure νp ∈ R(Sn(T ))
characterised by the identity EJϕ(x̄)Kp = 〈ϕ, νp〉 for every L-formula ϕ(x̄). The mapping
p 7→ νp is continuous by definition of the topology on R(Sn(T )).

We next claim that p 7→ νp is surjective. Indeed, let µ ∈ R(Sn(T )). For each p ∈ Sn(T )
choose a model Mp and a realisation āp ∈Mn

p of p (we do not assume that T is complete
so Mp may have to vary with p). Let (MMM,A ) be a structure associated to the random
family M = M(Sn(T ),µ) = {Mp}p∈Sn(T ). Let ā ∈

∏
M be given by ā(p) = āp. By

Corollary 3.24, for every formula ϕ(x̄):

EJϕ([ā])K = E[〈〈ϕ(ā)〉〉] = 〈ϕ, µ〉.

In particular, if ϕ ∈ T is a sentence then EJϕK = 0, so (MMM,A ) � TRa. By Lemma 3.29 we
can embed (MMM,A ) in a model (MMM1,A 1) � TR without changing the values of EJϕ([ā])K.
Thus in MMM1 we have νtp(ā) = µ. (Using the same trick as in Lemma 3.29 we could have
arranged for (MMM,A ) to be atomless directly, working with Ω = Sn(T ) × [0, 1].) We
argued above for types in finitely many variables, but in exactly the same manner we
associate to each p ∈ SI(T

R) a regular Borel probability measure νp ∈ R(SI(T )) and
this mapping is surjective, for an arbitrary index set I.
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We now wish to prove quantifier elimination. We shall require a modified version of
the Hall Marriage Theorem:

Fact 3.30. Let S be a finite set, (Ω,F , µ) an atomless probability space. For each x ∈ S
let us be given a weight wx ≥ 0 and an event Cx ∈ F . For T ⊆ S let WT =

∑
x∈T wx,

CT =
⋃
x∈T Cx. Then the following are equivalent:

(i) For all T ⊆ S: µ(CT ) ≥ wT .
(ii) There exists a family {Dx}x∈S such that Dx ⊆ Cx and µ(Dx) = wx.

Notice that the family {Dx}x∈S is necessarily disjoint. If wS = 1 then {Dx}x∈S is a
partition of Ω (up to null measure).

Proof. One direction is immediate, so let us prove the other by induction on |S|. There is
no harm in assuming that wx > 0 for every x ∈ S. Let Ξ ⊆ F S consist of all families of
events {Dx}x∈S which satisfy µ(DT ) ≥ wT for all T ⊆ S. We order Ξ be coordinate-wise
inverse inclusion: {Dx}x∈S ≤ {D′

x}x∈S if Dx ⊇ D′
x (up to null measure) for all x ∈ S. A

strictly increasing sequence in Ξ is at most countable, and its coordinate-wise intersection
is still in Ξ, so by Zorn’s Lemma Ξ admits a maximal element {Dx} ≥ {Cx}.

Let r = min{µ(DT ) − wT : ∅ ( T ( S}, and assume that r > 0. Choose x0 ∈ S
arbitrarily. Then µ(Dx0

) ≥ r, so we may choose B ⊆ Dx0
, µ(B) = r. Let D′

x0
= Dx0

,
and for x 6= x0 let D′

x = Dx r B. Then {D′
x} ∈ Ξ, contradicting the maximality of

{Dx}. Therefore r = 0, i.e., there is ∅ ( T0 ( S such that µ(DT0
) = wT0

. For x /∈ T0 let
D′
x = Dx rDT0

. For every T ⊆ S r T0 we calculate:

µ(D′
T ) = µ(D′

TrT0
) = µ(DT∪T0

) − µ(DT0
) ≥ wT∪T0

− wT0
= wT .

May may now apply the induction hypothesis separately to {Dx}x∈T0
and to {D′

x}x∈SrT0

and conclude. �3.30

Lemma 3.31. Let (MMM,A ) � TR0 be ℵ0-saturated, ā ∈ Mn, and let νā be an abbreviation
for νtp(ā). Let θ : Sn+1(L) → Sn(L) be the restriction to the first n variables. Then:

(i) For every b ∈ M, νā is the image measure of νā,b under θ.
(ii) Conversely, let η ∈ R(Sn+1(L)) by such that its image measure under θ is νā.

Then there is b ∈ M such that η = νā,b.

Proof. The first item is immediate. For the second, it is enough to show that for every
finite family ϕi(x̄, y), i < ℓ, and for every ε > 0, there is b ∈ M such that

∣∣〈ϕi, η〉 −
EJϕi(ā,b)K

∣∣ < ε for i < ℓ.

Let S = {sj}j<k be a partition of [0, 1]ℓ into finitely many Borel subsets, diam(si) < ε.
For j < k let wj = η{ϕ̄ ∈ sj}. Choose also t̄j ∈ sj and let ψj =

∨
i<ℓ |ϕi − tj,i|. Notice

that ∣∣∣∣∣〈ϕi, η〉 −
∑

j<k

wjtj,i

∣∣∣∣∣ ≤
∑

j<k

wj diam(sj) < ε.
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Let Cj ∈ F be the event
{
Jinfy ψj(ā, y)K < ε}. Following the notations of Fact 3.30,

we claim that µ(CT ) ≥ wT for all T ⊆ k. Indeed, notice that {ϕ̄ ∈ sj} ⊆ θ−1{ψj < ε},
whereby:

wT =
∑

j∈T

η{ϕ̄ ∈ sj} = η

(⋃

j∈T

{ϕ̄ ∈ sj}

)
≤ η

(⋃

j∈T

θ−1{ψj < ε}

)

= νā

(⋃

j∈T

{ψj < ε}

)
= µ(CT ).

By Fact 3.30 there are events Dj ⊆ Cj such that wT = µ(DT ) for all T ⊆ k. Since the
total weight is one, {Dj}j<k is a partition. By Lemma 3.13 and saturation of MMM there
are bj ∈ M such that Jinfy ψj(ā, y)K = Jψj(ā,bj)K. Notice that:

J|ϕi(ā,bj) − tj,i|K1Dj
≤ Jinf

y
ψj(ā, y)K1Cj

< ε.

Let b =
〈
D0,b0, 〈D1,b1, . . .〉

〉
, i.e., b(ω) = bj(ω) when ω ∈ Dj . Now:

∣∣∣∣∣
∑

j<k

wjtj,i − EJϕi(ā,b)K

∣∣∣∣∣ ≤
∑

j<k

∣∣wjtj,i − E
(
Jϕi(ā,b)K1Dj

)∣∣

=
∑

j<k

∣∣∣E
[(
tj,i − Jϕi(ā,bj)K

)1Dj

]∣∣∣

≤ E

[∑

j<k

∣∣tj,i − Jϕi(ā,bj)K
∣∣1Dj

]
< ε.

Thus
∣∣〈ϕi, η〉 − EJϕi(ā,b)K

∣∣ < 2ε, which is good enough. �3.31

Theorem 3.32. (i) The theories of the form TR (and in particular TR0 ) eliminate
quantifiers in the main sort down to formulae of the form EJϕ(x̄)K.

(ii) The mapping p 7→ νp defined by 〈ϕ, νp〉 = EJϕKp induces a homeomorphism
Sx̄(TR) ≃ R(Sx̄(T )).

(iii) Let f : n → m be any mapping. Let f ∗ : Sm(T ) → Sn(T ) be the mapping
tp(a0, . . . , am−1) 7→ tp(af(0), . . . , af(n−1)) and similarly f ∗,R : Sm(TR) → Sn(TR).

Let f̃ ∗ : R(Sm(T )) → R(Sn(T )) be the image measure mapping corresponding to

f̃ ∗. Then the following diagram commutes:

Sm(TR)

Sn(TR)

R(Sm(T ))

R(Sn(T ))

.

.

.

.

.

.

.

.

.

.

.
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(iv) The completions of TR are in bijection with regular Borel probability measures
on the space of completions of T . In particular, if T is complete then so is TR.

Proof. The first item follows from Lemma 3.31 via a standard back-and-forth argument.
For the second item, we have already seen that the mapping p 7→ νp is continuous and
surjective. From the first item it follows that it is injective. Since both spaces are compact
and Hausdorff, it is a homeomorphism. The third item is easily verified. The last item
is a special case of the second item for 0-types. �3.32

Corollary 3.33. Assume that T eliminates quantifiers. Then so does TR, and it is the
model completion of TRa. If T is merely model complete then TR is model complete as
well, and is the model companion of TRa.

Proof. The case where T eliminates quantifiers is easy. The case where T is model
complete requires a bit more attention to details which we leave to the reader. �3.33

We have described formulae and types on the main sort. In order to handle the
auxiliary sort, add to L a sort S[0,1] for the set [0, 1], equipped with the tautological
predicate id : S[0,1] → [0, 1] and with the usual distance d(r, s) = | id(r)− id(s)|. This is a
compact structure and therefore the unique model of its theory, and adding it to models
of T as a new sort does not add any structure on the original sorts. Call the resulting
signature L+ and the corresponding theory T+. It is easy to check that T+ eliminates
quantifiers if T does. Passing to TR+ , JidK is an isometric bijection between the main
sort SR[0,1] of TR+ and the auxiliary sort, so questions about types and definability in the

auxiliary sort can be settled by applying Theorem 3.32 to the sort SR[0,1].

Corollary 3.34. Every LR-definable predicate on the auxiliary sort of TR, possibly with
parameters ā from the main sorts, is equivalent to one in the pure language of the auxiliary
sort and with parameters in

σ(ā) = σ
(
Jϕ(ā)K

)
ϕ(x̄)∈Lω,ω

⊆ F .

Consequently, the auxiliary sort is stable and stably embedded in models of TR, and if X̄
is a tuple in the auxiliary sort then

tp(X̄/ā) ≡ tp(X̄/σ(ā)).

Proof. We may assume that T eliminates quantifiers, in which case so does T+ and
therefore TR+ . It is therefore enough to show that for a tuple of variables r̄ in the sort
SR[0,1] and for any possible additional parameters ā, any atomic formula in r̄ and ā is

equivalent to a formula entirely in SR[0,1], possibly using parameters in JidK−1(σ(ā)). Given
the minimalistic structure we put on S[0,1], such an atomic formula can either involve
precisely one free variable ri or some of the parameters but no free variable. In the first
case we have Jid(ri)K which is as desired. In the second we have Jϕ(ā)K where ϕ(x̄) is an
atomic L-formula. In this case let X = JidK−1 ◦ Jϕ(ā)K ∈ SR[0,1], so Jϕ(ā)K = Jid(X)K, and
the latter is again as desired. �3.34
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3.6. Types in TR when T is incomplete. Theorem 3.32 provides us with a complete
description of types in TR, whether T is complete or not. In various situations we shall
encounter later on, this description turns out to be much more useful when T is complete.
What follows here is a brief discussion of the general case and a reduction of sorts to the
special case of a complete theory.

Let T be an incomplete theory and let p ∈ Sn(TR). By Theorem 3.32 we may identify p

with a regular Borel probability measure νp ∈ R(Sn(T )). Let Ap = L1
(
(Sn(T ), νp), [0, 1]

)

and let (Ωp, µp) be its Stone space. We have a natural identification of C(Ωp, [0, 1])
with Ap, so in particular every n-ary L-formula ϕ(x̄) gives rise to a continuous function
ϕ : Sn(T ) → [0, 1] with image ϕp ∈ Ap = C(Ωp, [0, 1]). Thus for every ω ∈ Ωp we
may define a complete type πpω ∈ Sn(T ) by ϕπpω = ϕp(ω). We obtain a mapping
πp : (Ωp, µp) → (Sn(T ), νp) which is continuous and sends µp to νp (as an image measure).
It follows that the image of πp is precisely the support of νp there, i.e., the smallest
closed measure one set. This discussion holds in particular when n = 0, i.e., when
T = p ∈ T0(TR) is a completion of TR.

Let now T be a completion of TR and p(x̄) ∈ Sn(T). There is a natural LRV -inclusion
AT ⊆ Ap giving rise to a projection (Ωp, µp) → (ΩT, µT) where µT is the image of µp.
As in [BK, Section 5] this projection gives rise to a conditional expectation mapping
E[·|T] : Ap → AT. In particular, to every formula ϕ(x̄) we associated ϕp which in turn
gets sent to E[ϕp|T] ∈ AT = C(ΩT, [0, 1]). Let us fix ω ∈ ΩT. It is not difficult to check
that ϕ 7→ E[ϕp|T](ω) is an integration functional on Sn(T ). Therefore there exists a

unique type pω ∈ Sn(TR) verifying for all ϕ(x̄):

EJϕKpω = 〈ϕ, νpω〉 = E[ϕp|T](ω).

The mapping ω 7→ pω has the following properties:

(i) It is determined by p (in particular, the completion T is determined by p).
(ii) Conversely, it determines p as follows:

EJϕKp =

∫

ΩT

EJϕKpω dµT(ω).

(iii) Let πT : ΩT → S0(T ) be as in the previous paragraph, associating to each ω ∈ ΩT

a completion πTω of T . Then pω ∈ Sn
(
(πTω)R

)
.

(iv) The mapping ω 7→ pω is continuous in the appropriate weak topology. Specifi-
cally, for every formula ϕ(x̄) the mapping ω 7→ 〈ϕ, νpω〉 is continuous on ΩT.

We therefore write

p =

∫

ΩT

pω dµT(ω),

saying this is an integral of a continuous family. (Conversely, every integral of a contin-
uous or even measurable family of TR-types gives rise to a TR-type.)

A special case of this situation is a type over parameters. Let (MMM,A ) � TR, A ⊆ M

and p ∈ Sn(A). Let us enumerate A = {aα}α∈I . Let A = {aα}α∈I be a set of new
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constant symbols and let LA = L ∪A. Even if T is a complete L-theory it is incomplete
as an LA-theory. We view (MMM,A ) as an LRA-structure naming A by A. It is then the
model of a complete LRA-theory T and p ∈ Sn(T). Each ω ∈ ΩT gives rise to an LA-
completion πTω of T . In other words, each ω determines, so to speak, the L-type of
the constants A. Let Aω be an actual set in a model of T realising this type. Then
pω ∈ R

(
Sn
(
πTω

))
= R(Sn(Aω)).

4. Preservation and non-preservation results

4.1. Categoricity. The theory ARV is ℵ0-categorical but not uncountably categorical,
so this is the most we can hope for from TR. We shall use the following criterion for
ℵ0-categoricity.

Fact 4.1 (Ryll-Nardzewski Theorem for metric structures). A complete countable theory
T is ℵ0-categorical if and only if Sn(T ) is metrically compact for all n, if and only if the
logic topology on Sn(T ) coincides with the metric for all n.

Proof. The was originally stated and proved by C. Ward Henson for Banach space struc-
tures. For the proof in continuous logic see [BU07, Fact 1.14]. Notice that it is customary
to exclude the case of a complete theory with a compact model (which is its unique model)
from the definition of ℵ0-categoricity, as well as from the statement of this theorem, but
the theorem holds as stated if we do not. �4.1

Theorem 4.2. Assume T is a complete ℵ0-categorical theory in a countable language.
Then so it TR.

Proof. It is enough to show that Sn(TR) is totally bounded, i.e., that it can be covered
by finitely many ε-balls for every ε > 0. Let us therefore fix ε > 0. By assumption we
can cover Sn(T ) with finitely many ε-balls, say Sn(T ) =

⋃
i<k B(pi, ε). Fix N > k

ε
, and

let R = {m̄ ∈ Nk :
∑
mi = N}. Then R is finite, and for every m̄ ∈ R we may define

pm̄ =
∑ mi

N
pi ∈ Sn(TR). Let also Ci = B(pi, ε) r

⋃
j<iB(pj, ε), so Sn(T ) =

⋃
i Ci is a

partition of Sn(T ) into a finite disjoint union of Borel sets of diameter ≤ ε.
Now let q ∈ Sn(TR) be any type. Find a tuple m̄ ∈ R such that E = ‖m̄/N −

(νq(Ci))i<k‖1 is minimal. We can do this so that at each co-ordinate the difference is at
most 1

N
, so E < k

N
< ε. We claim that d(q,pm̄) < 2ε, which will conclude the proof.

Let a ∈MMM realise q, and as usual let us identify MMM with its canonical representation,
based on M(Ω,µ). Let Di = {ω ∈ Ω: tp(a(ω)) ∈ Ci}, so µ(Di) = νq(Ci), and Ω =

⋃
Di

is a partition of Ω into disjoint Borel sets. We can now choose another such partition
Ω =

⋃
D′
i such that each D′

i is comparable with Di (i.e., either Di ⊆ D′
i or D′

i ⊆ Di)
and µ(D′

i) = mi

N
, so µ(Di△D

′
i) = |mi

N
− νq(Ci)|. For each ω ∈ D′

i choose M′
ω � Mω and

b(ω) ∈ M′
ω realising pi. If ω ∈ Di∩D′

i then we arrange that in addition d
(
b(ω), a(ω)) <

ε. Apply Corollary 3.27 to obtain an elementary extension MMM′ � MMM and b ∈ MMM′ such
that tp(b) = pm̄ and d(b, a) ≤ ε(1 − E) + E < 2ε, as desired. �4.2
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Corollary 4.3. Assume T is a countable theory, possibly incomplete, with countably
many completions, all of which are ℵ0-categorical. Then every completion of TR is ℵ0-
categorical.

Proof. Let {Tn}n∈α, denote the set of completions of T , where α ∈ N ∪ {N}. The
completions of T are in bijection with measures on α, namely with sequences λ̄ ∈ [0, 1]α

such that
∑
λn = 1. Every model MMM of such a completion can be identified with a

combination
∑
λnMMMn where MMMn � (Tn)R, and is uniquely determined by MMM except

where λn = 0. If MMM is separable then so is MMMn (when λn > 0), whence the uniqueness
of MMM. �4.3

Of course, in this case TR may admit continuum many completions, and yet it is
not too difficult to see that every completion of (TR)R is still ℵ0-categorical. On the
other hand, the are theories T with uncountably many completions, all of which are ℵ0-
categorical, such that TR admits a non ℵ0-categorical completion. Indeed, let T be the
classical theory saying that there exist precisely 2 elements, in a language with constants
a and bn for n ∈ N. Using a as reference, a completion of T is determined by whether
bn = a or not for each n, so the space of completions of T is homeomorphic to 2N. Let T

be the completion of TR saying that Jbn = aK are independent events all of measure 1
2
.

Let pn ∈ S1(T) be the type x = bn. Then d(pn,pm) = 1
2

for all n 6= m and S1(T) is not
metrically compact.

4.2. Stability. For all facts regarding stability in continuous logic, and in particular
local stability, we refer the reader to Ben Yaacov & Usvyatsov [BU]. For topometric
Cantor-Bendixson ranks see [Ben08].

When proving the preservation of stability in Ben Yaacov & Keisler [BK] we considered
ϕ-types over arbitrary sets in models of T and of TR, calculating averages over the finite
set of non forking extensions of such types. In doing so we proved not only that the
randomisation of a stable theory is stable, but also that in such a randomised theory all
types over sets (in sorts of the original theory) were stationary.

In continuous logic the situation is, at least on the surface, much more complicated.
Assume A ⊆ M , p ∈ Sϕ(A), and let P ⊆ Sϕ(M) be the set of non forking extensions
of p. Rather than being a finite set, as in classical logic, P is merely known to be
a transitive compact metric space (in the standard metric on Sϕ(M), namely d(q, q′) =
sup
{
|ϕ(x, b)q−ϕ(x, b)q

′

| : b ∈ M
}

). By transitive we mean that the action of the isometry
group of P is transitive, which leads to the existence of a canonical probability measure
on P and thus to a canonical notion of an average value of a function on P . With this
notion of average we could, in principle, translate the entire argument of [BK] to the case
where T is continuous. However, calculating averages over a transitive compact metric
space is significantly more involved than merely averaging over a finite set, rendering the
translated argument quite difficult to follow.

We therefore choose to split the argument in two, and at a first time restrict our
attention to types over models, in which case the non forking extension is unique and no
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averaging is required. In Section 5 we prove quite independently that for any theory T
(stable or not), types in TR coincide with Lascar types. It follows that if T is stable then
all types in TR are stationary.

As in [BK] we shall use Shelah ranks, this time adapted to continuous logic. Let us fix
for the time being a monster model M containing all the parameters under consideration.
We define the (k, ϕ)-rank of a partial type π(x), denoted Rk(π, ϕ), and its multiplicity
at rank s, denoted Mk(π, ϕ, s):

(i) If π is consistent then Rk(π, ϕ) ≥ 0.
(ii) Having defined when Rk(π, ϕ) ≥ s we define Mk(π, ϕ, s). We say that

Mk(π, ϕ, s) ≥ M if there are types π(x) ⊆ πn(x) for n < M such that for
every n < m < M there exists bnm for which

πn(x) ∪ πm(x′) ⊢ |ϕ(x, bnm) − ϕ(x′, bnm)| ≥ 2−k,

and in addition Rk(πn, ϕ) ≥ s for all i < M .
(iii) If Mk(π, ϕ, s) = ∞ then Rk(π, ϕ) ≥ s+ 1.

It is not difficult to see that if [π]ϕ denotes the closed set π defines in Sϕ(M), then:

Rk(π, ϕ) = CBf,2−k([π]ϕ) = CBb,2−k([π]ϕ),

where CBf,ε and CBb,ε are the topometric Cantor-Bendixson ranks defined in [Ben08,
Section 3]. (Or almost: these are the ranks we would obtain if we replaced there “≤ ε”
with “< ε” and “> ε” with “≥ ε”. Since we consider ranks for all ε > 0 this makes no
difference.)

Let W denote a possibly infinite tuple of variables π(x,W ) a partial type and k, s ∈ N.
Then Rk(π(x,W ), ϕ) ≥ s is a property of W , holding for A (of the appropriate size) if
Rk(π(x,A), ϕ) ≥ s. We may think of Rk(·, ϕ(x, y)) as a quantifier binding the variable x.
Let also Rk(x/W,ϕ) ≥ s be the property of xW which holds for aA if Rk(tp(a/A), ϕ) ≥ s.

Fact 4.4. The properties Rk(π(x,W ), ϕ) ≥ s and Rk(x/W,ϕ) ≥ s are type-definable (in
W and in xW , respectively).

Proof. Both are shown using a standard “there exists a tree such that. . . ” argument. The
second can be deduced from the first since it may be re-written as Rk(x

′ ≡W x, ϕ(x′, y)) ≥
s where x′ is the bound variable and xW the parameter variables. �4.4

For α ≤ ω let R<α(π, α) denote the (finite or infinite) sequence
(
Rk(π, ϕ)

)
k<α

. Given

a sequence σ ∈ Nα and a partial type π(x) let

Sϕ(M)(σ) =
{
q ∈ Sϕ(M) : R<α(q, ϕ) ≥ σ

}

=
{
q ∈ Sϕ(M) : Rk(q, ϕ) ≥ σ(k) for all k < α

}
,

[π](σ)
ϕ = [π]ϕ ∩ Sϕ(M)(σ) =

{
q ∈ Sϕ(M) : R<α(q ∪ π, ϕ) ≥ σ

}
.

We observe that Sϕ(M)(σ) and therefore [π]
(σ)
ϕ are closed sets (either directly or using

properties of the topometric Cantor-Bendixson ranks).
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Before going further let us recall that for a topological space X, a mapping f : X →
R is upper (respectively, lower) semi-continuous if inf f(A) = inf f(A) (respectively,
sup f(A) = sup f(A)) for every non empty A ⊆ X. The following topological fact
probably appears in general topology textbooks.

Fact 4.5. Let X be a compact Hausdorff space.

(i) A function f : X → R is lower semi-continuous if and only if it can be written
as the point-wise supremum of a family of continuous functions on X.

(ii) Assume that f : X → R is lower semi-continuous, g : X → R is upper semi-
continuous, and g < f . Then there is a continuous function h : X → R such that
g < h < f .

Proof. For the first item let F ⊆ C(X,R) consist of all continuous functions smaller than
f . If f = supF point-wise the for all ∅ 6= A ⊆ X

sup f(A) = sup
g∈F

sup g(A) = sup
g∈F

sup g(A) = sup f(A).

Conversely, assume f is lower semi-continuous, and it will be enough to show that f ≤
sup F point-wise. Let x ∈ X, r < f(x), and let K = {x : f(x) ≤ r}. It follows from the
assumptions that K = K is compact. By Urysohn’s Lemma there exists a continuous
function g : X → [0, r] verifying g↾K = 0 and g(x) = r, so in particular g ∈ F . Thus
supF(x) ≥ r, which is enough.

For the second item let us first fix x ∈ X. Since g(x) < f(x) there is a continuous
function fx < f such that g(x) < fx(x). Let Ux = {y : g(y) < fx(x)}. Notice that
fx − g is lower semi-continuous so Ux is open. By compactness there is a finite family
{xi}i<n ⊆ X such that X =

⋃
i<n Uxi

. Then h =
∨
i<n fxi

is as desired. �4.5

At this point let us fix ε > 0. For a finite sequence σ ∈ N<ω we define Ξσ to be the set
of all formulae ξ(x, w̄) such that for any ā ∈M the diameter of [ξ(x, ā) < 1](σ) ⊆ Sϕ(M)
is smaller than ε. (This is analogous to Ξs,2 as defined in [BK].)

Lemma 4.6. Let σ ∈ Nk, ξ(x, w̄) ∈ Ξσ. Then there exists a formula ξ̂σ(y, w̄) such that:

{ξ(x, w̄) ≤ 1
2
} ∪ {R<k(x/w̄y, ϕ) ≥ σ} ⊢ |ξ̂σ(y, w̄) − ϕ(x, y)| < ε.

Proof. Let Y ⊆ Sx,y,w̄(T ) consist of all types q(x, y, w̄) for which the left hand side holds.
Let X ⊆ Sx,w̄(T ) consist of all types verifying ξ(x, w̄) ≤ 1

2
and R<k(x/w̄, ϕ) ≥ σ. The

restriction mapping π : Y → X is surjective.
For p(x, z̄) ∈ X let a, c̄ � p and define

f(p) = max
{
ϕ(x, y)q : q ∈ π−1(p)

}
,

f(p) = min
{
ϕ(x, y)q : q ∈ π−1(p)

}
.

Let us make a few remarks regarding this definition. Since π is surjective the set π−1(p)
is non empty and compact. The maximum and minimum are therefore attained and
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f(p) ≤ f(q). Moreover, there are types (not necessarily uniquely determined) p(x), p(x) ∈

[p(x, c̄)](σ) such that ϕ(x, b)p = f(p) and ϕ(x, b)p = f(p). By hypothesis ξ(x, z̄)p ≤ 1
2
, so

d(p, p) < ε and thus f(p) < f(p) + ε.

Letting p vary over X it is easy to check that f(p) is upper semi-continuous and
similarly f is lower semi-continuous. Thus there is a continuous function h : X → [0, 1]

verifying f < h < f+ε. By Tietze’s Extension Theorem there exists a continuous function

h̃ : Sx,w̄(T ) → [0, 1] extending h and we may identify h̃ with a definable predicate ξ̂σ(x, w̄)

(or, if we insist on having an actual formula, we take ξ̂σ(x, w̄) to be a formula close enough

to h so that f < ξ̂σ(x, w̄) < f + ε on X).

It is left to show that ξ̂σ(y, w̄) is as desired. Indeed, assume that a, b, c̄ � q ∈ Y . Then
f(q↾x,w̄) ≤ ϕ(a, b) ≤ f(q↾x,w̄), whereby

ϕ(a, b) ≤ f(q↾x,w̄) < ξ̂σ(a, c̄) < f(q↾x,w̄) + ε ≤ ϕ(a, b) + ε. �4.6

We now turn to showing that members of Ξσ are, in a sense, plenty enough.

Lemma 4.7. Let M be a model of T , p ∈ Sx(M) a type, and let η = R<ω(p, ϕ).

(i) Let M � M be a very homogeneous and saturated extension and let [p](η) ⊆
Sϕ(M) be defined as above. Then [p](η) = {q} where q is the unique non forking
ϕ-extension of p.

(ii) There are k ∈ N, ξ(x, w̄) ∈ Ξη↾k
and c̄ ∈ M such that ξ(x, c̄) ∈ p. Moreover, for

any dense subset M0 ⊆M we may arrange our choices so that c̄ ⊆ M0.

Proof. The argument for the first item essentially appears in [BU], although the Cantor-
Bendixson ranks used there are different. It goes through the following steps. The set
[p](η) is topologically and therefore metrically closed. By construction it is non empty
and totally bounded, and therefore metrically compact. Clearly it is also M-invariant,
and it follows that every q ∈ [p](η) is definable over acleq(M) = M . We conclude there is
a unique such q which follows the definition of p.

For the second item consider the following partial type over M :

p(x) ∪ p(x′) ∪ {|ϕ(x, y) − ϕ(x′, y)| ≥ ε}

∪ {R<ω(x/My, ϕ) ≥ η} ∪ {R<ω(x′/My, ϕ) ≥ η}.

By the first item this type is contradictory. Let us re-write p(x) as p(x,M) where
p(x,W ) ∈ Sx,W (T ) is a complete type. Then the following is inconsistent:

p(x,W ) ∪ p(x′,W ) ∪ {|ϕ(x, y) − ϕ(x′, y)| ≥ ε}

∪ {R<ω(x/Wy, ϕ) ≥ η} ∪ {R<ω(x′/Wy, ϕ) ≥ η}.
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Thus by compactness there are k ∈ N and ξ0(x, w̄) ∈ p(x,W ) such that the following is
inconsistent:

{ξ(x, w̄) ≤ 2−k} ∪ {ξ(x′, w̄) ≤ 2−k} ∪ {|ϕ(x, y) − ϕ(x′, y)| ≥ ε}

∪ {R<k(x/w̄y, ϕ) ≥ η↾k} ∪ {R<k(x
′/w̄y, ϕ) ≥ η↾k}.

Let ξ = ξ0 ∔ · · · ∔ ξ0 (2k many times) and let c̄ ⊆ M correspond to w̄ ⊆ W . Then ξ, k
and c̄ are as desired.

For the moreover part first notice that p is equivalent to its restriction to M0 (where
M0 ⊆ M is any dense subset), so the argument above holds just as well with M0 in place
of M . �4.7

Lemma 4.8. Let T be any theory in a countable language. Let MMM � TR be a model based
on (Ω, µ) and let MMM0 � MMM be a countable elementary pre-sub-structure. For ω ∈ Ω let
M0(ω) = {a(ω)}a∈M0

⊆ M(ω). Then MMM0(ω) � MMM(ω) as L-pre-structures for all ω
outside a null measure set.

Proof. Let us fix a formula ϕ(x, w̄) and b̄ ∈ M0. By Theorem 3.14 we have
supx ϕ(x, b̄(ω))MMM(ω) = Jsupx ϕ(x, b̄)KMMM(ω) for all ω ∈ Ω, where Jsupx ϕ(x, b̄)KMMM is viewed
as a continuous function Ω → [0, 1]. On the other hand we have

Jsupx ϕ(x, b̄)KMMM =
(
supxJϕ(x, b̄)K

)dMMM0

= supL1

{
Jϕ(a, b̄)K

dMMM0 : a ∈ M̂0

}
= supL1

{
Jϕ(a, b̄)KMMM : a ∈ M0

}
.

Thus we have outside a null measure set

Jsupx ϕ(x, b̄)KMMM(ω) = sup
{
ϕ(a(ω), b̄(ω))MMM(ω) : a ∈ M0

}
.

There are countably many formulae ϕ(x, b̄) to be considered, so outside a null measure
set the Tarski-Vaught Criterion holds and MMM0(ω) �MMM(ω). �4.8

Theorem 4.9. Let ϕ(x, y) be a stable formula for a theory T . Then the formula
E[ϕ(x,y)] is stable for TR. If T is stable the so is TR.

Proof. We may assume that the language of T is countable (for if not, we may restrict to
a sub-language containing just the symbols appearing in ϕ). It will therefore be enough
to show that for every separable model MMM � TR, every type p ∈ Sx(M) is definable. For
this purpose let a ∈MMM′ �MMM realise p. Let also M0 = {cn}n∈N ⊆ M be a dense pre-sub-
structure. By Lemma 4.8 there is a measure one set Ω0 ⊆ Ω such that MMM0(ω) � MMM(ω)
for all ω ∈ Ω0.

Let Υ consist of all triplets (σ, ξ, c̄) where σ ∈ N<ω, ξ(x, w̄) ∈ Ξσ and c̄ ∈ M0 with
|w̄| = |c̄|. For (σ, ξ, c̄) ∈ Υ define subsets of Ω as follows:

Aσ = {ω : R<|σ|(a(ω)/Mω, ϕ) ≥ σ},

Bσ,ξ,c̄ = {ω ∈ Aσ : ξ(a(ω), c̄(ω)) < 1}.
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The set Aσ is closed and each Bσ,ξ,c̄ is relatively open in Aσ, so in particular Borel.
Moreover, by Lemma 4.7 every ω ∈ Ω0 belongs to some Bσ,ξ,c̄.

Given all our countability assumptions we may enumerate Υ = {(σm, ξm, c̄m)}m∈N. Let

us also write ξm explicitly as ξm(x, w̄m). By Lemma 4.6 there is a formula ξ̂mσm(y, w̄m)
such that

{ξm(x, w̄m) < 1} ∪ {R<|σm|(x/w̄
my, ϕ) ≥ σm} ⊢ |ξ̂mσm(y, w̄m) − ϕ(x, y)| < ε.

For m ∈ N let Dm = Bσm,ξm,c̄m r
⋃
k<mBσk ,ξk,c̄k . Then {Dm}m∈N is a family of disjoint

Borel sets and µ (
⋃
Dm) = µ(Ω0) = 1. In addition, for all ω ∈ Dm ∈ Bσm,ξm,c̄m and

b ∈ M we have

|ξ̂mσm(b(ω), c̄m(ω)) − ϕ(a(ω),b(ω))| < ε.

For each m let Xm = P[Dm|FMMM] ∈ A MMM and let

ψ(y) =
∑

m

E
[
XmJξ̂mσm(y, c̄m)K

]
.

Since
∑
Xm = 1 this infinite sum does converge to an M-definable predicate. We

now claim that ψ is ε-close to a EJϕK-definition for p. Indeed, let b ∈ M. Then

Jξ̂mσm(y, c̄m)K ∈ A MMM whereby

ψ(b) =
∑

m

∫

Dm

Jξ̂mσm(y, c̄m)K dµ.

We obtain
∣∣ψ(b) −EJϕ(a,b)K

∣∣ ≤
∑

m

∫

Dm

|ξ̂mσm(b, c̄m) − ϕ(a,b)| dµ < ε.

We have shown that the predicate b 7→ E[ϕ(x,b)]p is arbitrarily well approximated on
M0, and therefore on M0, by an M0-definable predicate. It follows that p admits an
EJϕK-definition. Since this holds for every type p over a model the formula EJϕ(x,y)K
is stable.

The second assertion follows from the first using quantifier elimination down to formu-
lae of the form E[ϕ] (Theorem 3.32), since continuous combinations of stable formulae
are stable. �4.9

4.3. Dependence. Recall that a formula ϕ(x̄, ȳ) is ε-independent in a theory T for some
ε > 0 if for every n one can find in some model of T tuples āi for i < n and b̄w for w ⊆ n
such that: ∨

i,w : i∈w

ϕ(āi, b̄w) + ε <
∧

i,w : i/∈w

ϕ(āi, b̄w).

The formula ϕ is independent if it independent for some ε > 0. The theory T is dependent
if every formula is dependent, i.e., if every formula is ε-dependent for every ε > 0.
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Theorem 4.10. A theory T is dependent if and only if its randomisation TR is.

Proof. It is immediate to check that if ϕ(x̄, ȳ) is ε-independent in T then EJϕ(x̄, ȳ)K is
ε-independent in TR. The converse is [Bena, Theorem 5.3]. �4.10

Theorem 4.11. Assume T is independent. Then TR is not simple.

Proof. For simplicity of notation we assume T is a classical first order theory but the same
proof holds when T is continuous. In this case JϕK is always a characteristic function,
which may be identified with an event, whose probability is µJϕK. The auxiliary sort can
then be taken to be a probability algebra F rather than its space of random variable
L1(F , [0, 1]). Let the independent formula be ϕ(x, y).

In some model M � T we may find {bn}n∈N and {aw}w⊆N such that ϕ(aw, bn) ⇐⇒ n ∈
w. Let c, c′ be distinct and we may assume they are named in the language. For every
n and w ⊆ N choose also dn,w as follows: If n ∈ w then dn,w = c, otherwise dn,w = c′. In
particular ϕ(aw, bn) ⇐⇒ dn,w = c.

Let F be a sufficiently saturated atomless probability algebra let MMM = MF (i.e.,

ML1(F ,[0,1])) as in Example 3.7. Then (MMM,F ) � TR. We shall identify a ∈ M with
the constant random variable a ∈ M. Let {An}n∈N ⊆ F be a sequence of independent
events of measure one half.

Let m ∈ N be fixed. For w ⊆ m let Amw =
∧
i<mA

i∈w
i (where AT = A, AF = ¬A).

Now define:

am =
〈
Am,∅, a∅, . . . 〈A

m
w , aw, . . .〉 . . .

〉
,

dmn =
〈
Am,∅, dn,∅, . . . 〈A

m
w , dn,w, . . .〉 . . .

〉
.

In other words, if ω ∈ Amw then am(ω) = aw and dmn (ω) = dn,w. For n < m we have:

• An = Jϕ(am, bn)K = Jdmn = cK.
• σ(b≤n,d

m
<n) = σ(dm<n) = 〈A<n〉, whereby An |⌣σ(b≤n,d

m
<n) in F .

By compactness we can find in a model of TR a sequence (a,bi,di)i<κ of arbitrary length
that for all i < κ:

• µJϕ(a,bi)K = 1
2
.

• Jϕ(a,bi)K = Jdi = cK.
• Jϕ(a,bi)K |⌣ σ(b≤i,d<i).

The last item is indeed expressible, saying that for every ψ(y≤i, z<i) (in which only finitely
many variable actually appear, of course):

µ Jϕ(a,bi) ∧ ψ(b≤i,d<i)K = 1
2
µJψ(b≤i,d<i)K.

If TR were simple there would be i < κ such that a |⌣b≤id<i
di. Let A = Jϕ(a,bi)K =

Jdi = cK, so A |⌣ σ(b≤id<i). Working entirely in F , which is a stable structure, let
{Bn}n∈N be a Morley sequence in the type of A over σ(b≤id<i), i.e., A Morley sequence
over ∅ which is independent from σ(b≤id<i). By Corollary 3.34 we have A ≡b≤id<i

Bn in
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(MMM,F ) for all n. Possibly passing to an elementary extension we can find an indiscernible
sequence {d′

n}n∈N in tp(di/b≤id<i) such that Bn = Jd′
n = cK.

Since a |⌣b≤id<i
di we should be able to find a′ such that a′d′

n ≡b≤id<i
adi for all

n. In particular Jϕ(a′,bi)K = Jd′
n = cK = Bn, so the sequence {Bn} is constant. This

contradiction shows that TR cannot be simple. �4.11

The idea behind the proof is that each di introduces a new independent event Jdi = cK
into the set of parameters (this can be done with any theory T with two distinct elements)
and every bi introduces a new tie between a and Jdi = cK (this requires that T be
independent). Thus a is tied to an arbitrary large set of independent parameters, so the
local character fails.

Question 4.12. Say that a continuous theory T has the strict order property (SOP) if there
exists a formula ϕ(x̄, ȳ) which defines a continuous pre-ordering with infinite ε-chains for
some ε > 0, i.e., satisfies:

• Reflexivity: ϕ(ā, ā) = 0.
• Transitivity: ϕ(ā, c̄) ≤ ϕ(ā, b̄) + ϕ(b̄, c̄).
• Infinite ε-chain: There exists ε > 0 and a sequence (ān)n∈N in a model of T such

that: ∨

n<m

ϕ(ān, ām) + ε <
∧

n>m

ϕ(ān, ām).

One can show that T is unstable if and only if it is independent or has the strict order
property. Indeed, a straightforward translation of the proof for classical first order theo-
ries, as can be found in Poizat [Poi85], would work, keeping in mind that every formula of
the form ϕ(x, x′) = supy

(
ψ(x, y)−. ψ(x′, y)

)
defines a continuous pre-ordering, in analogy

with formulae of the form ∀y
(
ψ(x, y) → ψ(x′, y)

)
in classical logic.

(i) Assume T is independent. Does TR has the strict order property?
(ii) Alternatively, is it true that if T does not have the strict order property then

neither does TR?

5. Lascar types

Definition 5.1. Let a and b be two tuples, possibly infinite, in a structure M. We say
that dL(a, b) ≤ 1 if in some (every) sufficiently saturated elementary extension N � M
there exists an elementary sub-structure N0 � N such that a ≡N0

b. We say that
dL(a, b) ≤ n if in some (every) sufficiently saturated elementary extension there exist
a0 = a, a1, . . . , an = b such that dL(ak, ak+1) ≤ 1 for k < n.

If dL(a, b) <∞, i.e., if dL(a, b) ≤ n for some n, then we say that a and b have the same
Lascar type, in symbols a ≡L b.

Fact 5.2. (i) For every n, the relation dL(x, y) ≤ n is a reflexive, symmetric type-
definable relation.
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(ii) The relation ≡L is the transitive closure of dL(x, y) ≤ n for any n > 0. It is
the finest bounded automorphism-invariant equivalence relation on the sort in
question.

(iii) If dL(a, b) ≤ n in some sufficiently saturated structure M then for every other
tuple a′ there exists b′ such that dL(a′a, b′b) ≤ n.

Definition 5.3. Let (MMM,A ) � TR. An A -type in (MMM,A ) is a complete type over a
subset of A which has a unique extension to a type over A . We define the A -type of
ā ∈ Mn to be tpA (ā) = tp(ā/σ(ā)).

Lemma 5.4. A type p(x̄) over a subset of A is an A -type if and only if it is equivalent
to tpA (ā) for some ā, if and only if it determines Jϕ(ā)K for every formula ϕ(x̄). It is
then axiomatised by the set of all conditions of the form Jϕ(x̄)K = Jϕ(ā)K. Moreover,
ā ≡A b̄ if and only if, in the canonical representation, ā(ω) ≡ b̄(ω) for all ω.

Proof. Easy, using Corollary 3.34. �5.4

We may therefore write ā ≡A b̄ to say that ā and b̄ have the same A -type. Similarly,
if p(x̄) is an A -type we may write Jϕ(x̄)Kp ∈ A for the value of Jϕ(x̄)K as determined
by p.

Lemma 5.5. Let T be any theory, (MMM,A ) a sufficiently saturated model of TR. Let
a,b ∈ M, a ≡ b. Then there exists c ∈ M such that dL(a, c) ≤ 1 (so a ≡L c) and
c ≡A b.

Proof. Let A0 ⊆ A be the sub-structure generated by JϕK where ϕ varies over all sen-
tences. Then A0 ⊆ dcl(∅) in (MMM,A ). Let Φ be the collection of all formulae ϕ(x) with
the appropriate variable. For ϕ ∈ Φ let Xϕ = Jϕ(a)K and let X̄ = (Xϕ)ϕ∈Φ. Define
Ȳ = (Yϕ)ϕ∈Φ = (Jϕ(b)K)ϕ∈Φ similarly. Then by assumption X̄ ≡ Ȳ in (MMM,A ), whereby
X̄ ≡A0

Ȳ .
Let (MMM1,A1) � (MMM,A ) be a small elementary sub-structure. Then necessarily A0 ⊆

A1. By our saturation assumption we may find A2 ⊆ A such that A2 ≡A0
A1 and

A2 |⌣A0
X̄, Ȳ , both in the sense of A (as a model of ARV ). By Corollary 3.34 we have

A2 ≡ A1 in the structure (MMM,A ) so again by saturation there is MMM2 ⊆ MMM such that
(MMM2,A2) ≡ (MMM1,A1), and in particular (MMM2,A2) � (MMM,A ).

By construction we have X̄ ≡A2
Ȳ in the sense of A and applying Corollary 3.34

again we obtain X̄ ≡(MMM2,A2) Ȳ . Thus dL(X̄, Ȳ ) ≤ 1. By Fact 5.2 there is c such that
dL(aX̄, cȲ ) ≤ 1. In particular aX̄ ≡ cȲ whereby Yϕ = Jϕ(c)K for all ϕ(x). Thus c ≡A b

as desired. �5.5

We now turn to consider the case where a ≡A b. We shall require an additional
technical result.

Lemma 5.6. Let Ω be a set, τ : Ω → Ω a bijection. Then there exists an integration
functional E on A = [0, 1]Ω which is moreover invariant under τ : E[X] = E[X ◦ τ ] for
all X ∈ A .
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Proof. This is a special case of a general fact that if an amenable group G (in our
case, (Z,+)) acts on a space Ω then Ω admits a G-invariant probability integration
functional. �5.6

Lemma 5.7. Let T be any theory, (MMM,A ) � TR. Let a,b ∈ M, a ≡A b. Then
dL(a,b) ≤ 1 (so in particular a ≡L b).

Proof. Let (M,A ) be the canonical representation of (MMM,A ), based on M = {Mω}ω∈Ω.
Then for every ω ∈ Ω we have a(ω) ≡ b(ω) in Mω, so there exists an elementary extension
M′

ω � Mω and hω ∈ Gω = Aut(M′
ω) such that hωa(ω) = b(ω). Let Ḡ =

∏
Gω,

h̄ = (hω)ω ∈ Ḡ.
Let Ω′ = Ω × Ḡ, and let π : Ω′ → Ω be the projection on the first co-ordinate. For

(ω, ḡ) ∈ Ω′ let M′
(ω,ḡ) = M′

ω, thus obtaining a family M ′
Ω′ = {M′

ω′}ω′∈Ω′ with Mπω′ �

M′
ω′. Let σω′ : Mπω′ →֒ M′

ω′ denote this elementary inclusion. For ω′ ∈ Ω′ we may write
ω′ = (ω, ḡ) = (ω, gζ)ζ∈Ω, and define η(ω,ḡ) = gω ◦ σ(ω,ḡ) : Mω →֒ M′

(ω,ḡ), which is another

elementary embedding. With M′ =
∏

M ′
Ω′, we obtain two mappings σ, η : M → M′,

given by

(σc)(ω, ḡ) = σ(ω,ḡ)(c(ω)) = c(ω),

(ηc)(ω, ḡ) = η(ω,ḡ)(c(ω)) = gω(c(ω)).

We observe that for given (ω, ḡ) ∈ Ω′ and c ∈ M:

hω(σa)(ω, ḡ) = (σb)(ω, ḡ), hω(ηc)(ω, ḡ) = (ηc)(ω, h̄ḡ).

By Fact 3.21 there exists an integration functional E1 on A1 = [0, 1]Ω which extends
integration of Borel functions. The left action of h̄ on Ḡ is a bijection, so [0, 1]Ḡ admits
an integration functional EG which is invariant by the left action of h̄. Let A ′ = [0, 1]Ω

′

,
and for X ′ ∈ A ′ define E ′[X ′] = E

[
ω 7→ EG[X ′(ω, ·)], which we may also write as

Eω[E ḡ
G[X ′(ω.ḡ)]] or simply E[EG[X]]. Then E ′ is easily checked to be an integration

functional.
We are now in the situation described in Corollary 3.27. In particular, the triplet

(M′,A ′, E ′) is a randomisation, and we obtain two J·K-embeddings, [σ], [η] : (MMM,A ) →

(M̂MM′, Â ′), where [σc] and [ηc] are the images in M̂MM′ of σc and ηc defined above, and
[σX] = [ηX] = [X ◦ π]. By quantifier elimination for TR these are in fact elementary
embeddings.

We claim that σa ≡ηM σb. Indeed, let c̄ ∈ M, ϕ(x, ȳ) any formula, and let X =
〈〈ϕ(σa, ηc̄)〉〉 and Y = 〈〈ϕ(σb, ηc̄)〉〉, both members of [0, 1]Ω

′

. Fix ω ∈ Ω, and let ḡ ∈ Ḡ
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vary freely. Then:

X(ω, ḡ) = ϕ
(
a(ω), η(ω,ḡ)c̄(ω)

)

= ϕ
(
hωa(ω), hωη(ω,ḡ)c̄(ω)

)

= ϕ
(
b(ω), η(ω,h̄ḡ)c̄(ω)

)

= Y (ω, h̄ḡ).

Since EG was chosen invariant under the left action of h̄ on Ḡ we obtain that
EG[X(ω, ·)] = EG[Y (ω, ·)] for all ω, whereby E ′[X] = E ′[Y ]. We obtain

EJϕ([σa], [ηc̄])K = E ′〈〈ϕ(σa, ηc̄)〉〉 = E ′〈〈ϕ(σb, ηc̄)〉〉 = EJϕ([σb], [ηc̄])K,

proving our claim. Since η is an elementary embedding we have dL([σa], [σb]) ≤ 1, and
since σ is an elementary embedding we conclude that dL(a,b) ≤ 1. �5.7

Theorem 5.8. Let T be any theory, (MMM,A ) � TR, a,b ∈ M, and let A ⊆ M be any
set of parameters. Then the following are equivalent:

(i) a ≡L
A b.

(ii) a ≡A b.
(iii) dLA(a,b) ≤ 2, where dLA is defined as dL, over parameters in A.

Proof. First of all we may name A in the language (at no point did we assume that T
was complete), so we may assume that A = ∅. For the implication (ii) =⇒ (iii), just
apply Lemma 5.5 followed by Lemma 5.7. The rest is standard and holds in arbitrary
structures. �5.8

Corollary 5.9. Let MMM � TR, A ⊆ M. Let dcleq,R denote the definable closure in the
sense of (TR)eq, and similarly for acleq,R. Then dcleq,R(A) = acleq,R(A) in MMM.

Notice that even though dcleq,R(A) and acleq,R(A) may contain imaginary elements in
the sense TR, the set A is required to consist of real elements, i.e., elements coming from
sorts of T .

Corollary 5.10. For every theory T , the theory TR is G-compact, which means that for
every set of parameters A and for every tuple length α, the relation ā ≡L

A b̄ between
tuples of length α is type-definable over A.

Proof. The relation dLA(x̄, ȳ) ≤ n is always type-definable, for any fixed n. �5.10
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