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1 Preliminaries

A graph is said to be chordal if each cycle with at least four vertices has a chord,
that is an edge between two non-consecutive vertices of the cycle. Given an
arbitrary graph G = (V,E), a triangulation of G is a chordal graph H(= V, F )
such that E ⊆ F . We say that H is a minimal triangulation of G if no proper
subgraph of H is a triangulation of G. The treewidth tw(H) of a chordal graph
is its maximum cliquesize minus one. The tree-width of an arbitrary graph G
is the minimum, over all triangulations H of G, of tw(H). When computing
the treewidth of G, we can clearly restrict to minimal triangulations. Treewidth
was introduced by Robertson and Seymour in connection with graph minors [5],
but it has wide algorithmic applications since many NP-hard problems become
polynomial when restricted to graphs of bounded treewidth.

Robertson and Seymour conjectures in [5] that the treewidth of a planar graph
G and its dual G∗ differ by at most one. This conjecture was recently proved by
Lapoire [3], who gives a more general result, on hypergraphs of bounded genus.
Nevertheless, the proof of Lapoire is rather long and technical. Here, we show
that any minimal triangulation H of a planar graph G wan be easily transformed
into a triangulation H∗ of G∗. such that tw(H∗) ≤ tw(H) + 1.

Theminimal separators play a crucial role in the characterisation of the
minimal triangulations of a graph. A subset S ⊆ V separates two non-adjacent
vertices a, b ∈ V is a and b are in different connected components of G \S. S is a
minimal a, b-separator if it separates a and b and no proper subset of S separates
a and b. We say that S is a minimal separator of G if there are two vertices a
and b such that S is a minimal a, b-separator. Notice that a minimal separator
can be strictly included into another. We denote by ∆G the set of all minimal
separators of G. Two minimal separators S and T cross if T intersects at least
two components of G \ S. Otherwise, S and T are parallel. Both relations are
symmetric.

Let S ∈ ∆G be a minimal separator. We denote by GS the graph obtained
from G by completing S, i.e. by adding an edge between every pair of non-adjacent
vertices of S. If Γ ⊆ ∆G is a set of separators of G, GΓ is the graph obtained by
completing all the separators of Γ . The result of [2], concluded in [4], establish a



strong relation between the minimal triangulations of a graph and its minimal
separators.

Theorem 1. H is a minimal triangulation of G if and only if there is a maximal

set of pairwise parallel separators Γ ⊆ ∆G such that H = GΓ .

Since it is easy to extend our results to simply connected or disconnected
graphs, we will restrict to 2-connected graphs.

2 Minimal separators in planar graphs

Consider a 2-connected planar graph G = (V,E). We fix an embedding of G in
the plane R

2. Let F be the set of faces of this embedding. Let F be the set of
faces of this embedding. The intermediate graph GI has vertex set V ∪ F . We
place an edge in GI between an original vertex v ∈ V and a face f ∈ F whenever
the corresponding vertex and face are incident in G. Notice that (G∗)I = GI .

Let ν be a cycle of GI (by “cycle” we will always mean a cycle which does
not get through a same vertex twice). The drawing of ν forms a Jordan curve in
the plane R

2, denoted ν̃. It is easy to see that if ν̃ separates two original vertices
x and y in the plane (i.e. x and y are in different regions of R

2 \ ν), then v ∩ V
separates x and y in G. Therefore, the original vertices of ν form a separator in
G. Conversely, to each minimal separator S of G, we can associate a cycle ν of
GI (see [1]).

Proposition 1. Let S be a minimal separator of the planar graph G. Consider

two connected components C and D of G \ S. There is a cycle νS of GI such

that ν̃ separates C and D in the plane.

This cycle is usually not unique. In the case of 3-connected planar graphs,
notice that if S is a minimal separator, then G \ S has exactly two connected
components C and D. For each couple of original vertices x and y incident to a
same face, fix a unique face f(x, y) containing both x and y. We say that a cycle
ν of GI is well-formed if, for any two consecutive original vertices x, y ∈ ν, the
face-vertex between them if f(x, y). If G is a 3-connected planar graph, for any
minimal separator S, there is a unique well-formed cycle of GI separating C and
D in the plane.

In what follows, G denotes a 3-connected planar graph. However, our
main results can be easily extended to arbitrary planar graphs.

We say that two Jordan curves ν̃1 an ν̃2 cross if ν̃1 intersects the two regions
defined by ν̃1. Otherwise, they are parallel. Two cycles ν1 and ν2 of GI cross

if and only if ν̃1 and ν̃2 cross. Notice that the parallel and crossing relations
between curves and cycles are symmetric.

Proposition 2. Two minimal separators S and T of G are parallel if and only

if the corresponding cycles νS and νT of GI are parallel.



Let ν̃ be a Jordan curve in the plane. Let R be one of the regions of R
2 \ ν̃.

We say that (ν̃, R) = ν̃ ∪R is a one-block region of the plane, bordered by ν̃. Let
C̃ be a set of curves such that for each ν̃ ∈ C̃, there is a one-block region (ν̃, R(ν̃))
containing all the curves of C̃. We define the region between the elements of C as
RB(C) = ∩

ν̃∈C̃
(ν̃, R(ν̃)). A subset Br ⊆ R

2 of the plane is a block region if BR

is a one-block region (ν̃, R) or BR is the region between some set of curves C̃.

3 Minimal triangulations of G and G∗

Let G be a 3-connected planar graph and let H be a minimal triangulation of G.
According to Theorem 1, there is a maximal set of pairwise parallel separators
Γ ⊆ ∆G such that H = GΓ . Let C(Γ ) = {νS | S ∈ Γ} be the cycles of GI
associated to the minimal separators of Γ and let C̃(Γ ) = {ν̃S | S ∈ Γ} be the
curves associated to these cycles. According to Proposition 2, the cycles of C(Γ )
are pairwise parallel. Thus, the curves of C̃(Γ ) split the plane into block regions.
Consider the set of all the block regions bordered by some elements of C̃. We show
that any maximal clique Ω of H corresponds to the original vertices contained
in a minimal block regions defined by C̃(Γ ).

Theorem 2. Let G be a 3-connected planar graph and let H = GΓ be a minimal

triangulation of G. Ω ⊆ V is a maximal clique of H if and only if there is a

minimal block region BR defined by C̃(Γ ). such that Ω = BR ∩ V .

Let now C be an arbitrary set of pairwise parallel cycles of GI . This family C̃
of curves associated to these cycles splits the plane into block regions. Let G∗ be
the dual of G. The graph H∗(C) = (F,EH) has vertex set F . We place an edge
between two face-vertices f and f ′ of H if and only if f and f ′ are in a same
minimal block region defined by C̃. Equivalently, f and f ′ are non-adjacent in
H∗(C) if and only if there is a ν̃ ∈ C̃ separating f and f ′ in the plane.

Theorem 3. H∗(C) is a triangulation of G∗. Moreover, any clique Ω∗ of H∗ is

contained in some minimal block region BR defined by C̃.

Let H = GΓ be a minimal triangulation of G. Consider the cycles G(Γ )
associated to the minimal separators of Γ and the corresponding curves C̃(Γ ).
We could try to considerate the triangulation H∗(C(Γ )) of G∗, but unfortunately
it does not satisfy tw(H∗) ≤ tw(H) + 1.

Thus, we consider a maximal set of pairwise parallel cycles C′ of GI such that
C(Γ ) ⊆ C′. Clearly, each minimal block region defined by C′ is contained in a
minimal block region defined by C̃(Γ ).

Theorem 4. Let C′ be a maximal set of pairwise parallel cycles of GI . Let

BR be a minimal block region of C′. Then Br ∩GI is either formed by a cycle

ν̃ and a path µ̃ joining two vertices of ν̃ or BR is a one-block region (ν̃, R)
and BR ∩ GI = ν where ν is the cycle of GI associated to ν̃. In particular,

|BR ∩ V ∗| ≤ |BR ∩ V |+ 1.



According to theorem 3, each maximal clique Ω∗ of H∗ is contained in some
minimal block region BR, and by the previous theorem it has at most one more
vertex than Ω = BR∩V . By theorem 2, Ω is a clique of H. Hence, |Ω∗| ≤ |Ω|+1
and thus tw(H∗) ≤ tw(H) + 1. By considering an optimaltriangulation H of G,
we obtain a triangulation H∗ of G∗ of width at most tw(G) + 1. We conclude
that tw(G∗) ≤ tw(G) + 1.

So we can state:

Theorem 5 (Main theorem). Let G = (V,E) be a planar graph.

| tw(G)− tw(G∗)| ≤ 1.
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