
HAL Id: hal-00351155
https://hal.science/hal-00351155v1

Submitted on 19 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound wave velocities in dry and lubricated granular
packings packings: numerical simulations and

experiments
Ivana Agnolin, Jean-Noël Roux, Pascal Massaad, Xiaoping Jia, Pierre Mills

To cite this version:
Ivana Agnolin, Jean-Noël Roux, Pascal Massaad, Xiaoping Jia, Pierre Mills. Sound wave velocities in
dry and lubricated granular packings packings: numerical simulations and experiments. Powders &
Grains (2005), 2005, Stuttgart, Germany. pp.313-317. �hal-00351155�

https://hal.science/hal-00351155v1
https://hal.archives-ouvertes.fr


Sound wave velocities in dry and lubricated granular packings packings:
numerical simulations and experiments

I. Agnolin, J.-N. Roux
Laboratoire des Mat́eriaux et des Structures du Génie Civil, Institut Navier, Champs-sur-Marne, France

P. Massaad, X. Jia, P. Mills
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ABSTRACT: numerical simulations are used to investigate the origins of the different wave velocities measured
in dense granular samples assembled with different methods. Glass bead packings are prepared in the lab either
by pouring and vibrating the dry material in a container, or by mixing with a very small amount of a viscous
lubricant. Lubricated samples, although less dense, exhibit significantly higher wave velocities for confining
pressures in the 100 kPa range. Numerical predictions for elastic moduli agree much better with experimental
results when the computational preparation of the samples mimics the laboratory one, albeit in a simplified
manner. A plausible explanation to the laboratory observations is that the coordination number, which influences
the material stiffness more than its density, is notably higher in lubricated packings.

1 INTRODUCTION

The mechanical properties of granular packings are
sensitive to fine geometric details of the particle ar-
rangement, as very small motions can modify the
force-carrying contact network. In practice, direct
measurements of such important internal state vari-
ables as the coordination number and the distribution
of contact orientations (Radjai & Roux 2004) are usu-
ally impossible.

In this context, ultrasonic wave propagation mea-
surements might provide useful information on the
internal structure of granular samples under confining
stresses. Wave propagation has been used as a probe
to investigate the microstructure of granular packings
by several physics groups (Jia et al. 1999; Jia & Mills
2001; Gilles & Coste 2003). At low frequencies such
that the wavelengths are very long compared to the
heterogeneity of the medium, the granular medium
is effectively a homogeneous continuum to the prop-
agating wave, while at high frequencies when the
wavelength decreases down to the order of the grain
size, scattering effects caused by the spatial fluctu-
ations of force chains lead to diffusive transport of
sound waves (Jia 2004).

Wave propagation has also become a standard
method to measure elastic moduli in geotechnics lab-
oratories (Geoffroy et al. 2003), where rheological
testing devices are often equipped with specially de-
signed transducers (Lings & Greening 2001). The re-

cent soil mechanics literature (Thomann & Hryciw
1990; Geoffroy et al. 2003) made it clear that “dy-
namic” measurements of elastic moduli (wave prop-
agation or resonance modes) agree with “static” ones
(slopes of stress-strain curves), provided strain incre-
ments are small enough (below10−5). Correctly mea-
sured elastic moduli therefore determine long wave-
length sound velocities in granular materials as in or-
dinary solids.

Discrete particle simulations can also be used to
evaluate elastic properties of model granular materi-
als (Roux 1997; Makse et al. 2004; Roux 2004). If
experimental packings are correctly simulated, such
studies can clarify the relations between wave propa-
gation measurements and sample microstructure.

We first briefly report here (Sec. 2) on experimen-
tal measurements on pressure-dependent sound veloc-
ities and attenuation in dense samples of dry glass
beads (hereafter denoted as E1 samples), as well as
lubricated ones in which the effects of intergranular
friction are strongly reduced in the preparation stage.
The resulting materials (denoted as E2 samples) are,
remarkably, less dense, but stiffer (with notably larger
elastic wave velocities).

In order to investigate the microscopic origins of
these results, we use numerical simulations, as pre-
sented in Sec. 3, which is the main part of the present
communication. We resort to suitable, yet simplified,
models to mimic laboratory assembling procedures
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(thus producing sets of samples denoted as A and B
by a lubricated procedure, and a third series C by a
“vibrated” procedure, see Sec. 3.1 for details). Com-
parisons of numerical results to experimental ones
lead to an interpretation of the observed differences
between dry and lubricated samples in terms of coor-
dination number.

2 EXPERIMENTS

The glass beads used in our experiments are of diam-
eter d = 0.3-0.4 mm, randomly deposited by pouring
and vibrating in a duralumin cylinder of diameter W
= 30 mm and varying height from 10 mm to 30 mm.
The container is closed with two fitting pistons and a
normal load is applied to the granular sample across
the top piston. Before the ultrasonic measurements,
one cycle of loading-unloading is performed in the
granular packing in order to consolidate the sample
and minimize its hysteretic behavior. A plane-wave
generating transducer of diameter 30 mm (top pis-
ton) and a detecting transducer of diameter 30 mm
are placed on the axis at the top and bottom of the
cylindrical container in direct contact with the glass
beads. Once the cell is filled, a normal load corre-
sponding to apparent pressures P ranging from 30 kPa
to 1000 kPa is applied to the upper piston using a
jackscrew arrangement, while the lower piston is held
fixed, as in oedometric loading. (The preloading pres-
sure cycle reached up to 400 kPa). Broadband short
pulse excitations of2µs duration centered at a fre-
quency of 500 kHz are applied to the source trans-
ducer. The time of flight of the transmitted ultrasonic
signal is used to measure the sound speeds, which are
shown on figure 1, and to which results of numerical
simulations will be compared in Sec. 3.2 (Figure 3).
Measurements are first performed on assemblies of
dry beads, initially prepared in a dense state by lay-
erwise deposition and tapping (samples E1). Then, to
study the influence of intergranular friction on the ini-
tial structure and elastic properties of the medium, we
mix a small amount of liquid lubricant (trioleine, vol-
ume fraction 0.5%) with the granular sample for tens
of minutes to distribute the oil uniformly among the
grains. We observe (figure 1), that the solid fraction
in the obtained lubricated samples (denoted as E2)
is about0.62, lower than in the dense dry ones E1
( ∼ 0.64), while sound wave speeds are significantly
higher for E2 specimens (by 10 to 20%) than in the
E1 case. It is also apparent on Figure 1 (a logarith-
mic plot), that the increase of sound velocities with
pressure is slightly faster in E1 samples.

3 NUMERICAL SIMULATIONS

We now turn to numerical simulations to explore the
origins, at the scale of the contact network, of the dif-
ferences between the dry (E1) and the lubricated (E2)
samples.

Figure 1. Velocity of longitudinal (bottom plot) and transverse
(top plot) sound waves as a function of confining pressure for
laboratory samples E1 (dots, assembled by vibrating dry grains)
and E2 (crosses, lubricated).

3.1 Sample preparation and characterization.
Our numerical simulations, like others (Makse et al.
2004) (but, admittedly, unlike the experiments of Sec .
II) focus on homogeneous,isotropic states, under
varying pressureP . The samples – the same as those
studied by Agnolin & Roux (2005)– comprise 4000
identical beads of diametera in a periodic cell which
changes size as stresses are applied. Averages and
standard deviations are evaluated on 5 such samples.

Spherical grains are attributed the elastic properties
of glass beads (Young modulusE = 70 GPa, Pois-
son coefficientν = 0.3), and assembled by a stan-
dard molecular dynamics method. The contact laws
involve Coulomb friction and a suitably simplified
form of (Hertz-Mindlin) contact elasticity (see (Ag-
nolin & Roux 2005) and references therein).

The most frequently used numerical proce-
dure (Makse et al. 2004) to obtain dense configu-
rations is to suppress friction altogether while com-
pressing a granular gas to mechanical equilibrium un-
der a given isotropic pressure, thus simulatingper-
fect lubrication. This results in typical isotropic ran-
dom close packing structures (O’Hern et al. 2003),
the properties of which are not sensitive to the de-
tails of the procedure, provided it is fast enough to
bypass crystal nucleation entirely. On applying this
method with prescribed pressureP = 10 kPa, we ob-
tained samples we denote as A. Their coordination
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numberz∗, evaluated on eliminating inactive grains
(“rattlers”) from the count, is close to 6, the value
it should approach (Roux 2000; Makse et al. 2004)
in the rigid limit, as the average contact deflection
h becomes negligible,h/a ∝ (P/E)2/3

→ 0. On im-
posing larger pressure levels (up to quite high values
in simulations) a friction coefficientµ = 0.3 is intro-
duced. This implicitly assumes that the perfect lubri-
cation of the assembling stage (in which intergran-
ular forces are transmitted through a very thin layer
of lubricant) disappears as large static pressures bring
solid surfaces into contact. Another series of numer-
ical samples, type B ones, are also made assuming
only a very low friction in the initial stage (µ0 = 0.02),
as a first model of imperfect lubrication. Finally, in
order to imitate the preparation of dense dry samples
of type E1 in the laboratory, a third series C of ini-
tial states under 10 kPa is prepared as follows. First,
A configurations are slightly dilated, scaling coordi-
nates by a common factorλ = 1.005; then grains are
mixed at constant volume, as by thermal agitation :
the system is thus strongly shaken in a dense state;
the final step is a compression, with friction (µ = 0.3)
and some viscous dissipation to mechanical equilib-
rium atP = 10 kPa.

Figure 2 displays the values of solid volume frac-
tion Φ and coordination numberz∗ as functions of
pressureP in states A, B and C. While B samples are

(a) Φ versusP . (b) z
∗ versusP .

Figure 2. Volume fractions and coordination numbers as func-
tions of P in isotropically compressed samples of types A
(square dots), B (stars), and C (open circles).

similar to A ones, with somewhat lower values ofΦ
andz∗, C configurations, remarkably, although very
nearly as dense as A ones (as expected given their
preparation method), and actually denser than B ones,
exhibit much lower coordination numbers. The differ-
ence between C and A states is gradually reduced as
P grows.

3.2 Wave velocities.
Isotropic states A, B, C possess two independent elas-
tic constants, the bulk (B) and shear (G) moduli, from
which the velocities of longitudinal (VP ) and trans-
verse (VS) sound for large wavelengths are deduced

asVP =

√

B + 4G/3

ρ
andVS =

√

G

ρ
, ρ denoting the

mass density in the granular material.
Once mechanical equilibrium states are obtained

with sufficient accuracy, the stiffness matrix of the
contact network is built, and both elastic moduli are
obtained on solving a linear system of equations, in
which particle displacements and rotations as well as
strain increments are the unknown, and the imposed
stress increments determine the right-hand side. Fig-
ure 3 presents the simulated values ofVP andVS for
all three sample types and compares them to exper-
imental results. Scarcely coordinated C samples are

Figure 3. Comparisons between numerical and experimental
values forVP (bottom plot) andVS (top part). Numerical re-
sults are plotted as connected symbols, as on figure 2: square
dots for A (perfect lubrication), stars for B (imperfect lubrica-
tion), open circles for C (“vibrated” dry grains). Experimental
results are shown as filled circles (E1, dry samples) and crosses
(E2, lubricated samples) forP in the 70 kPa-1 MPa range, as
on Figure 1, while the data obtained by Domenico on dry glass
beads are plotted as black dots forP around 10 MPa.

clearly in much better agreement with experimental
data on dense, dry packings than A or B ones in the
P ∼ 100 kPa range. The difference between B and
C systems is qualitatively the same as the one be-
tween dry and lubricated laboratory packings: a lower
density, but higher wave velocities that increase a lit-
tle slower with pressure. Some indications about the
pressure depence of elastic moduliB andG in A and
C configurations, and a discussion of their prediction
by micromechanical modeling schemes, are given by
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Agnolin & Roux (2005) in these proceedings. Despite
the crudeness of the numerical models for “shaking”
(C) or “lubrication” (A, B), they appear to capture
the right experimental trends. We suggest therefore
that the larger stiffness (or sound speed) in lubricated
packings is due to their larger coordination number.

We therefore conclude that C-type samples are bet-
ter models for dense dry granular packings (of type
E1). Such a statement apparently contradicts the good
agreement reported by Makse et al. (2004) between
numerical measurements of sound speeds on samples
of type A and experiments on dry specimen of type
E1, such as those by Domenico (1977), shown on
Figure 3. However, on confronting simulation results
with experimental ones, those authors focussed on a
higher pressure range (above several MPa, see Fig-
ure 3), in which A and C-type systems are much less
differentiated. We checked that our numerical results
on A samples coincide nearly perfectly with those of
Makse et al. (2004). Thanks to our experimental re-
sults for smaller confining pressures we can also dis-
tinguish between dense systems with high and low co-
ordination numbers, the latter ones being more appro-
priate as models for dense, dry granular assemblies.

It might also be noted that in a different communi-
cation in the present proceedings (Roux 2005), it is ar-
gued that the mechanical properties of C-type samples
in quasistatic, axisymmetric triaxial compression are
closer to those observed in the laboratory with sand or
glass bead samples assembled by pouring and shaking
than those of A configurations.

4 CONCLUSION

Numerical simulations show that wave propagation in
dense bead packings assembled with various proce-
dures can reveal differences in their microstructure,
beyond the sole density. Admittedly, more accurate
comparisons with experiments are certainly neces-
sary. This requires a more detailed knowledge of lab-
oratory samples and their anisotropic state of stress
(Khidas & Jia 2005), a possible consideration of the
effects of capillary adhesion, as well as more realistic
numerical models for laboratory procedures (Emam
et al. 2005). However, the results presented here show
that discrete numerical simulations can relate exper-
imentally accessible data on wave speeds to inter-
nal variables such as coordination number or fabric.
They clearly stress the need for a better understand-
ing of the influence of the preparation procedure on
the subsequent mechanical properties in quasistatic
conditions. They suggest a plausible interpretation of
the observed larger wave velocity in lubricated sys-
tems. Numerical procedures, even for isotropic sam-
ples, should not be selected as appropriate because
they produce the right density. Coordination number,
a largely independent state variable, strongly influ-
ences elastic properties and quasistatic stress-strain
laws (Roux 2005).
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