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Abstract

We present an efficient algorithm that lists the minimal separators of a 3-connected
planar graph in O(n) per separator.
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1 Introduction

In the last ten years, minimal separators have been increasingly studied in
graph theory leading to many algorithmic applications [5,9,10,12].

For example, minimal separators are an essential tool to study the treewidth
and the minimum fill-in of graphs. In [5], Bodlaender et al. conjecture that
for a class of graphs with a polynomial number of minimal separators, these
problems can be solved in polynomial time. Bouchitté and Todinca introduced
the concept of potential maximal clique [2] and showed that, if the number of
potential maximal cliques is polynomial, treewidth and minimum fill-in can
be solved in polynomial time. They later showed [3] that if a graph has a
polynomial number of minimal separators, it has a polynomial number of po-
tential maximal cliques. Those results rely on deep understandings of minimal
separators.

Extensive research has been performed to compute the set of the minimal sep-
arators of a graph [1,6,7,11]. Berry et al. [1] proposed an algorithm of running
time O(nm) per separator 1 that uses the concept of generating new minimal

1 The authors only proved a running time of O(n3) but the actual bound is
O(nm) [8].
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separators from a previous minimal separator S by finding the minimal sepa-
rators contained in S ∪ N(x) for x ∈ S. This simple process can generate all
the minimal separators of a graph. However, by using this algorithm a minimal
separator can be generated many times.

The aim of this article is to address the problem of finding the minimal sep-
arators of a 3-connected planar graph G. In order to avoid the problem of
recalculation, we define the set Sa(S, O) of the a, b-minimal separators S ′ for
some b such that the connected component of a in G\S ′ contains the con-
nected component of a in G\S but avoids the set O. Therefore, it is possible
to ensure that a given minimal separator is never computed more than five
times.

2 Definitions

Throughout this paper, G = (V, E) is a 3-connected graph without loops with
n = |V | and m = |E|. For x ∈ V , N(x) = {y | (x, y) ∈ E} and for C ⊆ V ,
N(C) = {y 6∈ C | ∃x ∈ C, (x, y) ∈ E}. When the sets A and B are disjoint,
their union is denoted by A tB.

A set S ⊆ V is a separator if G\S has at least two connected components,
an a, b-separator if a and b are in different connected components of G\S,
an a, b-minimal separator if no proper subset of S is an a, b-separator. The
connected component of a in G\S is Ca(S). The component Ca(S) is a full

connected component if N
(
Ca(S)

)
= S. For an a, b-minimal separator S, both

Ca(S) and Cb(S) are full. A set S is a minimal separator if there exist a and
b such that S is an a, b-minimal separator or, which is equivalent, if it has
at least two full connected components. An a, ∗-minimal separator of a graph
G = (V, E) is an a, b-minimal separator of G for some b ∈ V . The set of the
a, ∗-minimal separators is denoted by Sa and the set of the minimal separators
of G is denoted by S(G).

It is possible to order the a, ∗-minimal separators in the following way:

S1 4a S2 if Ca(S1) ⊆ Ca(S2).

The minimal separator S1 is closer to a than S2. The set of a, b-minimal
separators is a lattice for the relation 4a[4] but we only need the following
weaker lemma:

Lemma 1 Let C be a set of vertices of a graph G inducing a connected sub-
graph of G, a be a vertex of C and b be a vertex of G\

(
C ∪N(C)

)
.
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The neighbour S of Cb

(
C ∪N(C)

)
is an a, b-minimal separator such that C is

a subset of Ca(S) that is closer to a than any a, b-minimal separator S ′ such
that C is a subset of Ca(S

′).

PROOF. By construction, C is a subset of Ca(S). By definition, the compo-
nent Cb(S) is full and since S is a subset of N(C), the component Ca(S) is
also a full component which implies that S is an a, b-minimal separator.

Let S ′ be an a, b-minimal separator such that C is a subset of Ca(S
′). Let p

be a path in Cb(S
′) with b as one of its ends. The vertices of S ′ are at least

at distance 1 of C so the vertices of p are at least at distance 2 of C. Since
S is a subset of N(C), p ∩ S = ∅. In other words p is a subset of Cb(S) and
Cb(S

′) ⊆ Cb(S). This last inclusion implies that Ca(S) ⊆ Ca(S
′) i.e. S is closer

to a than S ′. 2

For S an a, ∗-minimal separator and O ⊆ V , the set Sa(S, O) is the set of the
a, ∗-minimal separators S ′ further from a than S and such that O∩Ca(S

′) = ∅.
If x ∈ V , the set Sx

a(S, O) is the set of S ′ ∈ Sa(S, O) such that x ∈ Ca(S
′).

Remark 2 If x ∈ S, then Sa(S, O) is the disjoint union

Sa

(
S, O ∪ {x}

) ⊔
Sx

a(S, O).

More precisely, if (Si)i∈I are the elements of Sx
a(S, O) closest to a, then

Sa(S, O) = Sa

(
S, O ∪ {x}

) ⊔ (⋃
i∈I

Sa(Si, O)
)
.

This gives the skeleton of an algorithm to compute the set Sa(S, O).

Remark 3 If S belongs to Sx
a(S, O), then Sx

a(S, O) = Sa(S, O).

The algorithm is based on remarks 2 and 3. To list Sa, the algorithm computes
the sets Sa(S, ∅) for every S closest to a in Sa. During this calculation, it
computes Sa(S, O) with O ⊆ S. To do so, it chooses x in S\O and calculates
Sx

a(S, O) and Sa(S, O ∪ {x}). The set Sx
a(S, O) is itself a union of Sa(Si, O).

But to obtain such a decomposition, one needs to find the elements of Sx
a(S, O)

closest to a, which the following proposition does.

Proposition 4 Let G = (V, E) be a graph, S an a, ∗-minimal separator, O ⊂
S, x ∈ S\O and C = Ca(S) ∪ {x}

The elements of Sx
a(S, O) closest to a are exactly the neighbourhoods of the

connected components of G\
{
N(C)∪C

}
that contain O and that are maximal

for inclusion.
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PROOF. Let S1 be an a, b-minimal separator of Sx
a(S, O) closest to a. Let S ′

be the neighbourhood of Cb

(
N(C) ∪ C

)
. By lemma 1, S ′ is an a, b-minimal

separator such that C is a subset of Ca(S
′) and S ′ is closer to a that S1.

Moreover, since Ca(S1) ∩ O = ∅ and S ′ is closer to a than S1, Ca(S
′) ∩ O ⊆

Ca(S1) ∩ O = ∅. Thus S ′ belongs to Sx
a(S, O) and is closer to a than S1.

This proves that S1 = S ′. Since S1 cannot be a subset of another element of
Sx

a(S, O), S1 is the neighbourhood of a connected component of G\
{
N(C)∪C

}
which is maximal for inclusion.

Conversely, let S1 be a neighbourhood of a connected component D of
G\

{
N(C)∪C} that contains O and that is maximal for inclusion. By lemma 1,

S1 is an element of Sx
a(S, O) that is closer to a than any a, b-minimal separa-

tor of Sx
a(S, O) with b in D. So if S2 is an a, b-minimal separator of Sx

a(S, O)
strictly closer to a than S1, S1 is not an a, b-minimal separator. Suppose for
a contradiction that such an a, b-minimal separator exists. It follows from the
first part of the proof that such an a, b-minimal separator S2 closest to a is the
neighbourhood of Cb

(
N(C)∪C

)
. The set S2 is an element of Sx

a(S, O) that is

closer to a than S1 and S1 is a subset of S2 (because S1 \S2 ⊆ Ca(S2)\Ca(S1)
and S2 is closer to a then S1) and therefore S1 is a strict subset of S2 contra-
dicting the fact that S1 is maximal for inclusion. 2

Proposition 4 gives us a way to find the minimal elements of Sx
a(S, O), for

example by using a graph search to compute the neighbourhoods of the con-
nected components of G\{N(C) ∪ C} and then choosing among the minimal
separators found the ones that contain O and that are maximal by inclusion.
Using the skeleton of remark 2, we can construct an algorithm to compute the
set Sa(S, O) that may look like:

Algorithm 1 calc3

begin
if S\O = ∅ then

return({S})
else

let x ∈ S\O
S← calc3 (G, a, S,O ∪ {x})

for each Si in find closest elements(G, a, x, S,O)
S← S∪ calc3 (G, a, Si, O)

return(S)
end

However several problems need to be solved.
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i. We do not know whether the sets Sa(Si, O) are disjoint or not. If not, a
minimal separator could be computed many times, which would lead to
a bad complexity.

ii. To implement the function find closest elements, proposition 4 states
that we can start with a graph search of G.

But if Sa(S, O) = {S}, the recursive calls to the algorithm will try to
find an element of Sx

a(S, O) closest to a for every x ∈ S\O. Each call to
find min elements costs at least O(m) and finally, we would have spent
at least O(nm) to realise that Sa(S, O) = {S}.

Proposition 6 in section 3.1 ensures that for 3-connected planar graphs, prob-
lem (i) is true, i.e. if S1 and S2 are two minimal elements of Sx

a(S, O), the sets
Sa(S1, O) and Sa(S2, O) are disjoint. Section 3.3 then shows how to determine
whether Sx

a(S, O) is empty or not in an overall O(n).

3 Planar graphs

In this section, we will consider 3-connected planar graphs without loops.

Let Σ be the plane. A plane graph GΣ = (VΣ, EΣ) is a graph drawn on the
plane, that is VΣ ⊂ Σ and each e ∈ EΣ is a simple curve of Σ between two
vertices of VΣ in such a way that the interiors of two distinct edges do not
meet. We will denote by G̃Σ the drawing of GΣ. A planar graph is the abstract
graph of a plane graph. We will consider plane graphs up to a topological
homeomorphism.

A face of GΣ is a connected component of Σ\G̃Σ.

3.1 Minimal separators of 3-connected planar graphs

Proposition 5 In a 3-connected planar graph, minimal separators are mini-
mal for inclusion.

PROOF. Suppose that S ⊂ S ′ are two minimal separators of a 3-connected
planar graph.

Let a, b, c and d be vertices such that S ′ is an a, b-minimal separator and S
is a c,d -minimal separator. Since S is not an a, b-minimal separator, either
Cc(S

′) or Cd(S
′) is disjoint with Ca(S

′) and Cb(S
′). Suppose that Cc(S

′) is

such a component. In this case, Cc(S) and N
(
Cc(S)

)
are respectively equal

to Cc(S
′) and S.
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But then G admits K3,3 as a minor for if we contract Ca(S
′), Cb(S

′) and
Cc(S

′) into the vertices a′, b′ and c′, all these vertices have S in their neigh-
bourhood and since G is 3-connected, |S| ≥ 3. This contradicts the fact that
G is planar. 2

Proposition 6 Let G = (V, E) be a 3-connected planar graph, a a vertex of
G, S an a, ∗-minimal separator, O a subset of S and x a vertex of S\O.

If S1 and S2 are two distinct elements of Sx
a(S, O) that are closest to a, then

Sa(S1, O) ∩ Sa(S2, O) = ∅.

PROOF. Let C be Ca(S) ∪ {x} and suppose for a contradiction that S3

is a minimal separator of Sa(S1, O) ∩ Sa(S2, O) with S1 and S2 two distinct
elements of Sx

a(S, O) closest to a. Let b be a vertex such that S3 is an a, b-
minimal separator.

Since S3 is further from a than S1 and S2, both S1 and S2 are a, b-separators.
There exists an a, b-minimal separator S ′ included in S1. By proposition 5, a
minimal separator of G is minimal for inclusion which proves that S1 = S ′

and S1 is an a, b-minimal separator. By lemma 1, the neighbourhood S4 of
Cb

(
N(C) ∪ C

)
is an a, b-minimal separator such that C is a subset of Ca(S4)

that is closer to a than S1. So Ca(S4) ∩ O ⊆ Ca(S1) ∩ O = ∅, and S4 is an
element of Sx

a(S, O) that is closer to a than S1. Similarly, S2 is an a, b-minimal
separator and S4 is closer to a than S2 which contradicts the fact that S1 and
S2 are two distinct elements of Sx

a(S, O) closest to a. 2

3.2 The intermediate graph

Definition 7 Let GΣ = (VΣ, EΣ) be a 3-connected plane graph. Let F be the
set of its faces. In each face f ∈ F pick up one point vf . Let RF be the set
{vf | f ∈ F}. The intermediate graph GI = (VI , EI) is a plane graph whose
vertex set is VI = VΣ ∪ RF . We place an edge between a vertex v ∈ V and
vf ∈ RF if and only if the vertex v is incident to the face f .

For G′ a subgraph of GI , the set G̃′ ∩ VΣ will be denoted by V (G′).

Proposition 8 Let µ be a cycle of GI such that the curve µ̃ separates at least
two vertices a and b of VΣ.

The set V (µ) is an a, b-separator of GΣ.

PROOF. Let p be a path in GΣ from a to b. Since a and b are not in the
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same connected component of Σ\µ̃, p̃ intersect µ̃. By construction, p∩µ ⊆ VΣ.
This implies that every path from a to b meets V (µ) and so V (µ) is an a, b-
separator. 2

Proposition 9 Let S be an a, b-minimal separator of G. There exists a simple
cycle µ of GI such that the Jordan curve defined by µ separates the vertices of
Ca(S) and Cb(S) and such that V (µ) = S.

PROOF. Let C be the connected component of a in G\S. Let us contract
C into a supervertex vC to build the graph G/C . There is a cycle µ/C in
(G/C)I such that V (µ/C) is the neighbourhood of vC in G/C . Therefore, the
neighbourhood of C in GI has the structure of a cycle µ.

Suppose µ̃ is not a Jordan curve, the border µ′ of the connected component of b
in Σ\µ̃ is a strict sub-lace of µ̃ which separates a and b. However, proposition
8 shows that V (µ′) which is a strict subset of S is an a, b-separator. This
contradicts the fact that S is a a, b-minimal separator. 2

Proposition 9 shows that the minimal separators of a 3-connected planar graph
correspond to cycles of the intermediate graph. Thus, when a set corresponds
to no cycle of the GI , it is not a minimal separator. However, this is not a
characterisation of the minimal separators of a 3-connected planar graph for
some cycles of GI correspond to no minimal separator of G.

There are several ways to find an exact criterion for minimal separators. The
following section presents a criterion that is well suited to our purpose.

3.3 Ordered separators

Definition 10 An ordered separator of G is a sequence of distinct vertices

(v0, . . . , vp−1), (p > 2)
such that

i. there exists a face to which vi and vi+1 [ p ] are incident;
ii. vi and vj are incident to a common face only if i = j+1 [p] or j = i+1 [ p ];
iii. if p = 3, no face is incident to vi, vi+1 [ p ] and vi+2 [ p ].

The notation i [ p ] means i modulo p.

A set S = {v0, . . . , vp−1} is an ordered separator if there exists a permutation
σ such that (vσ(0), . . . , vσ(p−1)) is an ordered separator.
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If S = (v0, . . . , vp−1) is an ordered separator of G, then S is naturally asso-
ciated to the set {v0, . . . , vp−1}. We will use an ordered separator either as a
sequence or as the corresponding set.

Lemma 11 Every minimal separator S of G is ordered.

PROOF. Let S be an a, b-minimal separator of G.

Proposition 9 states that there exists a simple cycle of GI

µ = (v0, f0, . . . , vp−1, fp−1)
such that V (µ) = S.

Let us prove that T = (v0, . . . , vp−1) is an ordered separator corresponding to
S.

i. The construction of T ensures that vi and vi+1 are incident to a common
face (fi).

ii. Suppose that vi et vj are incident to a common face f and that i + 1 6=
j [ p ] and j + 1 6= i [ p ].

µ1 = (vi, fi, vi+1, fi+1, . . . , vj, f) and µ2 = (vj, fj, vj+1, fj+1, . . . , vi, f)
are laces of GI . Moreover, since either µ1 or µ2 separates a and b, there
exists an a, b-separator strictly included in S which is absurd.

iii. Suppose that p = 3 and that v0, v1 et v2 are all incident to a common face
f . If we add a vertex f to G connected to the vertices v0, v1 and v2, the
graph remains planar which is absurd because this graph has K3,3 as a
minor. Indeed, the connected component of a, the connected component
of b and the vertex f are all incident to v0, v1 and v2 which builds up a
K3,3.

The sequence T is an ordered separator corresponding to S. 2

Conversely,

Lemma 12 Every ordered separator of G is a minimal separator of G.

PROOF. Let S = (v0, . . . , vp−1) be an ordered separator of G.

First, S is a separator. Otherwise, G\S would be connected or empty. In both
cases, all the vertices of S would be incident to a common face.

Let S ′ be a minimal separator included in S. By lemma 11, S ′ is ordered
and since condition ii forbids an ordered separator to have a strictly included
ordered separator, S ′ = S. The ordered separator S is a minimal separator. 2
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From lemmata 11 and 12, we have the following proposition:

Proposition 13 A set S ⊆ V is a minimal separator of a 3-connected planar
graph G = (V, E) if and only if it corresponds to an ordered separator of G.

At this point, we have a characterisation of the minimal separators of a
3-connected planar graph. Let us see how it enables us to find out whether
Sx

a(S, O) is empty or not (O ⊆ S and x ∈ S\O).

Proposition 14 Let S = (v0, . . . , vp−1) be an ordered a, ∗-separator of a 3-
connected planar graph G = (V, E) and O = (v0, . . . , vi), (i < p − 1) be an
initial sequence of S.

If there exists a face that is incident to both y ∈ N(vi+1)\Ca(S) and vj with
0 < j < i, then Svi+1

a (S, O) is empty.

PROOF. Let b be such that S is an a, b-minimal separator and suppose that
y ∈ N(vi+1) and vj with 0 < j < i are both incident to a face f . Since S is an
ordered separator, there exists a cycle (v0, f0, . . . , vk, fk) of GI corresponding
to a Jordan curve µ̃. Let Σb be the connected component of Σ\µ̃ that contains
b. Since y and vj are incident to f , there exists a path (vi+1, g, y, f, vj) that
corresponds to a curve ν̃ that cuts Σb in two parts Σ1

b and Σ2
b whose borders

are µ̃1 and µ̃2 respectively. Since 0 < j < i, neither V (µ̃1) nor V (µ̃2) contains
O.

Suppose that S ′ is an element of Svi+1
a (S, O) closest to a. Let c be such that S ′

is an a, c-minimal separator. The vertex c belongs to Σb. We may suppose that
c belongs to Σ1

b . By proposition 4, S ′ is the neighbourhood of Cc

(
S∪N(vi+1)

)
i.e. S ′ = V (µ̃1), but O is not a subset of S ′ which is absurd. 2

Conversely,

Proposition 15 Let S = (v0, . . . , vp−1) be an ordered a, ∗-separator of a 3-
connected planar graph G = (V, E) and O = (v0, . . . , vi), (i < p − 1) be an
initial sequence of S.

If there is no face incident to both y ∈ N(vi+1)\Ca(S) and vj (0 < j < i),
then there is an ordered separator in S ∪N(vi+1)\Ca(S) that contains O.

PROOF. The neighbours (y1, . . . , yl) of vi+1 taken in clockwise order are such
that yi and yi+1 are incident to a common face. Moreover, since vi+1 and vi

are both incident to a face f1 and since vi+1 and vi+2 are both incident to
a face f2, there is a sequence P = (vi, x1, . . . , xk, v0) such that there exists a
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face incident to any two consecutive vertices of P and such that P uses only
vertices of N(vi+1)\Ca(S) and vi+2, . . . , vp−1. One such sequence is

(vi, yj, yj+1, . . . , yk, vi+2, . . . , vp−1, v0).

Let P be such a sequence between vi and v0 of minimal length. Together with
(v1, . . . , vi−1), P forms an ordered separator of G as required. 2

4 The algorithm

The properties of the previous section allow us to build up an algorithm to
compute the set Sa(S, O) with O ⊆ S.

Algorithm 2 calc3 aux

input:
G a 3-connected planar graph
a a vertex of G
S = (v0, . . . , vp−1) an ordered separator such that a 6∈ S
O = (v0, . . . , vi) with i ≤ p− 1 a subset of S

The vertices that have an incident face in common with vl (l 6= 0) are tagged l
unless they can be tagged j (1 ≤ j ≤ l − 1).
These vertices are the forbidden vertices.

The vertices of Ca(S) are also tagged “Ca(S)”.
output:

Sa(S, O) the set of a, b-minimal separators S ′ further from a than S
such that Ca(S

′) ∩O = ∅.

begin
if i = p− 1 then

return({S})
else

x← vi+1

S←calc3 aux(G, a, S, (v0, . . . , vi, x))

for each y ∈ N(x) not tagged “Ca(S)”
if y is tagged j < i then

return(S)
for each S ′ in find closest elements(G, a, x, S,O)

tag the vertices according to S ′

S← S∪ calc3 aux(G, a, S ′, (v0, . . . , vi))
end

Proposition 16 The algorithm calc3 aux is correct. It computes the set
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Sa(S, O) of a 3-connected planar graph.

PROOF. The algorithm is an application of remark 2 and proposition 13, 14
and 15. 2

Proposition 17 The algorithm can be implemented to compute the set Sa(S, O)
in time O(n|Sa(S, O)|).

PROOF. The algorithm calc 3 aux is a recursive version of the for loop
below:

for l from i + 1 to p− 1
empty←FALSE

for each y ∈ N(vl) not tagged “Ca(S)”
if y is tagged j < l − 1 then

empty←TRUE

if not empty then
for each S ′ in find closest elements(G, a, vl, S, (v0, . . . , l − 1))

tag the vertices according to S ′

S← S∪ calc3 aux(G, a, S ′, (v0, . . . , l))
return(S)

For each minimal separator S, the algorithm performs the following opera-
tions:

i. the function find closest elements produces S;
ii. the vertices of G are tagged;
iii. the for loop is executed in the recursive call to calc3 aux

iv. S is returned.

The function find closest elements can be implemented in linear time.
Computing the neighbourhoods of the connected component of G\

{
N(C)∪C

}
that contain O can clearly be done in linear time with a graph search, but not
computing those that are maximal for inclusion. However, since the graph is
3-connected planar, anyone of these neighbourhoods is necessarily maximal for
inclusion, because if some neighbourhood S was a strict subset of some other
neighbourhood S ′ then S ′ would be a minimal separator that is not minimal
for inclusion, which would contradict proposition 5. Another graph search can
be used to tag all the vertices. This costs O(n + m).

The for loop tests the neighbours of vl to check if they are forbidden. Since
the vertex vl is always different, this costs at most O(m).
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In a planar graph, the number m of edges satisfies 0 ≤ m ≤ 3n − 6, so the
time spent on each minimal separator is O(n), which gives an overall time
complexity of O(n|Sa(S, O)|). 2

The following algorithm uses the function calc3 aux to compute the set of all
minimal separators of a planar graph G.

Algorithm 3 all min sep3

input:
G a 3-connected planar graph

output:
the set of a, ∗-minimal separators of G

begin
S← ∅
find a ∈ V with d(a) < 6
for each minimal separator S ⊆ N(a)

S← S∪ calc3 aux(G, a, S, ∅)
for each y ∈ N(a)

for each a, ∗-minimal separator S ⊆ N(y)
S← S∪ calc3 aux(G, y, S, ∅)

return(S)
end

Theorem 18 Algorithm all min sep3 computes the set of the minimal sep-
arators of a 3-connected planar graph in time O(n|S(G)|)

PROOF. Since in a 3-connected planar graph minimal separators are min-
imal for inclusion, given a vertex a, S ∈ S(G) either belongs to Sa or runs
through a. In the second case, it is a b,∗ -minimal separator for a neighbour b
of a.

Moreover, there exists a vertex a of degree at most five in a planar graph. Let
b1, . . . , bp be its neighbours.

By computing Sa
⋃ (⋃

i∈[1..p] Sbi

)
, a minimal separator can be calculated no

more than five times, which gives the claimed complexity. 2
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5 Conclusion

This article confirms the feeling of Berry et al. [1]. In their conclusion, they
note that their algorithm may compute a minimal separator up to n times
and that this could be improved. This is exactly what we have gained for 3-
connected planar graphs. Our algorithm can be modified to list the minimal
separators of an arbitrary planar graph. We also feel that there could be a
better general algorithm to compute the minimal separators of a graph.

This article gives another proof that planar graphs and their minimal sepa-
rators in particular are peculiar. We feel that topological properties such as
proposition 9 are yet to be found and that such properties are the key to
compute the treewidth of planar graphs.
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