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We document the numerical aspects of the calibration of cross-currency options on the local volatility framework. We consider the partial differential equation satisfied by the price of the cross-currency option and see that the most important specifications to set are the boundary conditions. We explain how these conditions can be approximated and test the validity of the approximation on simple cases. .

Equation for the price

We describe our situation in the following form: consider two securities S 1 and S 2 whose prices follow, under their respective risk-neutral measure [START_REF] Musiela | Martingale methods in financial modelling[END_REF][START_REF] Hull | Options, Futures, and Other Derivatives[END_REF], the stochastic differential equations (we do not write the time dependence)

dS i /S i = µ i dt + σ i dW i , i = 1, 2. ( 1 
)
Here r is the risk-free rate of the domestic currency and r i the risk-free rate of the i-th foreign currency; µ i = rr i is the drift; r i can be seen as a 'dividend' rate); e.g. for the FOREX examples above if S 1 is the price in U SD of one unit of EU R then µ 1 = r U SDr EU R . Further σ i = σ i (t, S i ) are the local volatilities and W i t are Brownian motions; we take here constant correlation < dW 1 t , dW 2 t >= ρ 1,2 dt. Les us consider (for now) plain vanilla call options contingent on S 1 /S 2 ; by delta-hedging arguments [START_REF] Hull | Options, Futures, and Other Derivatives[END_REF] one can show that the price c of a plain vanilla call of strike K on the cross-security S 1 /S 2 follows the 2D Black-Scholes [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF] equation:

∂ t c + S 1 µ 1 ∂ S1 c + S 2 µ 2 ∂ S2 c + + σ 2 1 (S 1 ) 2 2 ∂ S1S1 c + σ 2 2 (S 2 ) 2 2 ∂ S2S2 c +ρ 1,2 S 1 S 2 σ 1 σ 2 ∂ 2 c ∂S 1 ∂S 2 -rc = 0 (2) c(T, S 1 , S 2 ) = S 2 [S 1 /S 2 -K] + = [S 1 -KS 2 ] + .( 3 
)

Remark 1

The particular form of the Eqn. (3) comes from the fact that the option is settled in the second foreign currency (S 2 ), while here the price 'c' is expressed in the domestic currency. One can, of course, change c in c/S 2 and obtain the PDE satisfied by the price in currency S 2 .

The equation can be then solved by any standard means (see [START_REF] Hull | Options, Futures, and Other Derivatives[END_REF][START_REF] Andersen | The equity option volatility smile: an implicit finite difference approach[END_REF][START_REF] Achdou | Computational methods for option pricing[END_REF]) e.g. through a Crank-Nicholson finitedifference scheme or finite element schemes , etc ...

Boundary conditions

We explain in this section what are the boundary conditions to impose on the Eqn. [START_REF] Andersen | The equity option volatility smile: an implicit finite difference approach[END_REF][START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF].

A naive approach would be to take a (large) domain and hope that the conditions outside the domain do not count when computing the price. This works e.g. for basket options with payoff (S 1 + S 2 -K) + as large S 1 and S 2 naturally induce a null price for the put (payoff (S 1 +S 2 -K) -and the conditions result from the put-call parity. In this case however, large values for S 1 and S 2 are significant because their quotient may be close to strike K.

We follow the Fig. 1 and describe the four different regions where the boundary conditions are set. We note four different regions: the line S 1 /S 2 constant and small, the line S 1 /S 2 constant and large, the inner circular region S 1 , S 2 small but with constant volatility and the outer circular region with S 1 , S 2 large but with constant volatility.

3.1 On the line S 1 /S 2 = c 0 , with c 0 << K In this case the option is initially out of the money and the underlying far below the strike; therefore it has extremely small probability to finish in the money. The call price will be zero. c(t, S 1 , S 2 ) = 0 for S 1 /S 2 = c 0 >> K.

On the line

S 1 /S 2 = c ∞ , with c ∞ >> K
In this situation the option is initially in the money and the underlying far above the strike; therefore it has extremely small probability to finish out of the money. The put price will be zero and the call price will be set from the call-put parity [START_REF] Hull | Options, Futures, and Other Derivatives[END_REF] c(t, S 1 , S 2 ) = S 1 e -r1(T -t)

-KS 2 e -r2(T -t) (4) for S 1 /S 2 = c ∞ >> K.

3.3

In the region of both S 1 , S 2 are small and in the region where both S 1 , S 2 are large

The market will not quote extremely in/out of the money options so there is no way to recover the local volatilities σ 1 and σ 2 in these regions; therefore one can set them to any quantity; we set them constant. Denoting now S 1:2 = S 1 /S 2 one obtains by the Ito formula

dS 1:2 /S 1:2 = (µ 1 -µ 2 + σ 2 (σ 2 -ρ 1,2 σ 1 ))dt (5) +σ 1 dW 1 -σ 2 dW 2 .
Note that, because here σ 1 and σ 2 can be supposed constant, σ 1 dW 1 -σ 2 dW 2 can be written σ 1 dW 1σ 2 dW 2 = σ 1:2 dW with W a Brownian motion and σ 2 1:2 =

σ 2 2 +σ 2 1 -2ρ 1,2 σ 1 σ 2 .
The equation is written in the domestic numeraire (the same as for S 1 and S 2 ). This numeraire is not well adapted (the quantity S 1 /S 2 units of domestic currency does not mean anything) so one rather wants to work with the risk-neutral probability of the numeraire S 2 ; a convexity adjustment [START_REF] Hull | Options, Futures, and Other Derivatives[END_REF]Chap 25.7 and 27] shows that the risk-neutral evolution equation is

dS 1:2 /S 1:2 = (r 2 -r 1 )dt + σ 1:2 dW. (6) 
The price of the call is just the price of a plain vanilla option with risk-free rate r 2 , dividend rate r 1 and volatility σ 1:2 ; this price is given by the classic Black & Scholes formula and needs then to be multiplied by S 2 :

for S 1 , S 2 both small or large: c(t, S 1 , S 2 ) = e -r1(T -t) S 1 Φ(d 1 )

-KS 2 e -r2(T -t) Φ(d 2 ) (7) 
with

Φ(x) = 1 √ 2π x 0 exp(-u 2 )du (8) 
the standard normal cumulative distribution function,

d 1 = ln(S 1 /KS 2 ) + (r 2 -r 1 + σ 2 1:2 2 )(T -t) σ 1:2 √ T -t (9) 
d 2 = d 1 -σ 1:2 √ T -t. (10) 
Of course, one does not necessarily need to include the region where both S 1 and S 2 are small i.e., one can go with the conical domain till the origin.

Discussion and perspectives

We tested the procedure on a standard case (σ i are time independent, parabolic in S i ) and compared with a Monte-Carlo approach. The results are confirming the good quality of the approximation. We are currently working on reallife data and will present the results in a future publication.

Depending how many options prices are required, one may also look for a Dupire-like equation for a continuum of option prices (cf. recent works by Pironneau et al.). We are currently working on the implementation of the Dupire-2D equation and on a comparison between the two from a computational point of view.
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 1 Figure1. The domain in S 1 /S 2 . We note four different regions: the line S 1 /S 2 constant and small, the line S 1 /S 2 constant and large, the inner circular region S 1 , S 2 small but with constant volatility and the outer circular region with S 1 , S 2 large but with constant volatility.