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Abstract

Galileo noted in the 16th century that the period of oscillation of a pendulum is
almost independent of the amplitude. However, such a pendulum is damped by air
friction. The latter may be viewed as resulting from air molecules getting in contact
with the pendulum. It follows that air friction, not only damps the oscillation, but
also introduces randomness. In the so-called “grand-mother” clock, discovered by
Huygens in the 18th century, damping is compensated for, on the average, by an
escapement mechanism driven by a falling weight. The purpose of this paper is to
show that such a clock is, in its idealized form, a quiet oscillator. By “quiet” we mean
that in spite of the randomness introduced by damping, the dissipated power (viewed
as the oscillator output) does not fluctuate slowly. Comparison is made with quiet
laser oscillators discovered theoretically in 1984. Because the input power does not
fluctuate in both the mechanical oscillator and the quiet laser oscillator, the output
power does not fluctuate at small Fourier frequencies, irrespectively of the detailed
mechanisms involved.
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†Institut d’Électronique du Sud, UMR n◦5214 au CNRS, Université Montpellier II, F34095 Montpel-
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1 Introduction

Oscillators are devices whose mass position or electrical potential vary sinusoidally as a
function of time. The time period T is a constant in the present paper and we are not
concerned with frequency fluctuations. Only small amplitude fluctuations about some
large oscillation amplitudes are considered, first for the “grand-mother clock”, and later
for laser oscillators.

In any practical oscillator there is damping. Accordingly, in order to sustain the
oscillation some energy must be continuously fed in. In the case of the grand-mother
pendulum, the energy originates from a slowly dropping weight. In the case of laser
diodes, the energy originates from an electrical current, or some other source of energy
such as thermal radiation. These power supplies are then called “pumps”. The amplitude
fluctuations we referred to above are primarily caused by damping, which should be
viewed as a random process. Damping may be caused for example by air molecules
contacting the pendulum at random times. What we consider as a measurable quantity
is not the oscillation amplitude itself, but the dissipated power P (t). Note that the
oscillators treated here involve a single input channel (through which the power is fed
in), and a single output channel corresponding to the dissipated power P (t). All losses
aside from those resulting from the damping mechanism are supposed to be negligible,
and the oscillator is stationary, which means that a shift in time would not affect the
system operation.

The main question we wish to consider is the following: Assuming that the power fed
into the oscillating mechanism is strictly constant in time, does the dissipated power P (t)
fluctuate? Under ideal conditions and for slow variations (small Fourier frequencies),
our answer is that the dissipated power does not fluctuate. The general argument is as
follows. In a conservative device (i.e., with no internal loss or gain) the output power
may fluctuate even if the input power is a constant. This is because mechanical or
electrical energy is stored in the device. However, the law of conservation of energy
entails that the output power, integrated over a sufficiently long time, must be equal to
the input power, integrated over the same long time interval1. In the case of the grand-
mother pendulum, the input power, fed in with the help of an escapement mechanism,
is a constant. We prove in the next section, both analytically and through numerical
calculations, that, in agreement with the above general argument, the dissipated power
P (t) does not fluctuate at small Fourier frequencies. Here damping events occur at times
that are Poisson distributed (crudely speaking this means that the damping events are
“random” in time). But some of these events absorb a large energy while others absorb
a small energy. This is why the absorbed power may be regulated.

A laser diode, on the other hand, may be fed in by a constant current, generated
for example by a battery in series with a large cold resistance. The electrical potentials

1As an example, note that in the electrical power grid where energy storage is negligible, the power

generated by, say, nuclear plants must, at any instant, be equal to the consumed power, or nearly so.

Because the consumed power varies quickly in time but the power generated by nuclear plants cannot

be made to vary quickly, burning-gas generators are required from time to time. Of course, the law of

conservation of energy tells us nothing about the power distribution among various customers.
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across the laser diode and across the detector diode that convert the emitted light back
into an electrical current, are nearly equal to h/Te, where h denotes the Planck constant,
T the oscillation period, and e the electron charge. It follows that if a constant current
is fed into a laser diode, conservation of energy alone tells us that the photo-detector,
which is the only cause of loss according to our assumptions, delivers a current that does
not fluctuate either at small Fourier frequencies. In the present situation, each photo-
detection event carries the same energy because the electron charge is a constant. It
follows that regulation of P (t) requires that the detector electronic events be distributed
in time in a “sub-Poissonian” manner. By that, one means that the event occurrence
times are more regularly spaced than in a Poissonian distribution.

It is often argued that nonclassical features of the electromagnetic field states such as
sub-Poissonian statistics are consequences of the field quantization. For sure Quantum
Optics provides a framework for a complete interpretation of nonclassical light features.
The first theory of “sub-Poissonian” emission by regularly driven laser diodes was given
that way [1]. But we show here that accounting for the emitter-detector system as a
whole quantum device produces the same interpretation only using the law of conser-
vation of energy. The formulas obtained for the photodetection statistics thus agree in
every details with the results obtained independently by quantum theorists. Some other
measurable effects do indeed require light quantization. However, this is not the case
for the kind of oscillators that we are considering. Our view point is that lasers, on that
respect, are akin any oscillator.

2 The “grand-mother” clock

The basic element of a grand-mother clock is a weight W suspended at the end of a
weightless bar of length L in the earth gravitational field g. As was first shown by Galileo
the oscillation period T = 2π

√

L/g does not depend on the oscillation amplitude as long
as this amplitude remains small, a condition that we assume fulfilled. The period T does
not depend either on the weight value according to the equivalence principle: inertial
mass equals gravitational mass. For simplicity we suppose that the pendulum period is
unity, that is T = 1 s. This amounts to selecting some appropriate L value, considering
that g ≈ 10 m/s2. We also suppose that W = 1 so that the highest weight altitude E
represents the pendulum energy since the kinetic energy then vanishes. In the following
we denote by Ek, k = 1, 2, ... the pendulum energies at successive periods of oscillation.
This energy gets decremented by a random damping mechanism to be specified below,
and incremented by a regular escapement mechanism.

Let us first describe the damping mechanism. The pendulum, with energy Ek, is
supposed to pick up with probability p ≪ 1 at each period a molecule of weight w
at rest at the lowest level, and to release it at the highest level Ek+1 (see Fig. 1).
Because the probability p ≪ 1, the molecule-picking events form a Poisson process. The
average inter-event time for a Poisson process is known to be 1/p [2, 3]. Note that
we are considering only time intervals much larger than the pendulum period T = 1.
Raising a molecule of weight w from altitude 0 to altitude Ek+1 amounts to reducing
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Figure 1: The figure represents the “grand-mother” clock, discovered by Huygens in the
18th century. The pendulum consists of a weight at the end of a weightless bar. In our
model, damping is caused by molecules of weight w being raised by the pendulum from
the lowest to the highest weight level, with probability p ≪ 1. Damping is compensated
for, on the average, by an escapement mechanism driven by a falling weight delivering
a constant energy δ per period. The curves show the spectral density of the dissipated
power P (t) as a function of the Fourier frequency Ω/2π, numerically evaluated over
108 periods of oscillation (irregular curve) and obtained analytically (smooth curve).
This clock, in its idealized form, is a quiet oscillator in the sense that in spite of the
randomness introduced by damping the dissipated power does not fluctuate at small
Fourier frequencies.
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the pendulum energy from Ek to Ek+1 = Ek − wEk+1 according to the law of energy
conservation. It follows that, if a molecule-picking event occurs (a rare event), we have:
Ek+1 = Ek/(1 + w) ≈ (1 − w)Ek, w ≪ 1.

In order to maintain a constant oscillation amplitude, at least on the average, a
power supply is required. An adequate mechanism was proposed in the 18th century by
Huygens, who invented what we call here the grand-mother clock. Power is delivered by
a weight suspended at the end of a cord. An escapement mechanism (crudely represented
in the figure) allows the suspended weight to drop by a fixed height at each swing of
the pendulum, thereby delivering to it a constant energy (or power since T = 1) that
we denote δ. The pendulum average energy 〈E〉 is obtained by equating the input
power δ and the average absorbed power pw 〈E〉. Thus, 〈E〉 = δ/pw. It is appropriate
in numerical calculations to begin with an initial pendulum energy equal to 〈E〉. At
every period (k = 1, 2, ...) we add to the pendulum energy the energy delivered by the
escapement mechanism, that is Ek+1 = Ek + δ. We also select a random number x
uniformly distributed between 0 and 1. If x < p (a rare event), we subtract from the
pendulum energy the molecule-raising energy: Ek+1 = (1 − w)Ek.

While the power supply is constant in time according to the above discussion, the
damping mechanism has a random character. Our purpose is to evaluate the energy
released by the molecules as a function of time. As said above, this energy is generated
at times (called “events”) corresponding to a Poisson process. But the energy released
by the molecules varies from event to event. If a molecule-picking event occurs at time
ki and the next one occurs after an anomalously-large time (ki+1 − ki ≫ 1/p), the
pendulum energy has been much incremented and therefore the next event absorbs
a larger-than-usual energy. This is how one can explain in a qualitative manner the
mechanism behind dissipation regulation. As the figure shows, the spectral density of
this so-called “marked” Poisson process [4] has been found numerically to be in excellent
agreement with the analytical formula given below, which has been obtained as in [5]
for laser diodes.

S (Ω) =
δ2/p

1 + (pw/Ω)2
. (1)

The spectral density vanishes as the Fourier angular frequency Ω → 0. This must
be the case because, as we discussed earlier, for slow variations, the conservation of
energy implies the conservation of power, the stored energy being then negligible. In our
numerical application, w = 1 mN, δ = 10 µJ, p = 0.01 and thus the average inter-event
time is 100 s.

3 Lasers

Let us now compare grand-mother clocks to lasers driven by non-fluctuating pumps, the
pendulum angular frequency 2π/T corresponding to the laser angular frequency ω. In
the case of the grand-mother clock the dissipation event times are Poisson distributed,
but each event has a mark that varies so that a regulation mechanism may occur. In
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the case of quiet lasers, that is, lasers driven by a non-fluctuating source of energy, the
photo-detection events have all the same energy. This energy is ~ω (where ~ denotes
the Planck constant divided by 2π) because the electron charge e is a constant and the
electric potential across the detector is approximately ~ω/e. Output power regulation
in that case follows from the fact that the event times are sub-Poissonian. That is, the
time interval between successive events is nearly constant.

Many experimental results in Physics may be explained only if one treats the field
in an optical cavity in analogy with the motion of quantized harmonic oscillators. This
procedure is referred to as a “Quantum Optics” treatment. This universal framework
may induce some doubt that the quietness of constant current driven lasers can be
so simply derived from the law of energy conservation. Let us now explain by way
of examples rather than in a formal manner why, nevertheless, the results concerning
oscillator noise we are interested in are unaffected by light quantization.

Let us consider a thought experiment with an optical cavity at a temperature of 0 K.
At such temperature the probability that the cavity contains optical photons is null.
According to the Quantum-Optics terminology, the cavity field is then in the “vacuum
state”, which corresponds to the ground state of an harmonic oscillator. Suppose next
that a resonant two-level atom in the excited state is injected into the optical cavity at
a prescribed speed. If this speed is appropriate, the Quantum Optics treatment predicts
that the atom exiting the cavity is, with certainty, in the ground state, a prediction which
has been verified with fair accuracy by the Haroche-group experiments that clearly show
for the first time the quantum Rabi oscillation of a single atom in a singlemode cavity [6].
In contradistinction, according to the semi-classical theory, the classical Rabi equations
then predict that the atom exits from the cavity in the excited state: No interaction with
the cavity would have taken place. Clearly the outcome of such experiments may be
explained only through quantization of the light field and rely on the Jaynes-Cummings
Hamiltonian formalism [7].

But let us go a bit further with the thought experiment. Suppose that a similar
atom, this time in the ground state, is subsequently injected in the cavity. It is then
observed that this second atom leaves the cavity in the excited state2. If we consider the
two atoms together, one may say that the energy of the exiting atoms is the same that
the energy of the entering atoms, namely ~ω. Energy is thus conserved on the average.
But light quantization implies that for some period of time the cavity contains energy.
If a stream of atoms alternately in the excited state and in the ground state is sent into
the cavity, the above discussion shows that the output atomic stream is very much like
the input atomic stream except for a small time delay.

Let us recall that the oscillators we are considering possess only one input (the
“pump”) and one output (the photo-detector). If we separate spatially the stream of
atoms initially in the excited state and the stream of atoms initially in the ground
state, the Quantum-Optics treatment makes a prediction drastically different from the
semi-classical treatment. But this is not allowed in our model. Obviously, the law of

2It is of course assumed that the cavity losses are very low, so that the cavity field did not significantly

decay at the second atom arrival time.
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conservation of energy alone cannot tell us how much energy goes into different ports.
Finally, let us comment on the “small time delay” mentioned above, which follows from
the Quantum Optics treatment, but not from the semi-classical treatment. One should
recall that our laser-oscillator noise theory applies only to stationary systems, which are
unaffected by time lags. This delay therefore needs not be considered.

From 1989 up to this time, we repeatedly published predictions of sub-Poissonian
photo-electron statistics on the basis of this semi-classical theory. The explicit expres-
sions obtained for the photo-electron statistics have always been found to coincide exactly
with the available Quantum-Theory results. On the one hand, a tutorial presentation
of the concepts involved in the semi-classical theory, with all unnecessary details being
removed, were given in Refs. [5, 8]. On the other hand, Ref. [9, see Eq. (17)] relates
to the sub-Poissonian output of four-level lasers. The levels are labelled by 0, 1, 2, 3,
levels 1-2 being the lasing levels. This result, which demonstrates sub-Poissonian light
statistics and involves four independent parameters relating to the various spontaneous
decay rates and pumping rates, is exactly the same as the one obtained from Quantum
Optics in Ref. [10, see Eq. (4)]. In four-level lasers sub-Poissonian light may be ob-
served even when the pumping light is in the coherent state (a coherent light incident
on a photo-detector generates Poissonian photo-electrons). The regulation of the output
light statistics in that case originates from the spontaneous decays from levels 3 to 2, and
from levels 1 to 0 that play a role somewhat similar to the large cold resistor employed
in quiet laser diodes.

4 Conclusion

We considered in the present paper a classical oscillator, the “grand-mother clock”,
discovered by Huygens in 18th century, which may be called a quiet oscillator because
the dissipated power does not fluctuate slowly. This is a consequence of the fact that
the escapement mechanism delivers a constant power. In the case of quiet lasers the
dissipated power does not fluctuate slowly either because the input power (i.e., the pump)
is a constant. In that case each event possesses the same energy, but the occurrence times
are sub-Poissonian, i.e., regularly spaced. We hope to have convinced the reader that
the law of energy conservation suffices to understand why some classical or quantum
oscillators may be “quiet”.
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