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Introduction

In this work, we consider the doubly nonlinear equation defined for any (t, x) ∈ (0, ∞) × R n by

     ∂ρ ∂t = ∆ p ρ := div |∇ρ m | p-2 ∇ρ m , (x ∈ R n , t > 0) ρ(t = 0) = ρ 0 ≥ 0 , (x ∈ R n ) (1.1)
with 1 < p < ∞, 0 < m and n ≥ 3. This class of equations contains the linear diffusion equation, (p = 2, m = 1), commonly known as the heat equation, ∂ t ρ = ∆ρ ; the nonlinear diffusion equation ∂ t ρ = ∆ρ m , known as the porous medium equation (p = 2, m > 1), or the fast diffusion equation (p = 2, m < 1), and the gradient-dependent diffusion equation, ∂ t ρ = div(|∇ρ| p-2 ∇ρ) := ∆ p ρ, that is, the p-Laplacian equation, (p = 2, m = 1). When p = 2 and m = 1, Eq. (1.1) is called the doubly nonlinear diffusion equation, due to the fact that its diffusion term depends non-linearly on both the unknown density ρ, and its gradient ∇ρ. Such gradient-dependent diffusion equations appear in several models in non-Newtonian fluids [START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow[END_REF], in glaciology [START_REF] Hutter | Mathematical foundation of ice sheet and ice shelf dynamics: A physicist's view[END_REF][START_REF] Calvo | On a doubly nonlinear parabolic obstacle problem modeling ice sheet dynamics[END_REF], and in turbulent flows in porous media [START_REF] Leibenzon | General problem of the movement of a compressible fluid in a porous medium[END_REF]. For more details on these models, we refer to the recent monograph of Vázquez [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF], and the references therein.

Assuming that the initial data is integrable, ρ 0 ∈ L 1 (R n ), it is known that (1.1) has a unique solution ρ ∈ C [0, ∞), L 1 (R n ) , with ρ(t) ∈ C 1,α (R n ) for some α ∈ (0, 1), see for instance [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Dibenedetto | Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2[END_REF][START_REF] Dibenedetto | On the Cauchy problem and initial traces for a degenerate parabolic equation[END_REF][START_REF] Li | Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources[END_REF]. Moreover, starting with a non-negative initial data, ρ 0 ≥ 0, it is known that the solution ρ(t) remains non-negative at all times. Furthermore for n ≥ 3, there exists a critical exponent,

m c := n -p n(p -1)
,

such that if m > m c , then the mass of the solution is conserved, R n ρ(t) dx = R n ρ 0 dx, while if m < m c , the solution vanishes in finite time, see [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF] and the references therein. In particular, for the p-Laplacian equation, this corresponds to the critical p-exponent,

p c := 2n n + 1 ,
above which the mass of the solution is conserved, while the solution disappears in finite time if p < p c . Therefore, up to renormalising the mass of ρ 0 to unity, we can assume without loss of generality that, under the condition m > m c , the solution ρ(t) of (1.1) is a density in R n , for all times t ≥ 0. By similarity and scaling, it can be shown that, above the critical exponent m c , Eq.(1.1) has a unique self-similar solution ρ D * , whose initial value is the Dirac mass at the origin, that is, the fundamental solution of Eq.(1.1). In fact, among all the radially symmetric solutions of (1.1), this solution is the most concentrated whose initial data have the same mass as ρ 0 . It is called the Barenblatt solution [START_REF] Barenblatt | On self-similar motions of compressible fluids in porous media[END_REF], and it is precisely:

ρ D * (t, x) = 1 t n/δp u D *
x t 1/δp , where δ p := n(p -1)(m -m c ) > 0, and

u D * (y) =          1 σ exp - |p -1| 2 p |y| p/(p-1) if m = 1 p -1 D * - m(p -1) -1 mp |y| p/(p-1)
p-1 m(p-1)-1

+ if m = 1 p -1 ,
with σ and D * are uniquely determined by the mass conservation:

u D * L 1 (R n ) = ρ D * (t) L 1 (R n ) = ρ 0 L 1 (R n ) .
When p = 2 and m > 1 -2/n, the existence and uniqueness of the Barenblatt solution was proved by Friedmann and Kamin in [START_REF] Friedmann | The asymptotic behaviour of gas in a n-dimensional porous media[END_REF]. Moreover, they showed that the solution ρ(t) of the Cauchy problem converges to ρ D * (t) w.r.t. the L 1 (R n )-norm, as t → ∞, with no rates. Rates of convergence were computed by Carrillo and Toscani [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to selfsimilarity[END_REF] if m > 1, independently by Del Pino and Dolbeault [START_REF] Dolbeault | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF], and Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] if m ≥ 1 -1/n. The rates found in this range were generically optimal. In the range 1 -2/n < m < 1 -1/n, there were studies of the linearised problem by Carrillo, Lederman, Markowich and Toscani [START_REF] Carrillo | Poincaré inequalities for linearization of very fast diffusion equations[END_REF], and Denzler and McCann [START_REF] Denzler | Fast diffusion to self-similarity: complete spectrum, long time asymptotics and numerology[END_REF]. These linearisations were useful to obtain rates of decay for the nonlinear fast diffusion equation by Carrillo and Vázquez [START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF] and later by McCann and Slepčev [START_REF] Mccann | Second-order asymptotics for the fast-diffusion equation[END_REF], and Kim and McCann [START_REF] Kim | Potential theory and optimal convergence rates in fast nonlinear diffusion[END_REF].

The decay rates obtained by using the linearisations are in general non optimal and is optimal in some sub-range, see [START_REF] Kim | Potential theory and optimal convergence rates in fast nonlinear diffusion[END_REF].

When p = 2 and m = 1, Kamin and Vázquez [START_REF] Kamin | Fundamental solutions and asymptotic behaviour for the p-Laplacian equation[END_REF] proved existence and uniqueness of the Barenblatt solution ρ D * for the p-Laplacian equation when p > p c , along with an L 1 -convergence of the solution ρ(t) of the Cauchy problem to ρ D * (t), with no rates. Their proof extends to the doubly nonlinear equation as long as m > m c , see [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations[END_REF]. Rates of convergence were computed by Del Pino and Dolbeault [START_REF] Del Pino | Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian[END_REF] when p c + 1/(n + 1) ≤ p < n for the p-Laplacian equation, but their rates are not optimal; see also a similar result for the doubly nonlinear equation in [START_REF] Del Pino | Asymptotic behaviour of nonlinear diffusions[END_REF]. In [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF][START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF], Agueh generalises previous results by deriving optimal rates for the convergence of the solution of the Cauchy problem (1.1) to ρ D * (t), for all m ≥ m c + 1/(n(p -1)) = (n -p + 1)/(n(p -1)) and p > 1. For instance, when p = 2, this condition coincides with the case m ≥ 1 -1/n, while for the p-Laplacian equation (p = 2, m = 1), it corresponds to p ≥ p c + 1/(n + 1) = (2n + 1)/(n + 1), and therefore covers the range p ≥ n left in [START_REF] Del Pino | Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian[END_REF], but not the remaining exponent interval 2n/(n + 1) < p < (2n + 1)/(n + 1). Similarly, for the doubly nonlinear diffusion equation, the rate of convergence remains unknown in the range

m c < m < m c + 1 n(p -1) = n -p + 1 n(p -1) . (1.2)
Indeed, the proof of [START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF] is based on optimal transportation inequalities, which follows from the displacement convexity [START_REF] Mccann | A convexity principle for interacting gases[END_REF] of the energy functional associated with (1.1), that is,

H F (ρ) = R n F [ρ] dx,
where

F (x) =          1 p -1 x ln x if m = 1 p -1 mx γ γ(γ -1) , γ = m + p -2 p -1 if m = 1 p -1 .
This energy functional is displacement convex if and only if γ ≥ 1 -1 n , or equivalent m ≥ (n -p + 1)/(n(p -1)). This explains why the method of [START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF] does not extend to the interval (1.2).

The goal of this work is then precisely to derive a rate of convergence w.r.t the L 1 (R n )-norm, of the non-negative solution ρ of the Cauchy problem (1.1), to the Barenblatt solution ρ D * (t), as t → ∞, provided that m belongs to the remaining exponent interval (1.2), that is,

n -p n(p -1) < m < n -p + 1 n(p -1) . (1.3) 
For convenience we rewrite the Cauchy problem (1.1) as:

       ∂ρ ∂t = div ρ∇c * ∇ F ′ •ρ , (x ∈ R n , t > 0) ρ(t = 0) = ρ 0 , (x ∈ R n ), (1.4) 
where c * (x) = |x| p /p is the Legendre transform of the convex function

c(x) = |x| q q , 1 p + 1 q = 1.
By rescaling in time and space ρ as follows:

ρ(t, x) = 1 R(t) n u (τ, y) , (1.5) 
where

τ = ln R(t), y = x R(t) , R(t) = (1 + δ p t) 1/δp , δ p = (p -1)(nm + 1) + 1 -n, (1.6) 
it is easy to show that ρ solves (1.4) if and only if u solves the rescaled convection-diffusion equation

     ∂u ∂τ = div u∇c * ∇ F ′ •u + uy (y ∈ R n , τ > 0) u(τ = 0) = ρ 0 (y ∈ R n ).
(1.7)

Moreover, by conservation of mass there exists a unique D * such that the Barenblatt profile u D * is the equilibrium solution of (1.7). Remark that in the considered range of exponents, m(p -1) -1 < 0 and the Barenblatt profile is simply given by

u D * (y) = D * + 1 -γ m c(y) 1 γ-1
.

(1.8)

In fact, u D * is the unique density function of same mass as u 0 which satisfies on its support,

∇ F ′ •u D * + c = 0. (1.9) 
The main result of our paper is the following:

Theorem 1.1 (Rates of convergence) Let m be in the range (1.3) and u 0 a density such that there exist positive constants D 0 > D 1 for which

u D 0 (x) ≤ ρ 0 (x) = u 0 (x) ≤ u D 1 (x) ∀ x ∈ R n . ( H1 
)
Consider u a solution to (1.7) with initial data u 0 , there exists a unique D * such that u(τ ) converges to the Barenblatt profile u D * in L 1 (R n ). Moreover, there exist a time τ 0 and two positive constants λ and M = M (m, n, p, u 0 , τ 0 ) such that, for any time τ > τ 0

u(τ ) -u D * L 1 (R n ) ≤ M e -λ 2 τ . (1.10) 
As a consequence, for a time large enough the corresponding solution ρ(t) of (1.1) converges to the Barenblatt solution ρ D * (t), algebraically fast in the L 1 -norm, at the rate λ/(2δ p ): there exist a time t 0 and a constant C = C(m, n, p, ρ 0 , t 0 ) such that, for any time t > t 0

ρ(t) -ρ D * (t) L 1 (R n ) ≤ C t -λ/(2δp) , (1.11) 
where δ p = (p -1)(nm + 1) + 1 -n.

The main tool is the following relative free energy with respect to the Barenblatt solution u D * defined by

E[u|u D * ] := R n F •u(y) -F •u D * (y) -F ′ •u D * (y)(u(x) -u D * (y)) dy (1.12)
for any given u ∈ L 1 + (R n ). Its derivative along the flow of (1.4) is formally given by

- d dτ E[u(τ )|u D * ] = I[u(τ )|u D * ]
where

I[u(τ )|u D * ] := R n u(τ, y) ∇ F ′ •u(τ, y) + c(y) • ∇c * •∇F ′ •u(τ, y) + y dy .
In this paper, we prove that the relative entropy decays exponentially fast in the form

E[u(τ )|u D * ] ≤ e -β τ E[u 0 |u D * ], (1.13) 
for some β > 0. This is obtained in two steps. First, we linearise (1.7) at the equilibrium solution u D * by using the linear perturbation u(τ ) = u D * + ǫv(τ ), and we show that the linearised version of the relative energy converges to 0 exponentially fast, as in [START_REF] Carrillo | Poincaré inequalities for linearization of very fast diffusion equations[END_REF]. For that, we use the Hardy-Poincaré inequality recently established by Blanchet, Bonforte, Dolbeault, Grillo and Vázquez in [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF]. Next, following the strategy in [START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF], we try to compare the relative energy and the dissipation of the relative energy -that is, the Fisher information-for both linearised and nonlinear equations, to deduce the exponential decay (1.13) for the nonlinear equation. The main differences with respect to [START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF] lie in the fact that a direct relation between the linearised and the nonlinear Fisher information is not clear due to the singular characters at the origin of the weights when 1 < p < 2. Therefore, we are forced to use a sort of regularised linearised Fisher information instead. Moreover, the control of the additional terms appearing in the regularised entropy dissipation of the linearised problem and in the relation between the entropy dissipations is more involved in our case. We note that, based on our computations (see Remark 3.4), the Bakry-Emery approach used in [START_REF] Carrillo | Poincaré inequalities for linearization of very fast diffusion equations[END_REF], which consists of differentiation twice the relative energy E[v(τ )] to estimate the spectral gap at the eigenvalue 0, does not yield a positive result for our equation when 1 < p < 2, and thus, a similar procedure to [START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF] for the doubly nonlinear equations is not feasible. Moreover, the Hardy-Poincaré inequality used here to establish the linear stability is actually valid on a larger interval, m * < m < m c + 1 n(p-1) , which includes our interval m c < m < m c + 1 n(p-1) , as m * < m c , where m * := n-2q n-q + 2-p p-1 . Therefore, our linearisation result extends naturally to the interval m * < m ≤ m c where mass conservation for the nonlinear equation fails. In this range, one needs to carefully define the right class of initial data and a substitute of the Barenblatt solution, as done in [START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF] when p = 2. Here, we will not follow this path and we will restrict ourselves to the case

m c < m < m c + 1 n(p-1)
where mass is conserved to concentrate in the main new difficulties. The paper is organised as follows. In Section 2, we review and introduce the main estimates on the solutions needed in the rest of the work. In particular, we prove the convergence of the solution u(τ ) of (1.7) to the equilibrium solution u D * in C 1 (R n ), as τ → ∞, with no rate. Then in Section 3, we analyse a suitable linearised problem for which we apply an entropy-entropy dissipation argument based on Hardy-Poincaré inequalities. Finally, Section 4 is devoted to establish the exponential decay of u(τ ) to u D * by the comparison between linear and nonlinear relative entropy dissipations.

Convergence without rate

Let us start by reviewing some well-known facts about the global unique weak solutions associated to (1.1) in the range of exponents considered. They conserve mass for all times, i.e.,

R n ρ(t, x) dx = R n ρ 0 (x) dx ∀ t ∈ (0, ∞) .
From now on, D * is the unique positive real such that

R n ρ 0 (x) dx = R n u D * (x) dx .
Moreover, solutions of the Cauchy problem to (1.1) enjoy a comparison principle and the L 1contraction property. Due to the change of variables (1.5), these properties hold for the solution u of the nonlinear Fokker-Planck equation (1.7). Since in the rest of this paper we will only work with the scaled solutions of the nonlinear Fokker-Planck equation (1.7), from now on we will use t instead of τ and x instead of y for the time and position variables respectively. The quotient function

w(t, x) := u(t, x) u D * (x)
is solution to

∂w ∂t = 1 u D * (x) div w(t, x) u D * (x) ∇c * •∇F ′ •[w(t, x) u D * (x)] -∇c * •∇F ′ •u D * (x) . Define W 0 := inf x∈R n u D 0 (x) u D * (x) ≤ sup x∈R n u D 1 (x) u D * (x) := W 1 .
A straightforward calculation gives

W 0 = D * D 0 1 1-γ ≤ 1 ≤ D * D 1 1 1-γ := W 1
with strict inequalities unless ρ 0 = u D * . In terms of w 0 = u 0 /u D * , the "sandwich" assumption on the initial data (H1) of Theorem 1.1 can be rewritten as follows: there exist positive constants

D 0 > D 1 such that 0 < W 0 ≤ u D 0 (x) u D * (x) ≤ w 0 (x) ≤ u D 1 (x) u D * (x) ≤ W 1 < ∞ ∀ x ∈ R n . (H1')
Remark 2.1 Let us point out that the condition (H1) or (H1') in the case of the fast diffusion equation (p = 2) and in the corresponding range, 1 -2/n < m < 1 -1/n, is not restrictive. In fact, as a consequence of the Harnack inequalities proved in [START_REF] Bonforte | Global positivity estimates and Harnack inequalities for the fast diusion equation[END_REF], the hypothesis (H1) is satisfied by ρ(t) for any t > 0 with an initial data

u 0 ∈ L 1 + (R n ).
In the present case, a similar Harnack inequality, not available in the literature, would restrict the study of the asymptotic rates to this particular set of initial data.

As a consequence of the regularity theory of degenerate parabolic equations [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF], we can control uniformly C 1,α -norms.

Lemma 2.2 (Uniform C 1,α -estimates) Given a solution u ∈ C([0, ∞); L 1 (R n )) of (1.7) with initial data u 0 satisfying (H1), then for any t 0 ∈ (0, ∞), sup t≥t 0 w(t) C 1,α (R n ) < ∞ .
Moreover, there exists C > 0 such that for any

x ∈ R n \ B 1 |∇w(x)| ≤ C w(x) |x| (2.1)
Proof. Due to the comparison principle and the hypothesis (H1), the function u(t) is sandwiched between the two Barenblatt profiles for all times, i.e.,

u D 0 ≤ u(t) ≤ u D 1 t ≥ 0,
and thus is uniformly bounded in B 2 , the Euclidean ball of radius 2, uniformly in t ≥ t 0 > 0. Due to the regularity theory of degenerate parabolic equations [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF][START_REF] Dibenedetto | Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2[END_REF][START_REF] Dibenedetto | On the Cauchy problem and initial traces for a degenerate parabolic equation[END_REF][START_REF] Li | Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources[END_REF], interior regularity estimates in the sense of u(t) ∈ C 1,α (B 1 ), for any 0 ≤ α < 1 hold uniformly in t ≥ t 0 > 0. Consider w = u/u D * , then w is also bounded in C 1,α (B 1 ), for any 0 ≤ α < 1 uniformly in t ≥ t 0 > 0. To deal with large values of x we introduce, the rescaled function

u λ (t, x) := λ p/(1-m) u(t, λx)
which is also solution to (1.7) but the annulus B 2λ /B λ gets mapped into the annulus Ω

1 := B 2 /B 1 .
Note that all derivatives of the rescaled Barenblatt u D * /λ are uniformly bounded from above and below since

D β u D * /λ → C D β |x| q(p-1) m(p-1)-1 uniformly in Ω 1 as λ → ∞
for any multi-index β ∈ N d . As a consequence, we get that w λ (t) = u λ (t)/u D * /λ is also uniformly bounded from above and below in Ω 1 uniformly in λ ≥ 1 and t ≥ t 0 > 0. Again using the regularity theory of the degenerate parabolic equation, we deduce that the C 1,α -norm of w λ (t) in Ω 1 is also uniformly bounded for t ≥ t 0 and λ ≥ 1 by a constant C 1 . Going back in the λ-scaling we find a constant independent of λ > 1 such that

|∇w(t, λx)| w(t, λx) ≤ C 1 λ in (t 0 , ∞) (2.2)
in Ω 1 , and thus, the C 1 -norm of w(t) in R n /B 1 is uniformly bounded. Similar scaling argument applies to the Hölder semi-norms. As a consequence of (2.2)

|∇w(t, λx)| ≤ C 1 w(t, λx) λ ≤ 2 C 1 w(t, λx) λ|x| .
We thus obtain the desired result for any y = λx ∈ B 2λ \ B λ , and any λ > 0.

From this we can obtain the following result regarding the evolution of the relative entropy to the stationary state.

Proposition 2.3 (Entropy/entropy production) Let u ∈ C([0, ∞); L 1 (R n )) be a solution of (1.7) for an initial data satisfying (H1), and consider the free energy E defined by (1.12). Its derivative along the flow of (1.7) is:

d dt E[u(t)|u D * ] = -I [u(t)|u D * ]
where

I [u(t)|u D * ] := R n u(t) ∇ F ′ •u(t) -F ′ •u D * • ∇c * ∇ F ′ •u(t) -∇c * ∇ F ′ •u D * dy is the relative Fisher information of u(t) w.r.t. u D * . Moreover, I [u(t)|u D * ] = 0 if and only if u = u D * .
Proof. By performing formally integration by parts, we get

d dt E[u(t)|u D * ] = R n F ′ •u(t) -F ′ •u D * div u(t)∇c * ∇ F ′ •u(t) + u(t)y dy = - R n u(t)∇ F ′ •u(t) -F ′ •u D * • ∇c * ∇ F ′ •u(t) + y dy.
The above energy dissipation follows using that u D * satisfies (1.9) and ∇c * • ∇c = id. This integration by parts can be justified using With these ingredients, we can obtain a first result of convergence toward stationary states.

Lemma 2.4 (Uniform convergence) Let u ∈ C([0, ∞); L 1 (R n
)) be a solution of (1.7) for an initial data satisfying (H1), then lim t→∞ w(t, x) = 1 uniformly in compact sets of R n .

Proof. Define u h (t, x) := u(h + t, x), for any given h > 0 and t ∈ [0, 1]. It is also well-known [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF] that equi-bounded set of solutions of (1.1) are equi-continuous in time. This property carries over to u(t) by the change of variables in (1.5). This fact together with the uniform bounds in C 1,α obtained in Lemma 2.2 and the Ascoli-Arzelá theorem implies that for any sequence (h n ) n∈N there exists a sub-sequence (h n ) n∈N , denoted with the same index, such that {u hn } n∈N converges to a function u ∞ uniformly in compact sets of [0, 1] × R n , and moreover, u

∞ (t) ∈ C 1,α (R n ) for all t ∈ [0, 1]. Since E[u(t)|u D *
] is non-increasing and positive and

E[u(h n )|u D * ] -E[u(h n + 1))|u D * ] = hn+1 hn I[u(s)|u D * ] ds = 1 0 I[u(s + h n )|u D * ] ds , the function t → I[u hn (t)|u D *
] is integrable on [0, 1] and converges to zero as n → ∞. By (2.3), I is non-negative. By Fatou's lemma we have 

R n lim n→∞ u hn (t, x) ∇ F ′ •u hn (t, x) + c(x) • ∇c * ∇F ′ •u hn (t, x) + ∇c * •∇c(x) dx = 0 . As a consequence of (2.3), u ∞ satisfies ∇[F ′ •u ∞ (x) + c(x)] = 0,
|u(t) -u D * | ≤ max |u D 0 -u D * | , |u D 1 -u D * | = O |x| -q(2-γ)/(1-γ) . So the difference between |u(t) -u D * | θ is in L 1 (R n ) if θ > Θ(p, m) with Θ(p, m) := n(1 -γ) q(2 -γ) .
It is easy to check that Θ(p, m) is a decreasing function of γ and so of m. Since q > 2, in the range of exponents (1.3), we have

Θ(p, m) ≤ Θ(p, m c ) = n n + q < 1 . By Lebesgue's dominated convergence theorem, it implies that u(t) converges to u D * in L θ (R n ), for any θ ∈ [1, ∞)
. Finally, we use the following interpolation lemma, due to Nirenberg, [28, p. 126]:

f ∞ ≤ C f n n+2 C 1 (R n ) f 2 n+2 2 ∀ f ∈ C(R n ) ,
for f = u(t) -u D * together with Lemma 2.2 to obtain the result in the uniform norm.

Remark 2.6 In contrast with [START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF], we do not generally have the convergence in C 1,α (R n ).

Linear stability

To prove the decay (1.13) of u(t) to u D * in the energy form, it is sufficient to establish the following logarithmic Sobolev type inequality:

E [u|u D * ] ≤ 1 β I [u|u D * ] , (3.1) 
for some β > 0 and u ∈ C 1,α (R n ) verifying (H1). Indeed, (3.1) combined with Proposition 2.

3 yield d dt E [u(t)|u D * ] ≤ -βE [u(t)|u D * ] ,
and this leads to the energy decay (1.13) by a simple Gronwall argument. To prove (3.1), we will first show a linearised version of this inequality, by considering the perturbation u(t) = u D * +ǫv(t) of the solution u(t) to (1.7). This will lead to the convergence of v(t) to 0 in relative entropy for the linearised equation of (1.7), as we will show below. Next section will be devoted to compare the relative entropy and Fisher information in (3.1) with their linearised analogues.

For clarity in our exposition, let us start by formally deriving the form of the linearised logarithmic Sobolev inequality that we will be dealing with below. Using the perturbation u = u D * + ǫv and the second order Taylor expansion of F (u D * + ǫv) at ǫ = 0 on the expression of the relative entropy (1.12), we have that

F •u -F •u D * = ǫvF ′ (u D * ) + ǫ 2 2 v 2 F ′′ •u D * + O(ǫ 3 ),
and then E [u|u D * ] linearises as:

E [u|u D * ] = ǫ 2 2 R n v 2 F ′′ •u D * + O(ǫ 3 ).
Let us hence introduce the weighted L 2 -norm:

E [v] = 1 2 R n v 2 (x) F ′′ •u D * (x) dx, (3.2) 
which will play the role of the linearised relative entropy.

Concerning the linearisation of the Fisher information, from the first order Taylor expansion of F ′ •u = F ′ (u D * + ǫv) at ǫ = 0, we have 

B := ∇ F ′ •u = A + ǫW + O(ǫ 2 ). (3.3) 
I [u|u D * ] = ǫ 2 R n u D * |A| p-2 |W | 2 dx + ǫ 2 (p -2) R n u D * |A| p-4 (A • W ) 2 dx + O(ǫ 3 ).
Hence, for ǫ small enough, the logarithmic Sobolev inequality (3.1) linearises as

β 2 R n v 2 F ′′ •u D * ≤ R n u D * |∇c| p-2 |∇ vF ′′ •u D * | 2 dx (3.5) + (p -2) R n u D * |∇c| p-4 ∇c • ∇ vF ′′ •u D * 2 dx.
It will be shown below that the l.h.s of (3.5) is a Lyapunov function -and the relative entropy -for the linearised equation of (1.7), and the r.h.s of (3.5) corresponds to the dissipation of this relative entropy, up to a constant.

Let u be the solution of (1.7), and consider the small perturbation

u(t) = u D * + ǫv(t) (3.6)
of u D * , where ǫ > 0 is small, and v(t) ∈ C 1,α (R n ) for some α ∈ (0, 1). Because of the massconservation, we have that

R n v(t, x) dx = 0, ∀t ≥ 0. Moreover (3.6) implies that ∂u ∂t = ǫ ∂v ∂t . (3.7) 
On the other hand, using (1.9), we have that ∇c * (A) = ∇c * [-∇c(x)] = -x, and then (3.4) gives that u [∇c

* (B) + x] = ǫu D * |A| p-2 W + (p -2)|A| p-4 (A • W )W + O(ǫ 2 ). (3.8) 
Inserting (3.7)-(3.8) into (1.7), we formally obtain after simplifying by ǫ and then setting ǫ = 0, that the linearised problem to (1.7) is:

     ∂v ∂t = div u D * |A| p-2 W + (p -2)|A| p-4 (A • W )A (x ∈ R n , t > 0) v(t = 0) = v 0 (x ∈ R n ), (3.9) 
with v 0 ∈ L 1 (R n ) of zero average. We can easily check that Eq. (3.9) has the linearised relative entropy (3.2) as Lyapunov functional. Actually, differentiating E [v(t)] along a solution v of (3.9), we formally have by a straightforward computation, that

d dt E [v(t)] = -(I [v(t)] + (p -2)I 0 [v(t)]) , (3.10) 
where

I [v(t)] = R n |W (t)| 2 u D * |A| p-2 dx and I 0 [v(t)] = R n (A • W (t)) 2 u D * |A| p-4 dx.
The Cauchy-Schwarz inequality implies that |A| p-4 (A • W (t)) ≤ |A| p-2 |W (t)| 2 , and as a consequence, I 0 [v(t)] ≤ I [v(t)]. Using 1 < p < 2, we have The objective of the rest of this section is to show the following asymptotic exponential relaxation of the linearised equation (3.9): Theorem 3.1 Let m satisfying (1.3) and v 0 ∈ L 1 (R n ) with zero average. Consider v(t) the solution to (3.9) with initial data v 0 . There exists a constant β > 0 such that

I [v(t)] + (p -2)I 0 [v(t)] ≥ (p -1)I [v(t)] ≥ 0. (3.11) In case p > 2, it is direct that I [v(t)] + (p -2)I 0 [v(t)] ≥ I [v(t)] ≥ 0. From
E [v(t)] ≤ e -βt E[v 0 ]. (3.12)
Let us concentrate first in the case 1 < p < 2. To derive this exponential rate of convergence, we establish the following functional inequality

E [v] ≤ 1 β (I [v] + (p -2)I 0 [v]) , β > 0,
for all v ∈ C 1,α (R n ) with zero average. This inequality corresponds to the formal linearisation (3.5) of the logarithmic Sobolev inequality (3.1). In fact, because of (3.11), it is sufficient to prove the following linearised logarithmic Sobolev type inequality:

E [v] ≤ p -1 β I [v] , β > 0 (3.13)
for all v ∈ C 1,α (R n ) with zero average. This is equivalent to show the Hardy-Poincaré type inequality:

R n g 2 dµ(x) ≤ β R n |∇g| 2 dν(x), (3.14) 
for some β > 0, where g is any function satisfying R n g dµ(x) = 0, and 

dµ(x) = dx F ′′ •u D * (x) , dν(x) = u D * (x)|∇ F ′ •u D * (x) | p-2 dx. ( 3 
m c < m < n-p+1 n(p-1)
. Then, there exits a constant β > 0 such that

R n g 2 dµ(x) ≤ β R n |∇g| 2 dν(x),
for any function g ∈ C 1, α(R n ) satisfying R n g dµ(x) = 0 with 0 < α < 1, where µ and ν are defined by (3.15).

We keep calling this inequality, "Hardy-Poincaré inequality" to remind the link with the inequality proved in [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF][START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF] but here we only use the Poincaré type part of the inequality. The proof of the Hardy-Poincaré inequality was performed in [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF] and an estimate of the constant β is also established. This proof can be adapted to Lemma 3.2. For completeness, we give here the proof of this variant of the Hardy-Poincaré inequality. Proof. We first observe that we can reduce to show the inequality for the Schwartz class g ∈ D(R n ) by simple approximation arguments. In L 2 (R n , dµ) we consider the closable quadratic form v → Q(v) := R n |∇g| 2 dν and -L the unique non-negative, self-adjoint operator in L 2 (R n , dµ) associated with the closure of Q. By Persson's theorem [START_REF] Persson | Bounds for the discrete part of the spectral of a semi-bounded Schrödinger operator[END_REF] inf

σ ess (-L) = lim R→∞ inf v∈H R Q(v) R n |g| 2 dµ where H R := {v ∈ H 1 (R d , dν) : supp(v) ⊂ R n \ B(0, R)}.
Roughly speaking it means that the inequality is true for any weights with the same behaviour in a neighbourhood of +∞. By a straightforward computation using (1.9) and (1.8), we have that

dµ(x) = 1 m D * + 1 -γ mq |x| q 2-γ γ-1 dx ∼ |x|→∞ 1 m 1 -γ m q 2-γ γ-1 |x| 2α-2 dx and dν(x) = |x| 2-q D * + 1 -γ mq |x| q 1 γ-1 dx ∼ |x|→∞ 1 -γ m q 1 γ-1
|x| 2α dx with α chosen in such a way that q(2 -γ)/(γ -1) = 2(α -1) and 2 -q + q/(γ -1) = 2α, that is,

α = 1 + q(2 -γ) 2(γ -1) or equivalently α = 2 -q 2 + q 2(γ -1)
.

It is left to the reader to check that α < -(d -2)/2 in the range of 1 < p < ∞ and m c < m, and thus, we can apply [5, Theorem 1] to obtain

inf σ ess (-L) ≥ 1 -γ q κ α
where κ α is the constant of the following Hardy inequality with weight. We refer to [5, Theorem 1] for estimates on the constant κ α depending if -n < α or α ≤ -n. We remark that both cases happen depending on the precise values of m c < m < n-p+1 n(p-1) and 1 < p < ∞. The lowest eigenvalue of -L is λ 1 = 0 with eigenfunctions given by the constants functions. Zero mean-value solutions belong to the orthogonal set to the eigenspace associated to λ 1 . Since λ 1 is non-degenerate we obtain the desired result for some λ 2 ∈ (0, κ α ].

Since the only behaviour of the weights that counts is their growth at infinity, we can avoid the singularity of the weight at the origin for the singular case 1 < p < 2 directly to obtain the following stronger inequality. Corollary 3.3 For any ǫ > 0, there exists a constant βǫ > 0 such that

R n g 2 dµ(x) ≤ βǫ R n |∇g| 2 dν ǫ (x),
for any function g ∈ C 1,α (R n ) satisfying R n g dµ(x) = 0, where µ is defined by (3.15), and

dν ǫ (x) = u D * (x) ǫ + |∇ F ′ •u D * (x) | p-2 dx.
Therefore, setting v = g/(F ′′ •u D * ), we have the stronger linearised logarithmic Sobolev inequality

E [v] ≤ βǫ 2 I (ǫ) [v] (3.16) 
for all v ∈ C 1, α(R n ) with zero average and 0 < α < 1, where

I (ǫ) [v] = R n |∇ vF ′′ •u D * | 2 ǫ + |∇ F ′ •u D * (x) | p-2 u D * dx. (3.17) 
Remark 3.4 The Bakry-Emery approach used in [START_REF] Carrillo | Poincaré inequalities for linearization of very fast diffusion equations[END_REF] to establish the linearised logarithmic Sobolev inequality (3.13) when p = 2, does not seem to apply here when 1 < p < 2. For illustration, let us consider the particular case m = n = 1, that is the linearisation of the 1-dimensional rescaled p-Laplacian equation,

∂ t v = div {(p -1)u D * |A| p-2 W }.
In this case, the relative entropy dissipation equation (3.10) simplifies as

dE [v(t)] dt = -(p -1)I [v(t)] ,
and it is easy to show that its dissipation is

- dI [v(t)] dt = 2(p -1) 2 D [v(t)|v D * ] ,
where

D [v(t)|v D * ] = R n F ′′ •u D * div u D * |A| p-2 W 2 dx.
Following [START_REF] Carrillo | Poincaré inequalities for linearization of very fast diffusion equations[END_REF], if one can establish the estimate

D [v(t)|v D * ] ≥ λI [v(t)|v D * ]
for some λ > 0, then it will imply the linearised logarithmic Sobolev inequality (3.13). But by a direct computation, we can show that

D [v(t)|v D * ] = 1 + (p -2) 2 p(p -1) I (v(t)|v D * ) + R n F ′′ • u D * u D * |A| p-2 div W 2 dx + K p -2 (p -1) 2 R n u D * |A| p-2 W 2 |y| -q dx. (3.18)
Note that the second term in the above expression is non-negative (because F is convex), while the last term is non-positive in the range 1 < p < 2. If p ≥ 2, the last term is also non-negative and we obtain This leads to (3.12) by a Gronwall estimate.

D (v(t)|v D * ) ≥ I (v(t)|v D * ), that is λ = 1.

Nonlinear stability

The first step to go from linear to nonlinear stability is to use that our solution is sandwiched between two Barenblatt profiles to compare the nonlinear relative entropy and its dissipation with their linearised counterparts. 

C 1 E[u -u D * ] ≤ E[u|u D * ] ≤ C 2 E[u -u D * ] .
Proof. By Taylor's formula on the integrand of the relative entropy we have

F •u(x) -F •u D * (x) -F ′ •u D * (x) (u(x) -u D * (x)) = 1 2 F ′′ •ξ(x)(u(x) -u D * (x)) 2 with u D * (x)W 0 ≤ min(u(x), u D * (x)) ≤ ξ(x) ≤ max(u(x), u D * (x))) ≤ u D * (x)W 1 ,
due to (H1), see also (H1'). The asserted result follows from homogeneity of

F ′′ with C 1 := mW γ-2 0 and C 2 := mW γ-2 1 .
The next objective is to compare the nonlinear Fisher information, I [u(t)|u D * ], with its linear analogue, I [u(t) -u D * ] along solutions of (1.7). Let us point out that the weight

|∇ F ′ •u D * | p-2 = |x| 2-q
in the linearised entropy dissipation diverges at the origin for 1 < p < 2. This singular behaviour makes complicated any attempt to compare it with nonlinear Fisher analogues. Due to the singularity of the weight |∇ (F ′ •u D * ) | p-2 at x = 0, we will replace I [u(t) -u D * ] by its regularised analogue I (ǫ) [u(t) -u D * ] defined by (3.17), where ǫ > 0 is a fixed constant. 1. Case 1 < p < 2: Given ǫ > 0, there exist t 0 > 0 and positive constants κ 1 and κ 2 such that for all t > t 0 ,

I (ǫ) [v(t)] ≤ κ 1 I [u(t)|u D * ] + κ 2 E [v(t)] . (4.1)

Case p > 2:

There exist t 0 > 0 and positive constants κ 1 and κ 2 such that for all t > t 0 ,

I [v(t)] ≤ κ 1 I [u(t)|u D * ] + κ 2 E [v(t)] . (4.2) 
Moreover κ 2 can be chosen arbitrary small provided that t 0 is large enough.

The proof of this proposition is organised as follows: Claim 1: We first show that, for all ǫ ≥ 0, there exists κ 0 > 0 such that

I (ǫ) [v(t)] ≤ κ 0 I (ǫ) γ [v(t)] + κ 2 E [v(t)] , (4.3) 
where

I (ǫ) γ [v] = R n ∇ F ′ •u -F ′ •u D * 2 ǫ + |∇ F ′ •u D * (x) | p-2 u D * dx. (4.4)
Claim 2: Next we show that if 1 < p < 2, then for all ǫ > 0 there exists δ > 0 such that

I (ǫ) γ [v(t)] ≤ δI [u(t)|u D * ] , (4.5) 
whereas if 2 < p < ∞, then there exists δ > 0 such that

I γ [v(t)] ≤ δI [u(t)|u D * ] .
Combining (4.3) and (4.5), we obtain the desired inequalities (4.1)-(4.2) with κ 1 = δκ 0 .

Proof of Claim 1: Here we follow the arguments of the proof of Lemma 5.1 in [START_REF] Blanchet | Asymptotic of the fast diffusion equation via entropy estimates[END_REF]. Indeed, let h k (w) = (w k-1 -1)/(k -1), where

w(t, x) = u(t, x) u D * (x) .
Because of assumption (H1), we have that W 0 ≤ w(t, x) ≤ W 1 , where the constant W 0 and W 1 are such that 0 < W 0 < 1 < W 1 . By studying the function h 2 /h γ on [W 0 , W 1 ], we have 2 , where

α 0 h γ (w) 2 ≤ h 2 (w) 2 ≤ α 1 h γ (w) 2 , (4.6) and h ′ 2 (w) 2 ≤ α 2 h ′ γ (w)
α 0 := |γ -1| 2 W 0 -1 W γ-1 0 -1 2 < 1, α 1 := |γ -1| 2 W 1 -1 W γ-1 1 -1 2 > 1 and α 2 := W 2(2-γ) 1 > 1.
Now, define

I (ǫ) k [v] := m 2 R n ∇ u γ-1 D * h k (w) 2 (ǫ + |x| q-1 ) p-2 u D * dx.
We have that

I (ǫ) = I (ǫ) 2
and for k = γ, I (ǫ) γ is defined in (4.4). Next we compute

I (ǫ) k [v]. By expanding ∇ u γ-1 D * h k (w) 2 
, we have

I (ǫ) k [v] = m 2 R n u 2γ-1 D * h ′ k (w) 2 |∇w| 2 (ǫ + |x| q-1 ) p-2 dx +(1 -γ) 2 R n h k (w) 2 |x| 2(q-1) (ǫ + |x| q-1 ) p-2 u D * dx +2m(1 -γ) R n u γ D * h ′ k (w)h k (w)|x| q-2 (ǫ + |x| q-1 ) p-2 ∇w • x dx.
Integrating by parts, the last integral can be rewritten as

R n u γ D * h ′ k (w)h k (w)|x| q-2 (ǫ + |x| q-1 ) p-2 ∇w • x dx = 1 2 R n ∇ h k (w) 2 • |x| q-2 x(ǫ + |x| q-1 ) p-2 u γ D * dx = - 1 2 R n h k (w) 2 div |x| q-2 x(ǫ + |x| q-1 ) p-2 u γ D * dx = - 1 2 R n h k (w) 2 div |x| q-2 x(ǫ + |x| q-1 ) p-2 u γ D * dx + γ 2m R n h k (w) 2 |x| 2(q-1) (ǫ + |x| q-1 ) p-2 u D * dx.
Then,

I (ǫ) k [v] = m 2 R n u 2γ-1 D * h ′ k (w) 2 |∇w| 2 (ǫ + |x| q-1 ) p-2 dx + (1 -γ) R n h k (w) 2 |x| 2(q-1) (ǫ + |x| q-1 ) p-2 u D * dx -m(1 -γ) R n h k (w) 2 div |x| q-2 x(ǫ + |x| q-1 ) p-2 u γ D * dx. (4.7)
Next we set κ 0 := max(α 1 , α 2 ). Moreover, since w uniformly converges to 1 as t goes to ∞, then α 0 , α 1 , α 2 and κ 0 > 1 can be chosen arbitrary close to 1 provided that t > t 0 , for some t 0 large enough. Combining (4.6)-(4.7), we have

I (ǫ) [v] = I (ǫ) 2 [v] ≤ m 2 α 2 R n u 2γ-1 D * h ′ γ (w) 2 |∇w| 2 (ǫ + |x| q-1 ) p-2 dx + α 1 (1 -γ) R n h γ (w) 2 |x| 2(q-1) (ǫ + |x| q-1 ) p-2 u D * dx -m(1 -γ) R n h 2 (w) 2 div |x| q-2 x(ǫ + |x| q-1 ) p-2 u γ D * dx ≤ κ 0 I (ǫ) γ [v] + m(1 -γ) R n u γ D * div |x| q-2 x(ǫ + |x| q-1 ) p-2 κ 0 h γ (w) 2 -h 2 (w) 2 dx.
Finally, we observe that 0 ≤ κ 0 h γ (w) 2 -h 2 (w) 2 ≤ (κ 0 /α 0 -1) h 2 (w) 2 and by direct computation

div |x| q-2 x(ǫ + |x| q-1 ) p-2 ≤ n + 2(q -2), (4.8) 
and we then deduce that

I (ǫ) [v(t)] ≤ κ 0 I (ǫ) γ [v(t)] + κ 2 E [v(t)] with κ 2 := 2(κ 0 /α 0 -1)(1 -γ)(n + 2(q -2)) > 0.
Clearly κ 2 is arbitrary small provided that t 0 is large enough. Proof of Claim 2; case 1 < p < 2: First we expand I 

I (ǫ) γ [v(t)] = R n |∇ F ′ • u | 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx + R n |∇ F ′ • u D * | 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx -2 R n ∇ F ′ • u • ∇ F ′ • u D * (ǫ + |∇ F ′ • u D * |) p-2 u D * dx and I [u(t)|u D * ] = R n ∇ F ′ • u p u dx + R n |∇ F ′ • u D * | p u dx - R n ∇ F ′ • u • ∇c * ∇ F ′ • u D * u dx - R n ∇ F ′ • u D * • ∇c * ∇ F ′ • u u dx. Next we use Young inequality a • b ≤ c(a) + c * (b) with c(z) = |z| q /q, a = ∇c * (∇ [F ′ • u]) and b = ∇ [F ′ • u D * ], to have that ∇ F ′ • u D * • ∇c * ∇F ′ (u) ≤ 1 q ∇ F ′ • u p + 1 p |∇ F ′ • u D * | p .
Then I [u(t)|u D * ] can be estimated as

I [u(t)|u D * ] ≥ 1 p R n ∇ F ′ • u p u dx + 1 q R n ∇ F ′ • u D * p u dx - R n ∇ F ′ • u • ∇c * ∇ F ′ • u D * u dx = 1 p R n ∇ F ′ • u p u dx + 1 q R n | ∇ F ′ • u D * | p u dx -- nm γ(1 -γ) R n u γ dx. ( 4.9) 
Now, we compute the cross term of

I (ǫ) γ [v(t)]. We have that R n ∇ F ′ • u ) • ∇ F ′ • u D * (ǫ+|∇ F ′ • u D * |) p-2 u D * dx = m 1 -γ R n ∇(u γ-1 ) • x|x| q-2 (ǫ + |x| q-1 ) p-2 u D * dx = - m 1 -γ R n u γ-1 div x|x| q-2 (ǫ + |x| q-1 ) p-2 u D * dx = - m 1 -γ R n u γ w div x|x| q-2 (ǫ + |x| q-1 ) p-2 dx + 1 1 -γ R n w γ-1 u D * |x| 2(q-1) (ǫ + |x| q-1 ) p-2 dx.
Since the last term in the above sum is non-negative, then using (4.8) and the fact that 1 < p < 2, we can estimate I

γ [v(t)] as

I (ǫ) γ [v(t)] ≤ R n ∇ F ′ • u 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx + R n |∇ F ′ • u D * | 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx + 2m 1 -γ R n u γ w div x|x| q-2 (ǫ + |x| q-1 ) p-2 dx ≤ R n ∇ F ′ • u 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx + R n |∇ F ′ • u D * | 2 (ǫ + |∇ F ′ • u D * |) p-2 u D * dx + 2m(n + 2(q -2)) 1 -γ R n u γ w dx ≤ R n ∇ F ′ • u p Φ ǫ (u, u D * ) 2-p u D * dx + R n |∇ F ′ • u D * | p u D * dx + 2m(n + 2(q -2)) 1 -γ R n u γ w dx, where Φ ǫ (u, u D * ) := |∇ [F ′ • u]| ǫ + |∇ [F ′ • u D * ] | .
Using Lemma 2.2 and (2.1), the reader can check that Φ ǫ (u, u D * ) is uniformly bounded by expressing the gradients in terms of derivatives of w and u D * , and thus, Φ ǫ (u, u D * ) ≤ η for some η > 0 depending on ǫ. Therefore, we obtain the estimate

I (ǫ) γ [v(t)] ≤ η 2-p W 0 R n ∇ F ′ • u p u dx + 1 W 0 R n ∇ F ′ • u D * p u dx + 2m(n + 2(q -2)) (1 -γ)W 0 R n u γ dx. ( 4.10) 
Combining (4.9) and (4.10), and setting

δ := 1 W 0 max pη 2-p , q, 2γ(n + 2(q -2)) n ,
we deduce (4.5).

Proof of Claim 2; case 2 < p < ∞: As above, we have the expression

I γ [v(t)] = R n ∇ F ′ •u -F ′ •u D * 2 |∇ F ′ •u D * (x) | p-2 u D * dx.
For convenience, we can also rewrite I (u(t)|u D * ) as which is easily checked to be decreasing in x for r > 0, whenever δ ≤ 1 2 . Therefore, we have F p (r, x) > F p (r, 1) and thus, to show (4.13) for r > 0 and -1 ≤ x < 1 is reduced to show that F p (r, 1) ≥ 0, whenever δ ≤ 1 2 . Since F p (1, 1) = 0, this is equivalent to show that f p (r, 1) ≥ δ for 0 < r < 1 and r > 1. The last assertion comes from the fact that when p > 2, f p (r, 1) = (r p -r) -(r p-1 -1) (r -1) 2 = (r -1)(r p-1 -1) (r -1) 2 = r p-1 -1 r -1 is bounded below by 1, since in 0 < r < 1, we have r p-1 -1 < r -1 < 0; in r > 1, we have r p-1 -1 > r -1 > 0; and lim r→1 f p (r, 1) = p -1 > 1. Therefore, where κ 2 can be chosen arbitrary small provided that t > t 0 is large enough. This together with proposition 4.1 yields the logarithmic Sobolev type inequality:

I [u(t)|u D * ] = K H[u|u D * ] ∇ F ′ •u -F ′ •u D * 2 u dy,
f p (r, 1) ≥ 1 > 1 2 ≥ δ.
E [u(t)|u D * ] ≤ 1 λ I [u(t)|u D * ] , (4.14) 
where λ := 2 -κ 2 βǫ /C 2 κ 1 βǫ > 0. We combine (4. 

  Lemma 2.2 by a standard argument introducing a cut-off function like in [6, Proposition 2.6]. Since the arguments are exactly equal, we do not perform any further details. By the convexity of c * , [∇c * (a) -∇c * (b)] • (a -b) ≥ 0 (2.3) with equality if and only if a = b. So the Fisher information is non-negative and zero if and only if u and u D * have the same mass and such that ∇ (F ′ •u(τ ) -F ′ •u D * ) = 0, i.e. u = u D * .

Proposition 2 . 5 (

 25 from which u ∞ = u D for some D > 0. By conservation of mass D = D * . Since the limit of all the convergent sub-sequences is uniquely determined by u D * , the result is proved.Convergence in L p -spaces) Let u ∈ C([0, ∞); L 1 (R n ))be a solution of the scaled doubly-nonlinear equation (1.7) for an initial data satisfying (H1), then lim t→∞ u(t)u D * p = 0, for any p ∈ [1, ∞]. Proof. By Lemma 2.4, lim t→∞ |u(t, x) -u D * (x)| = 0 for any x ∈ R n . Moreover, by assumptions (H1), for |x| large enough

  with A := ∇ F ′ •u D * = ∇c and W := ∇ vF ′′ •u D * . Then using that ∇c * (z) = z|z| p-2 , we obtain ∇c * (B) = ∇c * (A) + ǫ|A| p-2 W + ǫ(p -2)|A| p-4 (A • W )A + O(ǫ 2 ). (3.4) Combining (3.3) and (3.4), we see that I [u|u D * ] formally linearises as:

  these estimates, the dissipation (3.10) and |A(x)| = |∇ [F ′ •u D * ] (x)| > 0 for all x ∈ R n ,we readily formally conclude that the unique steady state is the zero solution.

Proposition 4 . 1 (

 41 Comparison linear/nonlinear relative entropy) Consider a function u satisfying (H1). Then there exist positive constants C 1 and C 2 such that

Proposition 4 . 2 (

 42 Comparison linear/non-linear Fisher information) Assume that u is the solution of (1.7), and set v = u -u D * . Then:

γ

  [v(t)] and I [u(t)|u D * ], and we have that

  whereH[u(t)|u D * ] = ∇ (F ′ •u -F ′ •u D * ) • [∇c * [∇ (F ′ •u)] -∇c * [∇ (F ′ •u D * )]] |∇ (F ′ •u -F ′ •u D * ) | 2 and K := {x ∈ R n such that |∇ [F ′ •u -F ′ •u D * ] | = 0}.Let us show that there exist a constant δ > 0, such that for all t > t 0 ,H[u(t)|u D * ] ≥ δ |∇ F ′ •u D * | p-2 . (4.11) Let us remark, if p = 2, then δ = 1, and equality holds in (4.11). For simplicity, set a(t) = ∇ (F ′ •u(t)) and a D * = ∇ (F ′ •u D * ). It is clear that (4.11) holds in the set where a D * = 0. Therefore, let us restrict to the set where a D * = 0 without loss of generality. Let us denote b(t) = a(t)/|a D * | and b D* = a D * /|a D * |. It is straightforward to check that H[u(t)|u D * ] |∇ (F ′ •u D * ) | p-2 = (b(t) -b D * ) • |b(t)| p-2 b(t) -b D * |b(t) -b D * | 2 . (4.12)Let θ denote the angle between b(t) and b D * . We have that|b -b D * | 2 = |b| 2 + |b D * | 2 -2b cos θ = 1 + |b| 2 -2b cos θ,and(b -b D * ) • |b| p-2 b -b D * ) = |b| p -|b| cos θ -|b| p-1 cos θ + |b D * | 2 = 1 + |b| p -(|b| + |b| p-1) cos θ so that (4.12) reads as:H[u(t)|u D * ] |∇ (F ′ •u D * ) | p-2 = 1 + r(t) p -r(t) + r(t) p-1 x(t) 1 + r(t) 2 -2r(t)x(t)where r(t) = |b(t)| ≥ 0 and x(t) = cos θ ∈ [-1, 1], with r(t) → 1 as t → ∞. Estimate (4.11) is reduced to show thatf p (r, x) := 1 + r p -(r + r p-1 )x 1 + r 2 -2rx ≥ δ,(4.13)for all x ∈ [-1, 1] and for all r ≥ 0. For that, let us define the function F p (r, x) =:= 1 + r p -(r + r p-1 )x -δ(1 + r 2 -2rx),

Proof of the main theorem, Theorem 1 . 1 :

 11 Given 1 < p < 2 and ǫ > 0, set v = u -u D * . From Proposition 4.2 and the strong linearised logarithmic Sobolev inequality (3.16), we have thatE [v(t)] ≤ κ 1 βǫ 2 -κ 2 βǫ I [u(t)|u D * ] ,

  [START_REF] Dibenedetto | Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2[END_REF] and the entropy dissipation equationd dt E[u(t)|u D * ] = -I[u(t)|u D * ]to obtain the exponential decay of the relative entropy,E [u(t)|u D * ] ≤ e -λt E [u 0 |u D * ].The L 1decay (1.10) follows from the Csiszàr-Kullback type inequality (see for e.g.,[START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF]),u(t) -u D * 2 L 1 (R n ) ≤ M (n, n, p)E [u(t)|u D * ] , M (m, n, p) > 0,and (1.11) is a direct consequence of the rescaling (1.5)-(1.6). The case p > 2 follows analogously without need of using the regularised entropy dissipation.
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