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Abstract. We propose a new method to segment long-axis cardiac MR
images acquired with a late-enhancement protocol. Detecting the my-
ocardium boundaries is difficult in these images because healthy my-
ocardium appears dark while the intensity of enhanced areas ranges from
gray to white, depending on the myocardial damage. In this context, geo-
metrical template deformation, alternated with the update of a damaged
tissue map, allows us to include abnormal myocardium parts in the fi-
nal segmentation. The template and map are initialized using short-axis
images and the deformation parameters are adapted according to the
type of enhancement pattern. Good segmentation results are obtained
on a database of real pathologic heart images presenting various types
of abnormal myocardium tissues.

1 Introduction

Viability assessment is nowadays an unavoidable part of cardiac examinations,
used for both surgery and therapy planning. In particular, the proportion of vi-
able myocardium is a major factor in determining whether a patient may benefit
from revascularization. In order to locate and quantify the extent of abnormal
myocardial tissues, clinicians generally use late-enhancement cardiac magnetic
resonance (LE CMR) images, which are acquired around twenty minutes af-
ter contrast agent injection. At the LE CMR acquisition time, due to the loss
of membrane integrity in damaged tissues, the constrast agent accumulates in
abnormal parts of the myocardium, which are consequently enhanced (become
bright) while healthy myocardium remains dark, as shown in Fig. 1. Although
short-axis (SA) slices are useful to have a global estimation of the damaged
tissues position in the left ventricle, they are generally acquired with poor reso-
lution along the ventricle long axis (around 5 to 10mm). Long-axis (LA) images
(2 chambers and 4 chambers views) consequently bring useful additional infor-
mation to viability studies, especially concerning the apical area.

Many publications and commercial products propose automatic or semi-
automatic methods to segment the left ventricle in CMR images. However, most
of them, involving shape and appearance models [1, 2], deformable meshes [2],
level sets [3, 4] or graph-cuts [5] relate to functional (or cine) images, in which
there is no enhanced area in the myocardium. As for late-enhancement acquisi-
tions, in addition to semi-automatic approaches, generally used to delineate the



Fig. 1. Examples of long-axis late-enhancement images of pathologic hearts.

myocardium contours in SA images [6, 7], one automatic segmentation algorithm
was published by Dikici et. al. [8] and more recently, we also proposed a new
automatic approach [9]. But to the best of our knowledge, no method has yet
been reported for segmenting LE LA images, which is the objective of this work.

The main difficulty with processing LE CMR data is the non-homogeneous
intensity of the myocardium resulting from contrast agent accumulation in ab-
normal tissues, which leads to various enhanced patterns, depending on the
myocardial damage. Moreover, contrary to SA images, no ring shape prior can
be used to segment the myocardium in LA images. In this work, we present an
iterative algorithm which alternates the deformation of a geometrical template
toward the myocardium boundaries and the update of a damaged tissue map to
guide the deformation. This is done automatically, except for a one-time user
choice which specifies the enhancement pattern among four pre-defined ones.

This paper is organized as follows: the myocardium segmentation method is
presented in Section 2 and quantitatively assessed in Section 3, then we conclude
in Section 4.

2 Method

This section describes the main features of our algorithm: the deformable tem-
plate representing the myocardium, the associated binary map of abnormal tis-
sues and the iterative workflow which leads to the final segmentation.

2.1 Deformable template

Template description. The myocardium is modelled as a closed ribbon struc-
ture with an imaginary centerline C(s) = (x(s), y(s)) and a variable width
w(s), both of which are continuous spline interpolations of a discrete set of
{pk = (xk, yk, wk)} samples defined at each node (see Fig. 2). This compact rep-
resentation provides a natural coupling between the endocardium Ci and the
epicardium Co (the inside and outside contours). We also define the two regions
M and B, corresponding respectively to the myocardium and blood pool, as
shown in Fig. 2.



Ci(s) = C(s) − 0.5 w(s)n(s)
Co(s) = C(s) + 0.5 w(s)n(s)

Fig. 2. Template geometry (left); Detailed zoom (center).

Template deformation. We aim at finding the set of parameters minimiz-
ing a criterion that expresses the match of the template and the image evidence,
given some prior knowledge. Built from observations of typical cardiac images,
this knowledge is translated into mathematical terms expressing shape, contour
and region constraints. In the remainder, I is the image and the λi’s are scalar
weights balancing the various terms. Let p =

{
pk = (xk, yk, wk)T , k ∈ J1, NK

}

be our parametric model. The problem can now be formalized as follows:

min
p

{

F (p, I) = Fs(C, w)
︸ ︷︷ ︸

shape

+Fc(Ci,Co, I)
︸ ︷︷ ︸

contour

+Fr(M,B, I)
︸ ︷︷ ︸

region

}

Shape: the first part of this term contraints the template curve shape to be
affinely similar with a pre-defined shape C̃. It is defined as the error of the best
affine transformation T between the current contour C and a pre-defined contour
C̃. The second part is a regularity constraint on the template width variation:

Fs(C, w) = λ0

∫ 1

0

|C(s) − T (C̃(s))|2ds + λ1

∫ 1

0

|w′(s)|2ds.

At the beginning of the segmentation, C̃ is the initial template. During the
segmentation process, it is updated as explained in the segmentation workflow
described in Section 2.3, and set equal to the most recent template shape, which
is more reliable than the initial one. One particular advantage of this similarity
term is to softly constrain the valve plane shape and curvature.

Contour: The endocardium and the epicardium walls are preferred locations
of image gradients, as expressed by:

Fc(Ci,Co, I) = λ2

∫ 1

0

∇Iin(s)ds − λ3

∫ 1

0

|∇Ion(s)| ds,

where ∇Iin = ∇I(Ci(s)).n(s) (respectively ∇Ion with Co), ∇I is the image gra-
dient and n(s) is the outward-pointing normal to the centerline. To implement
this term, we use gradient filters that express prior knowledge on the relative
intensity of normal and abnormal parts of the myocardium, as explained in the
Special processing for abnormal tissues paragraph below.



Region: The blood pool gray levels should be homogeneously distributed. Also,
normal myocardium tissues are dark while abnormal ones are bright, which re-
sults in a strong global contrast with the blood pool. Therefore we have:

Fr(M,B, I) =
λ4

|M|

∫

M
|I(x, y) − m| dxdy

+
λ5

|B|

∫

B

∣
∣I(x, y) − b

∣
∣ dxdy + λ6(m − b),

where region B has an average intensity b and area |B|, while the expected in-
tensity is m for the myocardium region M.

Special processing for abnormal tissues. As mentioned earlier, the in-
tensities of abnormal myocardial parts differ from those of healthy regions, which
implies some adaptation of the criterion terms. Abnormal areas are detected with
a map of abnormal tissues that is computed and updated during the segmenta-
tion process, as explained in Section 2.2. If the detection is positive, as damaged
myocardium is brighter than the surrounding organs, the gradient filters defining
the expected contrast along the borders are inverted. For the same reason, the
expected value inside the myocardium m̄ (used in Fr) is the maximum value of
the intensity range instead of the minimum value for healthy myocardium. Let
us note that these extremal values are not ad hoc parameters but come from
the acquisition parameters of real LE CMR images, which are tuned so that the
healthy myocardium appears as dark as possible and scars as bright as possible.

Initialization. Correctly positioning the geometrical template with no prior
information concerning damaged tissues is very difficult, especially if large parts
of the myocardium are enhanced. For this reason, the template is initialized
using the segmentation result that is automatically obtained in the SA images
acquired in the same examination as the LA views [9]. The SA result consists
in two 3D meshes representing the inner and outer myocardium walls in the
stack of SA images. To initialize the template position, we compute the inter-
section between the meshes, the SA slices and the LA plane. This results in
pairs of points (endocardium and epicardium) sampled along the myocardium
(Fig. 3(a-b)). However, SA and LA images being acquired at different breatholds,
they are slightly misaligned and the intersections can be used for initialization
only. Each pair of points then defines the template width associated to a node
initially positioned at the center of the pair. As the SA slices do not intersect
the left ventricle apical area, an additional node is computed by extrapolation:
xpa

= 1
2
(xp0

+xp1
)+((xp0

−xp2
)+(xp1

−xp3
)), where xpi

is the position vector
of the node pi, whose location on the template is shown in Fig. 3(c). The width
associated to the extrapolated pa node is the average width computed over all
the other nodes. Finally, the centerline is interpolated from the nodes position
and the nodes are equally resampled to obtain the initial template (Fig. 3(d)).



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)-(b) Intersection of SA meshes with SA slices and LA plane; (c) Initial
position of the template nodes; (d) Initial template; (e) Initial map of abnormal tissues
based on SA meshes, with black areas corresponding to regions not covered by the SA
slices, where no information is available; (f) Coarse segmentation based on initial map;
(g) Updated map of abnormal tissues; (h) Final result based on updated map.

Optimization. We use a greedy optimization scheme [10] embedded in a
coarse-to-fine approach to simultaneaously optimize the nodes position and rib-
bon width.

2.2 Map of abnormal tissues

Map description. The map of abnormal tissues is a binary 2D image with the
same dimensions as the LA image, whose non-zero pixels indicate the location of
likely abnormal tissues. Examples of such maps superimposed on the LA image
are shown in Fig. 3(e) and Fig. 3(g).

Map initialization. The organs surrounding the myocardium constitute a
textured background, which makes the detection of abnormal tissues very diffi-
cult if no prior information about the left ventricle boundaries is provided at the
beginning of the segmentation process. Consequently, the 3D meshes resulting
from SA segmentation are used once again. More precisely, our SA automatic
algorithm detects abnormal tissues by comparison with the mean blood pool
intensity and labels the corresponding vertices in the 3D meshes. Among these
vertices, the closest to the LA plane are projected onto it. Simple morphologi-
cal operations (closing and dilation) applied on the projected labels lead to the
initial map of abnormal tissues (Fig. 3(e)).



Map update. After the first (or coarse) segmentation operation, the map
is updated using the current position of the template contours. First, an area
of interest is defined along the centerline. This area has to be large enough in
the blood pool direction to include subendocardial scars. Then, a thresholding
followed by morphological closing and dilation are done in the area of interest
to obtain a new map with large “likely abnormal tissues” areas (Fig. 3(g)).

2.3 Segmentation workflow

The segmentation is done with the following succession of operations:

1. Fully automatic segmentation of SA views (Result visible in Fig. 3(a));
2. Initalization of the geometrical template position (Fig. 3(b-d));
3. Initial map of abnormal tissues estimation (Fig. 3(e));
4. Coarse deformation of the geometrical template (Fig. 3(f)): at this stage,

as the initial map may not include all abnormal tissues, the segmentation is
difficult for images presenting large transmural scars (see Fig. 4(b)). A strong
weight is consequently given to the shape term to avoid large deformations
around damaged areas;

5. Update of both the map of abnormal tissues and C̃ contour (Fig. 3(g));
6. Fine deformation of the geometrical template according to the updated map

(Fig. 3(h)): the map is now more reliable and the shape constraint is relaxed.
Stronger and lower weights are given respectively to the homogeneity and
contour terms, which allows the final contours to enclose damaged areas.

Four sets of deformation parameters are pre-defined, corresponding to the
type of damaged tissues: large transmural scar, sub-endocardial scar, diffuse or
small enhanced areas and no visible scar. At the beginning of the segmentation
process, one single choice is required from the user to select one of these four
abnormality types. This is the only user interaction that is used in this algorithm.

3 Results

We quantitatively assessed the performance of the method on a database of 20
LE CMR LA acquisitions of 256 × 256 pixels, with a pixel size of 1.5mm, con-
taining various types of abnormal tissues (large white transmural scars, sub-
endocardial scars, scattered white areas...). Three skilled operators provided
manual contours for comparison with our segmentation algorithm.

Qualitative results. The myocardium is well segmented in all images, as
shown in Fig. 4. The scar map and the decrease of the contrast constraint in
the contour term during the fine segmentation phase allow the contours to en-
close sub-endocardial scars (Fig. 4(a) and 4(c)). This is of critical importance
to compute clinical parameters such as the transmural extent of myocardial
damage, generally expressed as a percentage (25%, 50%, 75% or 100%) of the
myocardium width. On the other hand, this may induce slight inaccuracies along



(a) (b) (c) (d)

Fig. 4. Examples of segmentation results with various enhancement patterns. (a) Sub-
endocardial scar; (b) Large transmural scar; (c) Several sub-endocardial scars; (d)
Fuzzy endocardium boundary.

fuzzy boundaries, especially around the papillary muscles (Fig. 4(d)) or along
the valve plane. However, this does not affect the damage areas and the related
clinical parameters, it is thus considered as acceptable.

Quantitative assessment. The distance between contours segmented with
our algorithm and contours drawn by each of the three experts is computed af-
ter exclusion of the valve plane area: the manual contours are drawn so that the
valve plane is defined by a straight line and all the points above this line are auto-
matically excluded from all contours. The mean distance values are summarized
in Table 1, as well as the mean distance between each manual contour and the
same contour drawn by the two other operators, which illustrates inter-observer
variability.

The mean positioning error is around 1.5 pixels, which is a reasonable re-
sult to compute viability parameters, given that the inter-observer variability is
around or higher than 1 pixel, depending on the contour. Let us note that these
variability values are larger than those observed in functional (cine) images [11],
showing that the segmentation of LE CMR data is particularly challenging. Also,
the areas where larger errors occur correspond to areas with larger inter-observer
variability, such as fuzzy boundary regions like low-contrasted scars, around the
papillary muscles or regions close to the valve plane.

Finally, the LA segmentation takes 7 seconds in average with a 3.19GHz PC.

Contour Unit DRef1 DRef2 DRef3 Variability

Endocardium
mm 2.4 ± 0.9 2.6 ± 0.9 2.3 ± 0.8 1.7 ± 0.7

pixels 1.6 ± 0.6 1.7 ± 0.6 1.5 ± 0.5 1.1 ± 0.5

Epicardium
mm 2.3 ± 1.0 2.4 ± 0.9 2.4 ± 1.1 1.5 ± 0.9

pixels 1.5 ± 0.6 1.6 ± 0.6 1.6 ± 0.7 1.0 ± 0.6

Table 1. Mean distance D (in millimeters and pixels) to manual contours drawn by 3
human observers (Ref1 to Ref3) and inter-observer variability



4 Conclusion

We proposed a new method to delineate myocardial contours in long-axis late-
enhancement images with a minimal user interaction, using a deformable tem-
plate and binary scar maps. The quantitative evaluation showed that the ob-
tained contours are accurately positioned and are eligible to automatically com-
pute clinical parameters, such as the transmural extent of myocardial scar fol-
lowing heart infarct.
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