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Coupling Index and stocks

Benjamin Jourdain1 and Mohamed Sbai 1

Abstract

In this paper, we are interested in continuous time models in which the index level induces some
feedback on the dynamics of its composing stocks. More precisely, we propose a model in which the
log-returns of each stock may be decomposed into a systemic part proportional to the log-returns of the
index plus an idiosyncratic part. We show that, when the number of stocks in the index is large, this
model may be approximated by a local volatility model for the index and a stochastic volatility model for
each stock with volatility driven by the index. We address calibration of both the limit and the original
models.

Introduction

From the early eighties, when trading on stock index was introduced, quantitative finance faced the
problem of efficiently pricing and hedging index options along with their underlying components. Many
advances have been made for single stock modeling and a variety of solutions to escape from the very
restrictive Black & Scholes model has been deeply investigated (such as local volatility models, models with
jumps or stochastic volatility models). However, when the number of underlyings is large, index option
pricing, or more generally basket option pricing, remains a challenge unless one simply assumes constantly
correlated dynamics for the stocks. The problem then is the impossibility of fitting both the stocks and the
index smiles.

We try to address this issue by making the dynamics of the stocks depend on the index. The natural fact
that the volatility of the index is related to the volatilities of its underlying components has already been
accounted for in the works of Avellaneda et al. [1] and Lee et al. [12]. In the first paper, the authors use a large
deviation asymptotics to reconstruct the local volatility of the index from the local volatilities of the stocks.
They express this dependence in terms of implied volatilities using the results of Berestecky et al.([4],[3]).
In the second paper, the authors reconstruct the Gram-Charlier expansion of the probability density of the
index from the stocks using a moments-matching technique. Both papers consider local volatility models
for the stocks and a constant correlation matrix but the generalization to stochastic volatility models or to
varying correlation coefficients is not straightforward.

Another point of view is to say that the volatility of a composing stock should be related to the index
level, or say to the volatility of the index, in some way. This is not astonishing since the index represents
the move of the market and reflects the view of the investors on the state of the economy. Moreover, it
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is coherent with equilibrium economic models like CAPM. Following this idea, we propose a new modeling
framework in which the volatility of the index and the volatilities of the stocks are related. We show that,
when the number of underlying stocks tends to infinity, our model reduces to a local volatility model for
the index and to a stochastic volatility model for the stocks where the stochastic volatility depends on the
index level. This asymptotics is reasonable since the number of underlying stocks is usually large. As a
consequence, the correlation matrix between the stocks in our model is not constant but stochastic and we
show that it is coherent with empirical studies. Finally, we address calibration issues and we show that it
is possible, within our framework, to fit both index and stocks smiles. The method we introduce is based
on the simulation of SDEs nonlinear in the sense of McKean, and non-parametric estimation of conditional
expectations.

This paper is organized as follows. In Section 1, we specify our model for the index and its composing
stocks and in Section 2 we study the limiting model when the number of underlying stocks goes to infinity.
Section 3 is devoted to calibration issues. Numerical results are presented in Section 4 and the conclusion is
given in Section 5.

Acknowledgements: We thank Lorenzo Bergomi, Julien Guyon and all the equity quantitative research team
of Societe Generale CIB for numerous fruitful discussions and for providing us with the market data.

1 Model Specification

An index is a collection of stocks that reflects the performance of a whole stock market or a specific sector
of a market. It is valued as a weighted sum of the value of its underlying components. More precisely, if IM

t

stands for the value at time t of an index composed of M underlyings, then

IM
t =

M∑

j=1

wjS
j,M
t , (1)

where S
j,M
t is the value of the stock j at time t and the weightings (wj)j=1...M are given constants2.

Unless otherwise stated, we always work under the risk-neutral probability measure. In order to account
for the influence of the index on its underlying components, we specify the following stochastic differential
equations for the stocks

∀j ∈ {1, . . . , M}, dS
j,M
t

S
j,M
t

= (r − δj)dt + βj σ(t, IM
t )dBt + ηj(t, S

j,M
t )dW

j
t (2)

where

• r is the short interest rate.

• δj ∈ [0,∞[ is the continuous dividend rate of the stock j.

• βj is the usual beta coefficient of the stock j that quantifies the sensitivity of the stock returns to the

index returns (see the seminal paper of Sharpe [16]). It is defined as
Cov(rj ,rI)

V ar(rI) where rj (respectively

rI) is the rate of return of the stock j (respectively of the index).

2In most cases, the weightings are either proportional to stock prices or to market capitalization (stock price × number of
shares outstanding) and they are periodically updated but, as usually assumed, we suppose that, up to maturities of the options
considered, they do not evolve in time.
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• (Bt)t∈[0,T ], (W
1
t )t∈[0,T ], . . . , (W

M
t )t∈[0,T ] are independent Brownian motions.

• The coefficients σ, η1, . . . , ηM satisfy the usual Lipschitz and growth assumptions that ensure existence
and strong uniqueness of the solutions (see for example Theorem 5.2.9 of [11]) :

(H1) ∃K such that ∀(t, s1, s2) ∈ [0, T ] × RM × RM ,

M∑

j=1

∣∣∣∣∣s
j
1σ

(
t,

M∑

k=1

wksk
1

)∣∣∣∣∣ +
∣∣∣sj

1ηj(t, s
j
1)

∣∣∣ ≤ K (1 + |s1|)

M∑

j=1

∣∣∣∣∣s
j
1σ

(
t,

M∑

k=1

wksk
1

)
− s

j
2σ

(
t,

M∑

k=1

wksk
2

)∣∣∣∣∣ ≤ K|s1 − s2|

M∑

j=1

∣∣∣sj
1ηj(t, s

j
1) − s

j
2ηj(t, s

j
2)

∣∣∣ ≤ K|s1 − s2|

As a consequence, the index satisfies the following stochastic differential equation :

dIM
t = rIM

t dt −




M∑

j=1

δjwjS
j,M
t


 dt +




M∑

j=1

βjwjS
j,M
t


 σ(t, IM

t )dBt +

M∑

j=1

wjS
j,M
t ηj(t, S

j,M
t )dW

j
t (3)

Before going any further, let us make some preliminary remarks on this framework.

- We have M coupled stochastic differential equations. The dynamics of a given stock depends on all
the other stocks composing the index through the volatility term σ(t, IM

t ).

- Accounting for the dividends is not relevant for all types of indices. Indeed, for many performance-
based indices (such as the German DAX index) dividends and other events are rolled into the final
value of the index.

- The cross-correlations between stocks are not constant but stochastic :

ρij =
βiβjσ

2(t, IM
t )√

β2
i σ2(t, IM

t ) + η2
i (t, Si,M

t )
√

β2
j σ2(t, IM

t ) + η2
j (t, Sj,M

t )

Note that they depend not only on the stocks but also on the index.

In a recent paper, Cizeau et al. [8] show that it is possible to capture the essential features of stocks cross-
correlations, in particular in extreme market conditions, by a simple non-Gaussian one factor model.
The authors successfully compare different empirical measures of correlation with the prediction of the
following model :

rj(t) = βjrI(t) + ǫj(t) (4)

where rj(t) =
S

j
t

S
j
t−1

− 1 is the daily return of stock j, rI(t) is the daily return of the market and the

residuals ǫj(t) are independent random variables following a fat-tailed distribution3.

Our model is in line with (4). Indeed, since the beta coefficients are usually narrowly distributed

around 1, the factor
∑M

j=1 βjwjS
j,M
t of σ(t, IM

t ) in (3) is close to IM
t . Moreover, in the next section we

show that, for a large number of underlying stocks, one can neglect the term
∑M

j=1 wjS
j
t ηj(t, S

j
t )dW

j
t

in the dynamics of the index. Hence, if we denote by rj the log-return of the stock j and by rIM the
log-return of the index, both on a daily basis, we will have

rj = βjrIM + ηj∆W j + drift,

3The authors have chosen a Student distribution in their numerical experiments.
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where ∆W j is an independent Gaussian noise. Consequently, in our model too, the return of a stock
is decomposed into a systemic part driven by the index, which represents the market, and a residual
part.

2 Asymptotics for a large number of underlying stocks

The number of underlying components of an index is usually large4. It is then meaningful to let M tend
to infinity. Since the Brownian motions (W j)j=1...M are independent, one can expect that their contribution
to the dynamics governing the index is not significant and drop the corresponding terms in the stochastic
differential equation (3) which will drastically simplify the model. The aim of this section is to quantify the
error we commit by doing so.

To be specific, consider the limit candidate (It)t∈[0,T ] solution of the following SDE :

{
dIt = (r − δ)Itdt + βItσ(t, It)dBt

I0 = IM
0

(5)

with δ and β two constant parameters that will be discussed later.
In the following theorem, we give an upper bound for the L2p-distance between (IM

t )t∈[0,T ] and (It)t∈[0,T ]

under mild assumption on the volatility coefficients :

Theorem 1 — Let p ∈ N∗. Under assumption (H1) and if the following assumptions on the volatility
coefficients hold,

(H2) ∃Kb such that ∀(t, s) ∈ [0, T ] × R+, |σ(t, s)| + |ηj(t, s)| ≤ Kb.

(H3) ∃Kσ such that ∀(t, s1, s2) ∈ [0, T ] × R+ × R+, |s1σ(t, s1) − s2σ(t, s2)| ≤ Kσ|s1 − s2|.

then

E
(

sup
0≤t≤T

|IM
t − It|2p

)
≤ CT







M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p



where

CT = 82p−1T p(T p + KpK
2p
b )Cp exp

(
42p−1T (22p−1KpT

p−1(βKσ)2p + (2T )2p−1δ2p + r2p T 2p−1)
)

and

Cp = max
1≤j≤M

|Sj,M
0 |2p exp

((
2r + (2p − 1)(max

j≥1
β2

j + 1)K2
b

)
pT

)
.

The next theorem states that, under an additional assumption on the volatility coefficients, the L2p-
distance between a stock (Sj,M

t )t∈[0,T ] and the solution of the SDE obtained by replacing IM by I

dS
j
t

S
j
t

= (r − δj)dt + βj σ(t, It)dBt + ηj(t, S
j
t )dW

j
t , S

j
0 = S

j,M
0

is controlled by the L2p-distance between IM and I :

4500 stocks for the S&P 500 index, 100 stocks for the FTSE 100 index, 40 stocks for the CAC40 index, etc.
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Theorem 2 — Let p ∈ N∗. Under the assumptions of Theorem 1 and if

(H4) ∃Kη such that ∀(t, s1, s2) ∈ [0, T ] × R+ × R+, |s1η(t, s1) − s2η(t, s2)| ≤ Kη|s1 − s2|.
∃KLip such that ∀(t, s1, s2) ∈ [0, T ] × R+ × R+, |σ(t, s1) − σ(t, s2)| ≤ KLip|s1 − s2|.

Then, ∀j ∈ {1, . . . ,M},

E
(

sup
0≤t≤T

|Sj,M
t − S

j
t |2p

)
≤ C̃

j
T







M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p



where
C̃

j
T = 62p−1KpT

pβ
2p
j C

1
2

2pK
2p
Lip e32p−1((r−δj)

2pT 2p−1+KpT p−1K2p
η +22p−1KpT p−1β

2p
j K

2p

b
)T .

Moreover, for I
M

t =
∑M

j=1 wjS
j
t , one has

E
(

sup
0≤t≤T

|IM
t − I

M

t |2p

)
≤ C̃T




M∑

j=1

wj




2p






M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p



where C̃T = max
1≤j≤M

C̃
j
T .

The proof for these two theorems can be found in the appendix. Note that, Theorems 1 and 2 yield that
IM is also close to I. In the following corollary, we make explicit the dependence of the coefficients on M

and we consider the limit M → ∞ :

Corollary 3 — Under the assumptions of Theorems 1 and 2 and if

(H5) there exists a constant A such that max
j≥1

(
(Sj,M

0 )2 + (βM
j )2 + (δM

j )2
)
≤ A,

(H6) PM
w =

M∑

j=1

(wM
j )2 −→

M→∞
0,

(H7) PM
β =

M∑

j=1

wM
j |βM

j − β| −→
M→∞

0,

(H8) PM
δ =

M∑

j=1

wM
j |δM

j − δ| −→
M→∞

0,

then one has

E
(

sup
0≤t≤T

|IM
t − It|2

)
−→

M→∞
0

and

∀j ∈ {1, . . . , M}, E
(

sup
0≤t≤T

|Sj,M
t − S

j
t |2

)
−→

M→∞
0.
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If, in addition, sup
M

M∑

j=1

wM
j < ∞ then

E
(

sup
0≤t≤T

|IM
t − I

M

t |2
)

−→
M→∞

0.

Let us briefly comment on these additional assumptions :

- Assumption (H5) is a technical assumption that prevents the constants CT and C̃T appearing in the
Theorems 1 and 2 from depending on M . It says that the initial stock levels, the beta coefficients and
the dividend yields are uniformly bounded which is not restrictive.

- Assumption (H6) sets a condition on the weightings (wM
j )j=1...M . For example, uniform weights do

satisfy this condition :
M∑

j=1

1

M2
=

1

M
−→

M→∞
0

In Table 1, we compute the quantity PM
w for the Eurostoxx index and find that it is indeed very small

(of the order 1
M

).

- Assumptions (H7) and (H8) are similar. They express the fact that the distance between (βM
j )j=1...M

and β and the distance between (δM
j )j=1...M and δ tends to 0 when M tends to infinity. More impor-

tantly, they give us a means of determining the parameters β and δ :

∑M
j=1 wM

j |βM
j − β|

∑M
i=1 wM

i

= E |Yβ − β| and

∑M
j=1 wM

j |δM
j − δ|

∑M
i=1 wM

i

= E |Yδ − δ|

where Yβ and Yδ are discrete random variables having the following probability distributions :

∀j ∈ {1, . . . , M}, P (Yβ = βj) =
wM

j∑M
i=1 wM

i

and P
(
Yδ = δM

j

)
=

wM
j∑M

i=1 wM
i

.

Consequently, the optimal choice of the parameters is the median5 of Yβ for β and the median of Yδ

for δ. Nevertheless, one does not actually have the choice for the coefficient β. Indeed, recall that by
definition of the beta coefficients :

βM
j :=

Cov(rj , rI)

V ar(rI)
=

βjβσ2

β2σ2
=

βj

β
,

so one should take β = 1. In Table 1, we see that the optimal choice of β is very close to 1 and that
the quantities of interest, (PM

βopt
)2 and (PM

β=1)
2 are also very close to each other.

5The median of a real random variable X is any real number m satisfying :

P(X ≤ m) ≥
1

2
and P(X ≥ m) ≥

1

2
.

It has the property of minimizing the L
1-distance to X : m = arg min

x∈R
E|X − x|.
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PM
w βopt (PM

βopt
)2 (PM

β=1)
2

0.026 0.975 0.0173 0.0174

Table 1: Computation of PM
w , βopt and (PM

βopt
)2 for the Eurostoxx index at December 21, 2007. The beta

coefficients are estimated on a two year history.

Simplified model

To sum up, we have shown that, under mild assumptions, when the number of underlying stocks is large,
the original model may be approximated by the following dynamics

∀j ∈ {1, . . . ,M}, dS
j
t

S
j
t

= (r − δj)dt + βj σ(t, It)dBt + ηj(t, S
j
t )dW

j
t

dIt

It

= (r − δI)dt + σ(t, It)dBt.

(6)

Interestingly, we end up with a local volatility model for the index and, for each stock, a stochastic
volatility model decomposed into a systemic part driven by the index level and an intrinsic part. Note that
this simplified model is not valid for options written on the index together with all its composing stocks since
the index is no longer an exact, but an approximate, weighted sum of the stocks. In this case, one should

consider the reconstructed index I
M

t =
∑M

j=1 wjS
j
t or use the original model.

The fact remains that the simplified model can be used for options written on the stocks or on the index
or even on the index together with few stocks.

7



3 Model calibration

Calibration, which is how to determine the model parameters in order to fit market prices at best, is of
paramount importance in practice. In the following, we try to tackle this issue for both our simplified and
original model :

3.1 Simplified model

∀j ∈ {1, . . . ,M}, dS
j
t

S
j
t

= (r − δj)dt + βj σ(t, It)dBt + ηj(t, S
j
t )dW

j
t

dIt

It

= (r − δI)dt + σ(t, It)dBt

(7)

The short interest rate and the dividend yields can be extracted from the market. The calibration of the
local volatility σ to fit index option prices is a classic problem. What seems to be the market practice is to
do a best-fit of a chosen parametric form and match it to the available market prices. This is an important
feature of our model : even though the index is reconstructed from the stocks, its calibration remains
comparatively easy. Actually our model gives an advantage to the fit of index option prices in comparison
with options written on the stocks, which is in line with the market since index options are usually very
liquid in comparison with individual stock options.

The calibration of the beta coefficients is more tedious. Indeed, estimation based on historical data can
be unsuitable for our model when the historical beta is much larger than the implied one : in this case, since
the slope of the local volatility of the index is usually steeper than the one of the stock, the systemic part of
the volatility of the stock in our model can be larger than the local volatility of the stock.

To be specific, thanks to the usual formula relating the stochastic volatility to the local volatility (for the
theoretical result, see the paper of Gyöngy [10]), one can express the local variance of the stock as

vloc(t,K) = η2(t,K) + β2E
(
σ2(t, It) |St = K

)
. (8)

We see that when β2
histE

(
σ2(t, It) |St = K

)
becomes larger than vloc(t,K), the local volatility given by

our model is larger than the true local volatility of the stock. The right way to handle the estimation of the
beta coefficient is then to compute an implied beta calibrated to the options market. Unfortunately, there is
no option product that permits us to do this reasonably6 and one should take a beta coefficient lower than
the historical beta whenever the preceding problem is encountered and a beta coefficient higher than the
historical one whenever it is possible, such that the following rule of thumb is observed :

M∑

j=1

wjβj ≃ 1.

In Figure 1, we have plotted both the local volatility of the stock, the local volatility of the index, the
systemic part of the volatility of the stock βhistσ(T, IT ) and βhistE (σ(T, IT )|ST = K) when η is set to zero
(which intuitively gives the lowest local volatility that one can obtain in our model) for a maturity T = 1
year. We considered three components of the Eurostoxx : AXA, ALCATEL and CARREFOUR at December
21, 2007. We made this choice deliberately in order to point out the extreme situations one can face :

6One financial product that can lead to an easy calibration of the beta coefficient should revolve around the correlation
between an index and one of its composing stocks. This is not the case for the most liquid correlation swaps which are sensitive
to an average correlation between all the stocks.

8



0.0 0.5 1.0 1.5 2.0 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

AXA

Moneyness

Vol_S

Vol_i

beta*Vol_i

beta*E(Vol_i | S)

0.0 0.5 1.0 1.5 2.0 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ALCATEL

Moneyness

Vol_S

Vol_i

beta*Vol_i

beta*E(Vol_i | S)

0.0 0.5 1.0 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

CARREFOUR

Moneyness

Vol_S

Vol_i

beta*Vol_i

beta*E(Vol_i | S)

Figure 1: Local volatilities of AXA, ALCATEL and CARREFOUR together with σ(T, IEurostoxx
T ),

βhistσ(T, IEurostoxx
T ) and βhistE

(
σ(T, IEurostoxx

T )|ST = K
)

when η is set to zero.
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• AXA is an example of a stock with a high beta coefficient (β = 1.4).

• CARREFOUR is an example of a stock with a low beta coefficient (β = 0.7).

• ALCATEL is an example of a stock with a high volatility level but with a low smile effect (β = 1.1).

The local volatilities are obtained from a parametric fonction of the forward moneyness achieving a best-
fit to market smile data. The x-axis represents the moneyness, that is the strike over the spot ( K

S0
for a the

stock and K
I0

for the index). Clearly, we can deduce that the market is choosing a beta coefficient for both
AXA and ALCATEL that is lower than the historical one whereas, for CARREFOUR, one can plug the
historical beta, or even a larger one, in (7) and still be able to calibrate the model.

Finally, the remaining parameters that have to be calibrated to fit option prices are the volatility coeffi-
cients η1, . . . , ηM . From now on, we omit the index j to simplify the notations and we consider the issue of
calibrating the volatility coefficient η for a given stock.

From equation (8), one gets

η(t,K) =
√

vloc(t,K) − β2E (σ2(t, It) |St = K). (9)

As previously mentioned, vloc can be determined with the best-fit of a parametric form to the stock market
smile but determining the conditional expectation is a more challenging task. Note that, since the law of
(St, It) depends on η, so does the conditional expectation and therefore it is difficult to get an estimation
of it or to simulate a stochastic differential equation that gives the same vanilla prices as those given by
the market. In order to address this issue, we suggest two different simulation based approaches. The first
one is based on non-parametric estimation of the conditional expectation and the second one on parametric
estimation.

3.1.1 Estimation of the conditional expectation

The idea behind the following techniques is to circumvent the difficulty of calibrating the volatility
coefficient η. Indeed, if we plug the formula (8) in the dynamics of the stock, we obtain a stochastic
differential equation that is nonlinear in the sense of McKean :

dSt

St

= (r − δ)dt + β σ(t, It)dBt +
√

vloc(t, St) − β2E (σ2(t, It) |St)dWt

dIt

It

= (r − δI)dt + σ(t, It)dBt

(10)

For an introduction to the topics of nonlinear stochastic differential equations and propagation of chaos,
we refer to the lecture notes of Sznitman [17] and Méléard [14]. In our case, the nonlinearity appears
in the diffusion coefficient through the conditional expectation term. This makes the natural question of
existence and uniqueness of a solution very difficult to handle. The case of a drift involving a conditional
expectation has only been handled recently even for constant diffusion coefficient (see Talay and Vaillant [18]
and Dermoune [9]). Meanwhile, it is possible to simulate such a stochastic differential equation by means of
a system of N interacting paths using either a non-parametric estimation of the conditional expectation or
regression techniques. The advantage of the regression approach over the non-parametric estimation is that
it also yields a smooth approximation of the function E

(
σ2(t, It) |St = s

)
whereas, with a non-parametric

method, one has to interpolate the estimated function and to carefully tune the window parameter to obtain
a smooth approximation.

10



3.1.1a Non-parametric estimation

Non-parametric estimators of the conditional expectation, and more generally non-parametric density
estimators, have been widely studied in the literature. We will focus on kernel estimators of the Nadaraya-
Watson type (see [19] and [15]) : given N observations (Si

t , I
i
t)i=1...N of (St, It), we consider the kernel

conditional expectation estimator of E
(
σ2(t, It) |St = s

)
given by

N∑

i=1

σ2(t, Ii
t)K

(
s − Si

t

hN

)

N∑

i=1

K

(
s − Si

t

hN

)

where K is a non-negative kernel such that
∫
R K(x)dx = 1 and hN is a smoothing parameter which tends

to zero as N → +∞. This leads to the following system with N interacting particles : ∀ 1 ≤ i ≤ N,





dS
i,N
t

S
i,N
t

= (r − δ)dt + β σ(t, Ii
t)dBi

t +

√√√√√vloc(t, S
i,N
t ) − β2

∑
N
j=1

σ2(t,Ij
t )K

(
S

i,N
t

−S
j,N
t

hN

)

∑
N
j=1

K

(
S

i,N
t

−S
j,N
t

hN

) dW i
t , S

i,N
0 = S0

dIi
t

Ii
t

= (r − δI)dt + σ(t, Ii
t)dBi

t, Ii
0 = I0

where (Bi,W i)i≥1 is a sequence of independent two-dimensional Brownian motions. This 2N -dimensional
SDE may be discretized using the Euler scheme :

Let 0 = t0 < · · · < tM = T be a subdivision with step T
M

of [0, T ]. For each k ∈ {0, . . . , M − 1},
∀ 1 ≤ i ≤ N,





S
i,N

tk+1
= S

i,N

tk


(r − δ) T

M
+ β σ(tk, I

i

tk
)
√

T
M

G1
i,k +

√√√√√√vloc(tk, S
i,N

tk
) − β2

∑
N
j=1

σ2(tk,I
j

tk
)K

(
S

i,N
tk

−S
j,N
tk

hN

)

∑
N
j=1

K

(
S

i,N
tk

−S
j,N
tk

hN

)
√

T
M

G2
i,k




I
i

tk+1
= I

i

tk

(
(r − δI)

T
M

+ σ(tk, I
i

tk
)
√

T
M

G1
i,k

)

where (G1
i,k)1≤i≤N,0≤k≤M−1 and (G2

i,k)1≤i≤N,0≤k≤M−1 are independent centered and reduced Gaussian ran-
dom variables.

3.1.1b Parametric estimation

Another approach to estimate conditional expectations is to use parametric estimators, or projection.
This idea has also been widely used and studied previously (for example in finance, one can think of
the Longstaff-Schwartz algorithm for pricing American options [13]). Noting that the conditional expec-
tation is a projection operator on the space of square integrable random variables, one can approximate
E

(
σ2(t, It) |St = s

)
by the parametric estimator

K∑

k=1

αkfk(s)

where (fk)k=1...K is a functional basis and α = (αk)k=1...K is a vector of parameters estimated by least mean

squares : given N observations (Si
t , I

i
t)i=1...N of (St, It), α minimizes

∑N
i=1

(
σ2(t, Ii

t) −
∑K

k=1 αkfk(Si
t)

)2

.
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3.1.2 Numerical results

3.1.2a A toy model

In the first numerical example, we suppose that the local volatility of the stock is constant and we try to
reconstruct it by simulating the particle system of the non-parametric method presented above. We consider
the Eurostoxx index and we determine its local volatility by fitting the market prices at December 21, 2007.

As described above, we can approximate the following SDE using a system of N interacting particles :

dSt

St

= (r − δ)dt + β σ(t, It)dBt +
√

v − β2E (σ2(t, It) |St)dWt

dIt

It

= (r − δI)dt + σ(t, It)dBt

(11)

Using these simulations to price European call options for different strikes, one should obtain the same
results as a Black & Scholes model with volatility

√
v. In Figure 2, we plot the implied volatility obtained

by independent simulations of N = 5000 paths and see that the implied volatilities obtained are indeed close
to the exact volatility level. This example was generated with the following arbitrary set of parameters :

• S0 = 100.

• β = 0.7.

• r = 0.05.

• δ = δI = 0.

• √
v = 0.3.

• T = 1.

• Number of simulated paths : N = 5000.

• Number of time steps in the Euler scheme : M = 20.

In this example and for all the following numerical experiments, we use a Gaussian kernel : K(u) =
1√
2π

e−
u2

2 . The smoothing parameter hN is set to N− 1
5 which is the optimal bandwidth that one obtains

when minimizing the asymptotic mean square error of the Nadaraya-Watson estimator under some regularity
assumptions and assuming independence of the random variables involved (see for example Bosq [6]).

12
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Figure 2: Implied volatility obtained for nine independent simulations with N = 5000 paths.

3.1.2b An example with real data
In the following, we test our model with real data. More precisely, given the local volatilities of the

Eurostoxx index and of Carrefour at December 21, 2007, we simulate the particle system (10) by different
methods for a one year maturity.

An acceleration technique

The simulation of the particle system is very time consuming : for each discretization step and for each
stock particle, one has to make N computations which yield a global complexity of order O(MN2) where
M is the number of time steps in the Euler scheme. Acceleration techniques are thus unavoidable. One
possible method consists in reducing the number of interactions : instead of making N computations for
each estimation of the conditional expectation, one can neglect interactions which involve particles which are
far away from each other. When the kernel used is non increasing with the absolute value of its argument,
the easiest way to implement this idea is to sort the particles at each step and, whenever a contribution of
a particle is lower than some fixed threshold, to stop the estimation of the conditional expectation.

Of course, by doing this, we lose in precision for the same number of interacting particles, especially for
deep in/out of the money strikes. But what we gain in terms of computation time is much more important
: in Figure 3, we plot the implied volatility obtained by the naive method and the method with the above
acceleration technique for the same number N = 10000 of particles. We take as threshold 1

N
and set

hN = N− 1
10 for the bandwidth parameter7 and M = 20 for the number of time steps in the Euler scheme.

The computation time, on a computer with a 2.8 Ghz Intel Penthium 4 processor, is of 52 minutes for the
naive method and of 5 minutes for the accelerated one.

More importantly, we see that the implied volatility σ̂simul obtained by simulations converges to the exact

7In order to smooth the estimation, one has to choose a bandwidth parameter that is greater than the theoretical optimal

parameter N
− 1

5 .
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Figure 3: Comparison between the naive technique and the accelerated one.

volatility σ̂exact : see Figure 4 and Table 2. With a reasonable number of simulated paths, N = 200000, the
error on the implied volatility remains clearly tolerable for practitioners (of the order of 10 bp) except for a
deep in the money call (K = 0.3S0) where it attains 195 bp.

Moneyness ( K
S0

) 0.30 0.49 0.69 0.79 0.89 0.99 1.09 1.19 1.28 1.48 1.98

Error : |σ̂simul − σ̂exact| 195 36 8 5 2 1 2 9 17 32 56

Table 2: Error (in bp) on the implied volatility with N = 200000 particles.
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Figure 4: Convergence of the implied volatility obtained with non-parametric estimation.

Independent particles

Unlike the parametric method, non-parametric estimation of the conditional expectation gives the value
of the intrinsic volatility η at the simulated points only. However, using an interpolation technique, one can
first reconstruct η with N1 dependent particles and then simulate the 2-dimensional stochastic differential
equation with N2 independent draws, N2 being larger than N1. By doing so, we speed up the simulations but
one has to choose carefully the size N1 of the particle system in order to have a reasonable estimation of the
intrinsic volatility and to tune the bandwidth parameter in order to smooth the estimation (our numerical

tests were done with N1 = 1000, N2 = 100000 and hN1
= N

− 1
10

1 ). In Figures 5 and 6, we give the surfaces
of both the local volatility and the intrinsic volatility of the stock. This latter is used to draw independent
simulations of the index along with the stock and we see in Figure 7 that the implied volatility obtained is
close to the right one, especially near the money.
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Figure 5: Local volatility surface of the stock.
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Figure 6: Intrinsic part of the stochastic volatility.
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Figure 7: Simulated implied volatility with independent draws.
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3.2 Original model

We now turn to the calibration of our original model :

∀j ∈ {1, . . . , M}, dS
j,M
t

S
j,M
t

= (r − δj)dt + βj σ(t, IM
t )dBt + ηj(t, S

j,M
t )dW

j
t (12)

with IM
t =

∑M
i=1 wiS

i,M
t .

Obviously, it is rather complicated to have a perfect calibration for both index and stocks within this
framework. Nevertheless, one can either

- take for σ the calibrated local volatility of the index and then calibrate the volatility coefficients ηj

using an adaptation of the non-parametric method presented above in order to fit all the individual
stock smiles at the same time. In this case, the index is not perfectly calibrated but, thanks to Theorem
1, one can expect the error to be small.

Or,

- take for σ and ηj the calibrated coefficients in the simplified model framework. Once again, the
calibration is not perfect and this time for both index and individual stocks but Theorems 1 and 2
suggest that the calibration error will be negligible.

Hence, in comparison with the simplified model, we allow ourselves a slight error in the calibration but we
guarantee the additivity constraint IM

t =
∑M

i=1 wiS
i,M
t . In what follows, we illustrate the effect of Theorems

1 and 2 and compare our models with a constant correlation model.

4 Illustration of Theorems 1 and 2 and comparison with a constant

correlation model

The objective of this section is to compare index and individual stock smiles obtained with three different
models : our original model (12), the simplified one (after letting M → ∞) and a model with constant
correlation coefficient. More precisely, we consider the following dynamics

1. The original model

∀j ∈ {1, . . . ,M}, dS
j,M
t

S
j,M
t

= rdt + σ(t, IM
t )dBt + η(t, Sj,M

t )dW
j
t

with IM
t =

M∑

i=1

wiS
i,M
t .

(13)

2. The simplified model

∀j ∈ {1, . . . , M}, dS
j
t

S
j
t

= rdt + σ(t, It)dBt + η(t, Sj
t )dW

j
t

dIt

It

= rdt + σ(t, It)dBt.

(14)

Where we can also compute the reconstructed index I
M

t =
∑M

i=1 wiS
i
t .

3. The ”Market” model

∀j ∈ {1, . . . ,M}, dS
j
t

S
j
t

= rdt +

√
vloc(t, S

j
t )dW̃

j
t (15)

with, ∀i 6= j, d< W̃ i, W̃ j >t= ρ dt.

17



We deliberately dropped the dividend yields and the beta coefficients in order to simplify the numerical
experiment. For the volatility coefficient σ, we take as previously the calibrated local volatility of the
Eurostoxx. We choose an arbitrary parametric form, fonction of the forward moneyness, for the volatility
coefficient η and we evaluate vloc such that the market model and the simplified model yield the same implied
volatility for individual stocks. Indeed, it suffices to take

vloc(t, s) = η2(t, s) + E(σ2(t, It)|St = s)

where the conditional expectation can be approximated using the non-parametric method presented above.
Finally, we fix the correlation coefficient ρ such that the market model and the simplified one have the

same ATM implied volatility for the index.
The implied volatilities for the index and for an individual stocks obtained by the three models are plotted

in Figures 8 and 9. We also give the difference in basis points between the implied volatilities obtained with
the simplified model and the original one in Tables 3, 4 and 5. The parameters we use in our numerical
experiment are the following :

- S1
0 = · · · = SM

0 = 53.

- M , I0 and the weights w1, . . . , wM : the same as of the Eurostoxx index at December 21, 2007.

- r = 0.045.

- Maturity T = 1 year.

- Number of time steps: 10.

- Number of simulated paths : 100000.
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Figure 8: Implied volatility of the index.

Moneyness (K
I0

) 0.5 0.8 0.9 0.95 1 1.05 1.1 1.2 1.3 1.55 1.85 2

|σ̂simplified − σ̂original| 81 22 16 14 14 17 20 24 24 11 38 17

Table 3: Difference (in bp) between the index implied volatility obtained with the simplified model and the
one obtained with the original model.

Moneyness (K
I0

) 0.5 0.8 0.9 0.95 1 1.05 1.1 1.2 1.3 1.55 1.85 2

|σ̂reconstruct − σ̂original| 10 5 4 3 2 1 2 5 4 1 0 0

Table 4: Difference (in bp) between the implied volatility of the reconstructed index I
M

in the simplified
model and the index implied volatility obtained with the original model.
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Figure 9: Implied volatility of an individual stock.

Moneyness ( K
S0

) 0.5 0.8 0.9 0.95 1 1.05 1.1 1.2 1.3 1.55 1.85 2

|σ̂simplified − σ̂original| 81 22 16 14 14 17 20 24 24 11 38 17

Table 5: Difference (in bp) between an individual stock implied volatility obtained with the simplified model
and the one obtained with the original model.

As suggested by Theorems 1 and 2, we see that the original model and the simplified one yield implied
volatility curves that are very close to each other, both for the index and for individual stocks. The difference
in basis points between the implied volatilities is reasonable, especially between the reconstructed index
implied volatility of the simplified model and the index implied volatility of the original model.

Concerning the market model, by construction we have the same implied volatility of an individual stock
as for the simplified model but the implied volatility of the index obtained is far from the right one, especially
the slope of the smile out-of-the-money. This phenomenon is well known in practice (see [2],[5] or[7]) : the
implied volatility smile of an index is much steeper than the implied volatility smile of an individual stock,
hence the market model of constantly correlated stocks is unable to retrieve the shape of the index smile.
More sophisticated dependence structure between stocks is needed. Our modeling framework circumvents
this difficulty since we force the index to have the correct volatility smile while the individual stocks can still
be properly calibrated.
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4.1 Application: Pricing of a worst-of option

Apart from handling both the index and its composing stocks, our models are also relevant for the
widespread financial products that are sensitive to correlation in the equity world, such as rainbow options.

One example of such products is the worst-of performance option whose payout is referenced to the worst
performer in a basket of shares. For a basket of M shares, the payoff of a call with strike K and maturity

T writes

(
min

1≤i≤M

Si
T

Si
0

− K

)

+

. Our objective is to compare the prices obtained by our model to the prices

obtained by the market model of constantly correlated stocks. The parameters of the numerical experiment
are the same as previously and we set the correlation coefficient ρ such that all the models exhibit the same
ATM implied volatility for the index.

The result, as can be seen in Figure 10, is that our prices are always lower than the market model price,
especially in the money. Hence, a model with constant correlation coefficient, calibrated in order to fit at
the money prices, will always overestimate the risks of worst-of options. Note that the prices obtained with
the original model and the simplified one are barely distinguishable from each other.
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Figure 10: Worst-of price.
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5 Conclusion

In this paper, we have introduced a new model for describing the joint evolution of an index and its
composing stocks. The idea behind our view is that an index is not only a weighted sum of stocks but can
also be seen as a market factor that influences their dynamics. In order to have a more tractable model, we
have studied the limit when the number of underlying stocks goes to infinity and we have shown that our
model reduces to a local volatility model for the index and to a stochastic volatility model for each individual
stock with volatility driven by the index. Unlike the existing models, we favor the fit of the index smile in
comparison with the fit of the stock smiles which goes in accordance with the market since index options
are usually more liquid than options on a given stock. We have discussed calibration issues and proposed a
simulation-based technique for the calibration of the stock dynamics, which permits us to fit both index and
stocks smiles. The numerical results obtained on real data for the Eurostoxx index are very encouraging,
especially for accelerated techniques. We have also compared our models (before and after passing to the
limit) to a market standard model consisting of local volatility models for the stocks which are constantly
correlated and we have seen that it is not possible to retrieve the shape of the index smile. Finally, when
considering the pricing of worst-of performance options, which are sensitive to the dependence structure
between stocks, we have found that our prices are more aggressive than the prices obtained by the standard
market model.

To sum up, we list some properties of our models depending on the options one wishes to handle in the
Table below

Purpose Simplified model Original model
Options written on -Simulation of a (J + 1)-dimensional SDE : -Simulation of an M -dimensional SDE :

-few (J << M) stocks (I, S1, . . . , SJ). (S1,M , . . . , SM,M ).

-the index. -Exact calibration of (Sj)1≤j≤J and I possible. -Exact calibration of (Sj,M )1≤j≤J possible.

-Approximate calibration of IM .

Options written on -Simulation of an (M + 1)-dimensional SDE : -Simulation of an M -dimensional SDE :

-all the stocks (I, S1, . . . , SM ). (S1,M , . . . , SM,M ).

-the index. -Exact calibration of all the stocks possible. -Exact calibration of all the stocks possible.

-Index value : I
M

t =
∑M

j=1
wjS

j
t . -Approximate calibration of IM .

-Approximate calibration of I
M

.

Table 6: Which model to use and when.
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Appendix

In order to prove the Theorems 1 and 2, we need the following technical estimation

Lemma 4 — Under assumption (H2), for all p ≥ 1, one has

∀j ∈ {1, . . . , M}, sup
0≤t≤T

E
(
|Sj,M

t |2p
)
≤ Cp (16)

where Cp = max
1≤j≤M

|Sj,M
0 |2p exp

((
2r + (2p − 1)(max

j≥1
β2

j + 1)K2
b

)
pT

)
.

Proof : By Itô’s lemma one has

|Sj,M
t |2p = |Sj,M

0 |2p +

∫ t

0

|Sj,M
s |2p((2p)(r − δj) + p(2p − 1)(β2

j σ2(s, IM
s ) + η2

j (s, Sj,M
s )))ds

+

∫ t

0

(2p)|Sj,M
s |2p(βjσ(s, IM

s )dBs + ηj(s, S
j,M
s )dW j

s )

In order to get rid of the stochastic integral, we use a localization technique : let νn be the stopping time
defined for each n ∈ N by νn := inf{t ≥ 0; |Sj,M

t | ≥ n}. Then, using (H2), one has

E
(
|Sj,M

t∧νn
|2p

)
= |Sj,M

0 |2p + E
(∫ t∧νn

0

|Sj,M
s |2p((2p)(r − δj) + p(2p − 1)(β2

j σ2(s, IM
s ) + η2

j (s, Sj,M
s ))ds

)

≤ |Sj,M
0 |2p +

(
(2p)(r − δj)1{r−δj≥0} + p(2p − 1)(β2

j + 1)K2
b

) ∫ t

0

E
(
|Sj,M

s∧νn
|2p

)
ds

So, by Gronwall’s lemma and the fact that the dividends are nonnegative,

∀t ≤ T,E
(
|Sj,M

t∧νn
|2p

)
≤ |Sj,M

0 |2p exp
((

2rp + p(2p − 1)(β2
j + 1)K2

b

)
T

)
(17)

Finally, Fatou’s lemma permits us to conclude :

sup
0≤t≤T

E
(
|Sj,M

t |2p
)
≤ |Sj,M

0 |2p exp
((

2rp + p(2p − 1)(β2
j + 1)K2

b

)
T

)
. (18)

✷

Proof of Theorem 1 : Using the SDEs (3) and (5), one has

|IM
t − It|2p =

∣∣r
∫ t

0

(
IM
s − Is

)
ds −

∫ t

0




M∑

j=1

δjwjS
j,M
s − δIs


 ds

+

∫ t

0




M∑

j=1

βjwjS
j,M
s σ(s, IM

s ) − βIsσ(s, Is)


 dBs +

M∑

j=1

wj

∫ t

0

Sj,M
s ηj(s, S

j,M
s )dW j

s

∣∣2p

≤ 42p−1


r2pt2p−1

∫ t

0

(IM
s − Is)

2pds + t2p−1

∫ t

0




M∑

j=1

δjwjS
j,M
s − δIs




2p

ds

+
∣∣∣
∫ t

0




M∑

j=1

βjwjS
j,M
s σ(s, IM

s ) − βIsσ(s, Is)


 dBs

∣∣∣
2p

+
∣∣∣

M∑

j=1

wj

∫ t

0

Sj,M
s ηj(s, S

j,M
s )dW j

s

∣∣∣
2p
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Hence, using the Burkholder-Davis-Gundy inequality (see Karatzas and Shreve [11] p. 166), there exists a
universal positive constant Kp such that

E
(

sup
0≤t≤T

|IM
t − It|2p

)
≤ 42p−1(aM + bM + cM + dM )

where

• aM = r2p T 2p−1

∫ T

0

E
(
(IM

s − Is)
2p

)
ds

• bM = T 2p−1

∫ T

0

E







M∑

j=1

δjwjS
j,M
s − δIs



2p


 ds

• cM = KpT
p−1

∫ T

0

E







M∑

j=1

βjwjS
j,M
s σ(s, IM

s ) − βIsσ(s, Is)



2p


 ds

• dM = KpT
p−1

∫ T

0

E







M∑

j=1

(
wjS

j,M
s ηj(s, S

j,M
s )

)2



p 
 ds

The term aM is the easiest one to handle :

aM ≤ r2p T 2p−1

∫ T

0

E
(

sup
0≤u≤s

|IM
u − Iu|2p

)
ds. (19)

Next, using assumption (H2) for the first inequality, Hölder’s inequality for the second and lemma 4 for
the third, one gets

dM = KpT
p−1

∫ T

0

M∑

j1=1

· · ·
M∑

jp=1

E
(

p∏

k=1

w2
jk

(Sjk,M
s )2(ηjk

(s, Sjk,M
s ))2

)
ds

≤ KpK
2p
b T p−1

∫ T

0

M∑

j1=1

· · ·
M∑

jp=1

(

p∏

k=1

w2
jk

)E
(

p∏

k=1

(Sjk,M
s )2

)
ds

≤ KpK
2p
b T p−1

∫ T

0

M∑

j1=1

· · ·
M∑

jp=1

p∏

k=1

w2
jk

(
E

(
(Sjk,M

s )2p
)) 1

p ds

≤ KpK
2p
b T pCp




M∑

j=1

w2
j




p

(20)

The same arguments enable us to control the term bM :
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bM = T 2p−1

∫ T

0

E







M∑

j=1

δjwjS
j,M
s − δIs



2p


 ds

≤ (2T )2p−1




∫ T

0

E







M∑

j=1

δjwjS
j,M
s − δIM

s



2p


 + E

((
δIM

s − δIs

)2p
)

ds




≤ (2T )2p−1

∫ T

0

E







M∑

j=1

(δj − δ)wjS
j,M
s




2p

 ds + (2T )2p−1δ2p

∫ T

0

E
(

sup
0≤u≤s

|IM
u − Iu|2p

)
ds

≤ 22p−1T 2pCp




M∑

j=1

wj |δj − δ|




2p

+ (2T )2p−1δ2p

∫ T

0

E
(

sup
0≤u≤s

|IM
u − Iu|2p

)
ds.

(21)
For the remaining term cM , we will also need the Lipschitz assumption (H3)

cM = KpT
p−1

∫ T

0

E







M∑

j=1

βjwjS
j,M
s σ(s, IM

s ) − βIsσ(s, Is)



2p


 ds

≤ 22p−1KpT
p−1




∫ T

0

E







M∑

j=1

(βj − β)wjS
j,M
s σ(s, IM

s )



2p


 + E

(
(βIM

s σ(s, IM
s ) − βIsσ(s, Is))

2p
)
ds




≤ 22p−1KpT
pK

2p
b Cp




M∑

j=1

wj |βj − β|




2p

+ 22p−1KpT
p−1(βKσ)2p

∫ T

0

E
(

sup
0≤u≤s

|IM
u − Iu|2p

)
ds.

(22)
So, combining the inequalities (19), (20), (21) and (22), one obtains

E
(

sup
0≤t≤T

|IM
t − It|2p

)
≤ C0







M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p



+C1

∫ T

0

E
(

sup
0≤u≤s

|IM
u − Iu|2

)
ds

with C0 = 82p−1T p(T p + KpK
2p
b )Cp and C1 = 42p−1(22p−1KpT

p−1(βKσ)2p + (2T )2p−1δ2p + r2p T 2p−1).
Finally, by means of Gronwall’s lemma, we conclude that

E
(

sup
0≤t≤T

|IM
t − It|2p

)
≤ CT







M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p



where
CT = C0e

C1T .

✷
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Proof of Theorem 2 : The proof is similar to the previous one :

|Sj,M
t − S

j
t |2p ≤ 32p−1

(
(r − δj)

2pt2p−1

∫ t

0

(Sj,M
s − Sj

s)2pds +

∣∣∣∣
∫ t

0

(Sj,M
s ηj(s, S

j,M
s ) − Sj

sηj(s, S
j
s))dW j

s

∣∣∣∣
2p

+β
2p
j

∣∣∣∣
∫ t

0

(Sj,M
s σ(s, IM

s ) − Sj
sσ(s, Is))dBs

∣∣∣∣
2p

)

hence, using the Burkholder-Davis-Gundy inequality, there exists a constant Kp such that

E
(

sup
0≤t≤T

|Sj,M
t − S

j
t |2p

)
≤ 32p−1

(
(r − δj)

2pT 2p−1

∫ T

0

E
(

sup
0≤u≤s

|Sj,M
u − Sj

u|2
)

ds

+KpT
p−1

∫ T

0

E
(
(Sj,M

s ηj(s, S
j,M
s ) − Sj

sηj(s, S
j
s))2p

)
ds

+KpT
p−1β

2p
j

∫ T

0

E
(
(Sj,M

s σ(s, IM
s ) − Sj

sσ(s, Is))
2p

)
ds

)

Using assumption (H4), one gets
∫ T

0

E
(
(Sj,M

s ηj(s, S
j,M
s ) − Sj

sηj(s, S
j
s))2p

)
ds ≤ K2p

η

∫ T

0

E
(

sup
0≤u≤s

|Sj,M
u − Sj

u|2p

)
ds.

Finally, by means of lemma 4 and assumptions (H2) and (H3),
∫ T

0

E
(
(Sj,M

s σ(s, IM
s ) − Sj

sσ(s, Is))
2p

)
ds ≤ 22p−1

∫ T

0

E
(
(Sj,M

s )2p(σ(s, IM
s ) − σ(s, Is))

2p
)
ds.

+22p−1

∫ T

0

E
(
(σ(s, Is))

2p(Sj,M
s − Sj

s)2p
)
ds

≤ 22p−1C
1
2

2pK
2p
LipT

√
E

(
sup

0≤t≤T

|IM
t − It|4p

)

+22p−1K
2p
b

∫ T

0

E
(

sup
0≤t≤T

|Sj,M
s − Sj

s |2p

)
ds

We deduce using Gronwall’s lemma :

E
(

sup
0≤t≤T

|Sj,M
t − S

j
t |2p

)
≤ C̃

j
T

√
E

(
sup

0≤t≤T

|IM
t − It|4p

)

where
C̃

j
T = 62p−1KpT

pβ
2p
j C

1
2

2pK
2p
Lip e32p−1((r−δj)

2pT 2p−1+KpT p−1K2p
η +22p−1KpT p−1β

2p
j K

2p

b
)T .

We conclude by Theorem 1 and the sublinearity of the square root function on R+.

We now turn to the L2p-distance between IM and I
M

:

|IM
t − I

M

t |2p =

∣∣∣∣∣∣

M∑

j=1

wjS
j,M
t −

M∑

j=1

wjS
j
t

∣∣∣∣∣∣

2p

≤




M∑

j=1

wj |Sj,M
t − S

j
t |




2p

≤
M∑

j1=1

· · ·
M∑

j2p=1

2p∏

k=1

wjk
|Sjk,M

t − S
jk

t |
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So, using Hölder inequality, one has

E
(

sup
0≤t≤T

|IM
t − I

M

t |2p|
)

≤
M∑

j1=1

· · ·
M∑

j2p=1

(
2p∏

k=1

wjk

)
2p∏

k=1

(
E( sup

0≤t≤T

|Sjk,M
t − S

jk

t |2p)

) 1
2p

≤




M∑

j=1

wj




2p

max
1≤j≤M

C̃
j
T







M∑

j=1

w2
j




p

+




M∑

j=1

wj |βj − β|




2p

+




M∑

j=1

wj |δj − δ|




2p

 .

✷
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