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The (True) Concurrent Markov Property
and Some Applications to Markov Nets

Samy Abbes�

Institute for Systems Research,
A.V. Williams Building, University of Maryland,

College Park, MD 20742, USA

Abstract. We study probabilistic safe Petri nets, a probabilistic exten-
sion of safe Petri nets interpreted under the true-concurrent semantics.
In particular, the likelihood of processes is defined on partial orders, not
on firing sequences.

We focus on memoryless probabilistic nets: we give a definition for
such systems, that we call Markov nets, and we study their properties.
We show that several tools from Markov chains theory can be adapted to
this true-concurrent framework. In particular, we introduce stopping op-
erators that generalize stopping times, in a more convenient fashion than
other extensions previously proposed. A Strong Markov Property holds
in the concurrency framework. We show that the Concurrent Strong
Markov property is the key ingredient for studying the dynamics of
Markov nets. In particular we introduce some elements of a recurrence
theory for nets, through the study of renewal operators. Due to the
concurrency properties of Petri nets, Markov nets have global and local
renewal operators, whereas both coincide for sequential systems.

1 Introduction

In the context of a continuously growing interest of the scientific community for
distributed systems, Petri nets in general, and their true-concurrent dynamics in
particular, become a paradigm used in various application areas. Good examples
are found in systems theory, where more and more Petri nets models are proposed
for the management of complex concurrent systems such as telecommunication
networks and services [1, 8].

In turn, studies motivated by various applications can bring back new concep-
tions and results about Petri nets. This is in particular the case of probabilistic
Petri nets that have interested both computer scientists [13, 12] and scientists
from systems theory [4]. I intentionally choose the term of probabilistic Petri
net to emphasize the difference with stochastic Petri nets. The latter refers to
processes where a real time parameter t describes the random evolution of a
Petri net—in this model, concurrency is interpreted through an interleaving se-
mantics. The purpose of probabilistic Petri nets is different. The dynamics of a
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probabilistic Petri net is directly defined through random discrete partial orders,
in order to fit the true-concurrent semantics of the underlying Petri net model.

The following advantages have been recognized to the true-concurrency se-
mantics. First, for large scale concurrent systems, the true-concurrency seman-
tics, by identifying different interleavings of a same process, saves a lot of com-
putational complexity: true-concurrency tackles the “state explosion” problem.
Second, events of a distributed system such as a telecommunication network with
real asynchronous components may obey only to local clocks, without reference
to any global clock [5]. This corresponds to events partially ordered, and thus to
a true-concurrent semantics, not to an interleaving semantics. Statistical treat-
ment of systems, such as state estimation or learning of parameters, need to have
at hand a probabilistic model, including results on the asymptotic dynamics of
systems. We contribute in this paper to the set up of this theory, within the
model of safe Petri nets.

True-concurrent processes of a Petri net, i.e. Mazurkiewicz traces of firing
sequences, can be regarded as configurations of the unfolding of the net [9, 7].
Configurations are partially ordered by the relation of set-inclusion (traces are
prefix from one another). Setting up a true-concurrent random dynamics for a
safe Petri net is done by considering a probability measure P on the space Ω of
maximal configurations of the unfolding of the net [13, 4, 12]. Referring to the
net as to a concrete device, the meaning of the so obtained probability space
(Ω, P) is as follows: Let v be a finite trace of the net. The P-probability for v
to occur in an execution of the net is P(A), where A is the subset of Ω defined
by: A = {ω ∈ Ω : ω ⊇ v}. This extends the framework of sequential discrete
events random processes studied from both the mathematical (e.g., [11]) and the
Computer Science (e.g., [10]) viewpoints.

The topic of this paper is the following: Can we go further in the generaliza-
tion, and extend to concurrent systems both the definition and some properties
of Markovian models such as finite Markov chains in discrete time (DTMC)? We
demonstrate that the answer is “yes”: we introduce a new definition for Markov
nets, and we obtain qualitative results on their dynamics by studying their re-
currence properties. This leads to elegant results with simple formulation, yet
with some strong hidden mathematical background.

Our definition of Markov nets relies on the intuitive concept of memory-
less systems. Here, the state of the system is the marking of the net. Hence a
Markov net will be a probabilistic net such that the probabilistic future of a
finite process v, ending to a marking M , only depends on M , and not on the
entire process v. Starting from this definition, we follow the classical theory of
Markov chains, adapting to concurrent systems several concepts and tools from
this theory. The effective construction of Markov nets is known for a large class
of safe Petri nets, including free-choice and confusion-free nets [2, 3]. But it is
rather a technical construction, more complicated than the classical construction
of Markov chains based on a transition matrix; therefore, in this paper, we will
assume that the existence of Markov nets is an established fact, in order to focus
on their properties.
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A first basic result for Markov chains is the so-called Strong Markov Property,
a formula which says in a condensed form that the system is indeed memory-
less. This formula relies on the notion of stopping time. We adapt the notion
of stopping time to true-concurrent systems, introducing stopping operator for
nets—this part was already challenging, since our framework does not posses
a global clock. Then we formulate and prove the Strong Markov property for
Markov nets. The remaining of the paper is devoted to illustrate the use of the
Strong Markov Property for concurrent systems. We present some elements of
a recurrence theory in the framework of concurrent systems: We prove that the
initial marking of a net has probability 0 or 1 to return infinitely often in an
execution, an extension of the same well-known result for Markov chains with
state instead of marking. Stopping operators, the Markov property for concur-
rent systems and its application to the recurrence properties of nets are the main
contributions of this paper, beside an abstract definition of Markov nets.

Hence, the new techniques that we introduce allow to extend existing results
from sequential to concurrent systems. But other developments are allowed where
the concurrency properties of the Petri nets model play a more significant role.
Due to lack of place, we only shortly introduce these properties that take into
account the local characteristics of concurrent systems. This constitutes elements
of a local recurrence theory, to be distinguished from the above recurrence, that
appears a posteriori as a global recurrence. For sequential systems, global and
local recurrences coincide, but not anymore for concurrent systems.

The paper is organized as follows. In §2 we recall the background from Prob-
ability and from finite Markov chains theory. We set up a symmetric frame-
work for concurrent systems in §3, introducing Markov nets and ending with the
statement of the Concurrent Strong Markov property. Then §4 is devoted to the
application of this new Markov property to elements of a recurrence theory for
Markov nets. Finally, §5 discusses some perspectives.

2 Background on Probability and Expectation

Notations for Usual Sets. We denote by N and R respectively, the sets of non-
negative integers and of real numbers. We consider the following extensions of
N and R:

N = N ∪ {+∞}, R = R ∪ {−∞,+∞} . (1)

σ-Algebra and Probability Spaces. Let Ω be a set, a family F of subsets of Ω
is said to be a σ-algebra of Ω if F is closed under countable intersection, if
A ∈ F ⇒ Ω \ A ∈ F , and if ∅ ∈ F . The pair (Ω,F) is called a measurable
space, and the elements of F constitute the measurable sets of Ω. The set
R defined by Eq. (1) is equipped with its Borel σ-algebra, generated by the
Euclidean topology on R. If (Ω,F) and (Ω′,F ′) are two measurable spaces, a
mapping f : Ω → Ω′ is F-measurable (or simply, measurable) if f−1(A) ∈ F
for all A ∈ F ′.
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Let (Ω,F) be a measurable space. A probability measure on (Ω,F) is a
function P : F → R with P(Ω) = 1 and P(A) ≥ 0 for all A ∈ F , and such that
for every countable family (An)n∈N of measurable sets, if i 	= j ⇒ Ai ∩ Aj = ∅,
then: P

( ⋃
n∈N

An

)
=

∑
n∈N

P(An) . The triple (Ω,F , P) is called a probabil-
ity space.

We follow some traditional language conventions that are convenient when
dealing with probability spaces. Measurable functions are called random vari-
ables. If X is a real-valued random variable, its integral under measure P is
called its expectation, and is denoted E(X). We also write {X = 0} to denote
the set of elements ω ∈ Ω such that X(ω) = 0, and P(X = 0) stands for “the
probability that X = 0”, i.e.:

P(X = 0) = P
({X = 0}) = P

({ω ∈ Ω : X(ω) = 0}) .

With a slight and classical abuse of terminology, we identify a random variable
X and the class of random variables X ′ that differ from X only on a set of
probability zero, i.e. the class of X ′ such that P(X 	= X ′) = 0.

Finally, for A a subset of Ω, we use the notation 1A to denote the charac-
teristic function of A, defined by:

1A(ω) =

{
1, if ω ∈ A

0, if ω /∈ A
.

Then 1A is measurable if and only if A is measurable, in which case P(A) = E(1A).

Conditional Expectation. We first recall the definition of conditional expectation
w.r.t. a measurable subset. Let (Ω,F , P) be a probability space, let A be a
measurable subset of Ω, and assume that P(A) > 0. Then the following formula
defines a probability PA on (Ω,F), called probability conditional on A:

∀B ∈ F , PA(B) =
P(B ∩ A)

P(A)
.

The probability PA( · ) is usually denoted by P( · |A).
We now recall the definition of conditional expectation w.r.t. σ-algebras (see

e.g. [6]). Let (Ω,F , P) be a probability space, let X be a nonnegative real random
variable, and let F ′ ⊆ F be a sub-σ-algebra of F . A classical result states that
there is a unique F ′-measurable random variable X ′ characterized by:

∀A ∈ F ′, E(1AX) = E(1AX ′) .

X ′ is called the expectation of X conditional on F ′, and is denoted by
X ′ = E(X | F ′). Intuitively, X ′ is the best F ′-measurable approximation of X.

In the sequel, we will use the two following properties of conditional expec-
tation:

1. For every nonnegative random variable X and sub-σ-algebra G of F , we
have:

E(X) = E
(
E(X | G)

)
. (2)
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2. For every sub-σ-algebra G of F and nonnegative random variables X,Y , if
Y is G-measurable, then:

E(XY | G) = Y E(X | G) . (3)

Sequential Probabilistic Processes. Consider a finite set S, thought of as a state
space. We define a process over S as a finite or infinite sequence of elements
of S. If v = (s0, . . . , sn) is a finite process, we say that sn is the end state of v,
and we denote it s(v) = sn. We denote by Ω the set of infinite processes over S,
i.e. Ω is the infinite product set Ω = SN. For each integer n ≥ 0, we denote by
Xn the nth projection Ω → S, so that we have:

∀ω ∈ Ω, ω = (X0(ω),X1(ω), . . .) .

For each integer n ≥ 0, consider the finite σ-algebra Fn of Ω spanned by the
subsets of the form:

{X0 = s0, . . . , Xn = sn},
with (s0, . . . , sn) ranging over Sn+1. The product σ-algebra F on Ω is defined
as the smallest σ-algebra that contains all Fn, for n ≥ 0.

We define a probabilistic process over S as a pair (S, P), where P is a
probability on (Ω,F). If there is an element s0 ∈ S such that X0 = s0, we say
that s0 is the initial state of the probabilistic process (S, P). Let v = (s0, . . . , sn)
be a finite process, and consider the measurable subset of Ω defined by:

S(v) = {X0 = s0, . . . , Xn = sn} . (4)

We define the likelihood of v by: p(v) = P
(S(v)

)
. Intuitively, p(v) is the

probability of v to occur in an execution of the system. Be aware however that
the likelihood function does not define a probability on the set of finite processes,
since it does not sum to 1.

Sequential Probabilistic Future and Markov Chains. Let (S, P) be a probabilistic
process, and let v be a finite process over S with p(v) > 0, with v given by
v = (s0, . . . , sn). Recall the definition (4) of S(v), and consider the measurable
mapping ρv : S(v) → Ω defined by:

ρv(s0, . . . , sn,Xn+1,Xn+2, . . .) = (sn,Xn+1,Xn+2, . . .) .

The mapping ρv let us define a probability P
v on (Ω,F) as follows:

∀A ∈ F , P
v(A) = P

(
ρ−1

v (A) | S(v)
)
, (5)

where P
( · | S(v)

)
is the probability conditional on S(v). We call the new prob-

abilistic process (S, Pv) the probabilistic future of process v. We denote by
the symbol E

v the expectation on Ω under probability P
v. By construction,

sn = s(v) is the initial state of the probabilistic future of v.
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We say that (S, P) is a Markov chain if, for every pair (v, v′) of finite
processes over S with p(v), p(v′) > 0, we have:

s(v) = s(v′) ⇒ P
v = P

v′
. (6)

Equation (6) formulates the intuition that, for Markov chains, the probabilistic
future of a process only depends on the current state of the system, i.e. state s(v),
and not on the entire history the process v. As a consequence, it makes sense to
denote by P

s and E
s the probability and the expectation starting from state s,

and defined by:
P

s = P
v, E

s = E
v,

for any finite process v with positive likelihood and with s as end state1.

Sequential Shift Operators. Stopping Times and the Markov Property. Consider
again the measurable space (Ω,F) constructed as above from finite set S, and
define the pointwise transformation θ : Ω → Ω as follows:

∀ω ∈ Ω, θ(ω) = (X1(ω),X2(ω), . . .) . (7)

Transformation θ is called the shift operator. The iterates of θ are traditionally
denoted by θn, for n ≥ 0, i.e. θ0 = Id and θn = θn−1 ◦ θ for n ≥ 1. Furthermore,
assume that T : Ω → N is an integer random variable. We denote by θT the
pointwise transformation Ω → Ω that “iterates T times θ”, which is defined by:

∀ω ∈ Ω, θT (ω) = θT (ω)(ω) . (8)

We shall authorize T to take an infinite value, so that T is defined Ω → N,
with N = N ∪ {∞}. If T (ω) = ∞, then θT (ω) is not defined. A random variable
T : Ω → N is called a stopping time if for every n ≥ 0 (see e.g. [6, 11]):

{T = n} is a Fn-measurable subset of Ω. (9)

We will see below the particular role of stopping times in the analysis of Markov
chains. To make the notion intuitive, we mention a typical example of stopping
time, the hitting time Tx of a given state x: for ω ∈ Ω, Tx(ω) is the smallest
integer n such that Xn(ω) = x, if such an integer exists, otherwise Tx(ω) = ∞.

A stopping time T defines a sub-σ-algebra of F , denoted by FT , as follows:

∀A ∈ F , A ∈ FT ⇔ ∀n ≥ 0, A ∩ {T = n} ∈ Fn . (10)

We can now state the so-called “strong Markov property”, a basic tool in the
analysis of Markov chains (see for instance [11]): Let (S, P) be a Markov chain
over a finite set S. For every stopping time T , and for every nonnegative random
variable h : Ω → R, the following identity holds:

E
(
h ◦ θT | FT

)
= E

XT (h) , (11)

1 With our definition, the transition matrix P of the chain can be retrieved as follows:
the sth row of matrix P is the probability vector P

s(X1 = s′), for s′ ranging over S.
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where, by convention, both members identically vanish on {T = ∞}. The
second member must be understood as the composition of the two functions
ω ∈ Ω �→ XT (ω)(ω) and s ∈ S �→ E

s(h).
Instead of showing the consequences that are usually obtained from the

Markov property, we will instead show how the previous notions generalize in
a concurrent framework. After having established a Concurrent Markov prop-
erty, we will directly derive in the concurrent framework some of its classical
consequences as it is usually done in the sequential framework.

3 Probabilistic Safe Petri Nets

We now analyze the case of concurrent systems, within the model of safe Petri
nets. We will try to set up a probabilistic framework symmetric to the one that
we have introduced above in §2.

Safe Petri Nets and Unfoldings. True-Concurrent Dynamics. We assume basic knowl-
edge of the reader on Petri nets, true-concurrent dynamics and unfoldings of safe
Petri nets, such as set up in [9]. We consider a safe and finite Petri net N =
(P, T, F,M0), where P and T respectively denote the sets of places and transi-
tions, F stands for the flow relation, and M0 is the initial marking of the net.
We denote by (U , λ) the unfolding of N , where U is the universal occurrence
net associated with N , and λ : U → N is the canonical labeling mapping, with
the slight abuse of notations that identifies a net and its set of nodes. According
to the usual terminology, places of the unfolding are called conditions.

The causality relation in U is denoted by �. The set of �-minimal nodes of
U is called the initial cut of U , and we denote it by c0. We recall that c0 is in
bijection with M0 through λ. We say that a node x of a subset A ⊆ U is terminal
in A if x is a maximal node of A, the maximality being defined w.r.t. the causality
relation �. The set of terminal nodes of A is denoted by γ(A).

We denote by M the set of reachable markings of N , and for M ∈ M, we
note with M as an exponent all objects related to net (P, T, F,M): NM stands
precisely for this net, (UM , λM ) for the unfolding of NM , etc.

We will analyze the dynamics of net N through the dynamics of its unfold-
ing U . Define a configuration of U as a conflict-free prefix of U , containing
the initial cut of U and with conditions only as terminal nodes. Configura-
tions are partially ordered by set inclusion. For those readers used to deal with
Mazurkiewicz traces instead, let us recall that both conceptions are equivalent,
as stated by [9–Prop. 6], in the sense that every the posets of finite traces and of
finite configurations are isomorphic. The end marking of a finite configuration
v is the marking reached by any finite sequence linearizing v. We denote this
marking by m(v), and it is well known that m(v) is given by:

m(v) = λ
(
γ(v)

)
,

where γ(v) denotes the set of terminal nodes (actually, conditions) of v.



The (True) Concurrent Markov Property 77

Probabilistic Petri Nets. To introduce a measurable space that will support a
probability measure and model a probabilistic dynamics of a safe Petri net, it is
not suitable to consider the set of infinite configurations of the unfolding. Indeed,
one branch of a configuration may be infinite, whereas other branches remain
finite, and this introduces non natural choices. A more convenient sample space
is found by considering the set of maximal configurations of the unfolding,
the maximality being defined w.r.t. the set inclusion.

Hence, considering a safe Petri net N with unfolding (U , λ), we denote by Ω
the set of maximal configurations of U . Elements of Ω are generically denoted
by ω; from time to time, we call an element ω an execution of the net. The
properties of occurrence nets, combined with an application of Zorn’s lemma,
show that every configuration is subset of a maximal configuration, and in par-
ticular Ω is non empty. For v a configuration of U , we define the shadow of v
as the following subset of Ω:

S(v) = {ω ∈ Ω : ω ⊇ v} .

The terminology of shadow is justified by thinking of U as lightened from its
initial cut, and of Ω as to the boundary at infinity of U .

We say that a shadow S(v) is a finitary shadow if v is a finite configuration—
be aware that S(v) is not a finite set however. The σ-algebra on Ω to be con-
sidered is the σ-algebra spanned by the finitary shadows S(v). We denote this
σ-algebra by F , so that F is the smallest σ-algebra of Ω that makes measurable
all the finitary shadows—and then every shadow is F-measurable. We define a
probabilistic net as a pair (N , P), where P is a probability measure on the
measurable space (Ω,F). This definition includes the case of probabilistic se-
quential processes defined in §2, provided that they have an initial state (this
later technical restriction could be easily removed).

We immediately derive the notion of likelihood of a configuration v: the
likelihood p(v), associated with probability P, is the probability of configuration
v to occur in an execution of the system, and is defined by:

p(v) = P
(S(v)

)
.

Probabilistic Future. Markov nets. From this definition of a probabilistic concur-
rent process, defining the probabilistic future is straightforward. Notice however
the slight difference with the sequential case, where all futures are defined on the
same measurable space. This could be done as well, but the following definition
is more suitable.

Let v be a finite configuration over a safe petri net N , and assume that
v has positive likelihood. Then the shadow S(v) is naturally equipped with
the conditional probability P

( · | S(v)
)
. It is straightforward to show (Cf. for

instance [2–Ch. 3]) that the shadow S(v) is isomorphic, as a measurable space,
to the space of maximal configurations of the unfolding Um(v) of net Nm(v).
Denoting by Ωm(v) the set of maximal configurations of Um(v), the isomorphism
φv : S(v) → Ωm(v) is given by:

∀ω ∈ S(v), φv(ω) = (ω \ v) ∪ γ(v) . (12)
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Combined with the conditional probability P( · | S(v)
)
, φv is the key to define a

probability P
v on Ωm(v), by setting (remark the analogy with the function ρv

defined in (5) for sequential systems):

∀A ∈ Fm(v), P
v(A) = P

(
φ−1

v (A) | S(v)
)
,

where Fm(v) is the σ-algebra on Ωm(v). We define then the probabilistic future
of finite configuration v as the probabilistic net (Nm(v), Pv). Following our re-
formulation (6) of Markov chains, we introduce the following definition of Markov
nets.

Definition 1 (Markov net). Let (N , P) be a probabilistic net. We say that
(N , P) is a Markov net if, for every pair (v, v′) of finite configurations with
positive likelihoods, the following holds:

m(v) = m(v′) ⇒ P
v = P

v′
. (13)

As for Markov chains, and from Eq. (13), it makes sense for a Markov net
(N , P) and for a reachable marking m, to use the notations:

P
m, E

m, (14)

to respectively denote the probability P
v and the expectation E

v for any finite
configuration v with positive likelihood, and such that m = m(v), provided that
such a v exists.

Table 1 summarizes and compares the definitions introduced so far, and em-
phasizes the symmetry between sequential and concurrent systems.

Table 1. Comparison of sequential and concurrent probabilistic processes

Sequential systems Concurrent systems

Finite machine Finite state space S Finite safe Petri net N
State Element of S Marking of N
Finite process Finite sequence of states Finite configuration

State reached by
a finite process v

State s(v) Marking m(v)

Space Ω Ω = {Infinite sequences} Ω = {Maximal
configurations of U}

Probabilistic system (S, P) (N , P)

Probabilistic future
of finite process v

(S, Pv) (Nm(v), Pv)

Markovian system s(v) = s(v′) ⇒ P
v = P

v′
m(v) = m(v′) ⇒ P

v = P
v′

Example 1. Although we do not provide in this paper a general construction for
Markov nets (see [2, 3] for this topic), let us indicate an example. Consider the
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Petri net depicted in Fig. 1 (top), some pages forward. Let v be the configuration
depicted at bottom, that we write v = (acbdbe) (different interleavings make this
writing non unique). The choices involved in this configurations are the follow-
ing: 1) the first choice between a and d, which gives a, 2) the first choice between
b and b′, which gives b, 3) the second choice between a and d, which gives d, and
4) the second choice between b and b′, which gives b. Remark that, due to the
true-concurrency semantics, we do not have to answer a question like: “What
about the speed of the token coming from C to D? Does it influence the choice
between a and d?” This simply has no meaning in the true-concurrency seman-
tics. Hence the configuration v is the successive arrival of 4 choices. Although the
net presents concurrent events, there is never concurrent choices—found in more
sophisticated examples. We fix two probabilistic parameters q1 and q2, with q1

the probability of firing a versus d on the one hand, and q2 the probability of
firing b versus b′ on the other hand. Then we set the likelihood p(v) by:

p(v) = q1 × q2 × (1 − q1) × q2 .

This construction of the likelihood function p could have been done for any
finite configuration. By a measure-theoretic extension argument, we conclude
that there is a unique probability P on Ω with the likelihood p. Since each
time we encounter a choice, we always use the same probabilistic parameter, it
is intuitively clear (and can be shown rigorously) that the probabilistic net so
constructed is indeed Markovian.

Stopping Operators. Still following and adapting the theory of sequential prob-
abilistic processes, we wish to establish a Strong Markov property. For this, we
need to formulate an adequate definition of stopping times for the concurrency
framework. By an adequate definition, we mean a definition that:

1. reduces to usual stopping times if the concurrent system is actually a se-
quential system,

2. is general enough to deal in particular with “hitting times” in the concurrent
framework,

3. is not too much general, so that the Markov property still holds.

It should be noticed that requirement 1 is not enough. For example, stopping
times of [4] satisfy this requirement, but they are not compliant with the second
requirement. We have thus proposed in [2] an other extension of stopping times
to concurrent systems, that is reproduced below.

Intuitively, for a sequential probabilistic process, a stopping time T (recall
that T is a integer random variable satisfying Eq. (9)

)
is set up in order to

evaluate state XT , or, equivalently, the finite process (X0, . . . , XT ). Hence the
“abstract” order {0, . . . , T} is lifted into the “concrete” order {X0, . . . , XT }.
The sequential framework takes benefit from the fact that all the “concrete”
orders {X0, . . . , Xn} corresponding to stopped executions of the system, can
be abstractly seen as embedded in a same total order, the canonical chain of
integers. This must be revised for concurrent systems, since different executions,
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supported by different partial orders, cannot be superimposed anymore. This
suggests to forget about the abstract universal order, and to only retain the
concrete orders. Whence the following definition.
Definition 2 (stopping operator). Let (N , P) be a probabilistic safe Petri
net, and denote by W the poset of configurations of the unfolding of N . We say
that a random variable V : Ω → W is a stopping operator if V satisfies the
two following properties:
1. ∀ω ∈ Ω : V (ω) ⊆ ω (V (ω) is a prefix of ω),
2. ∀ω, ω′ ∈ Ω : ω′ ⊇ V (ω) ⇒ V (ω′) = V (ω).

We associate with V the σ-algebra FV , defined by:

∀A ∈ F , A ∈ FV ⇐⇒ ∀ω, ω′ ∈ Ω, ω ∈ A, ω′ ⊇ V (ω) ⇒ ω′ ∈ A . (15)

Point 1 of Def. 2 derives from the above discussion. The signification of Point 2
will be clear when discussing below the case of renewal operators, as a gener-
alization of hitting times introduced in §2 (cf. §3, Example 2). Our stopping
operators include in particular stopping times from [4]. If the safe Petri net con-
sidered actually simulates a sequential system, it is readily checked (Cf. [2–Ch. 5,
Prop. II-4.7] ) that there is a one-to-one association between stopping times in
the classical sense, and stopping operators of Def. 5. The association is defined
as follows—note the coherence with the above discussion:

for T a stopping time, set: VT = (X0, . . . , XT ),
for V a stopping operator, set TV such that: V = (X0, . . . , XTV

).

Moreover, the associated σ-algebras from Eq. (15) for VT and from Eq. (10) for
TV coincide.

Shift Operators and the Concurrent Markov Property. In order to set up a strong
Markov property for concurrent systems, we need to adapt the notion of shift
operators. If T is a stopping time defined for a sequential system, the shift
operator θT is defined by “iterating T times θ”, where θ : Ω → Ω is the canonical
shift operator, defined by Eq. (7). In the absence of a canonical shift operator
for concurrent systems, we can still define shift operators adapted to stopping
operators, as we detail next.

The following definition is based on a simple observation. Consider a safe Petri
net N with associated object U , Ω, etc. Let v be a finite configuration of U . Recall
that Ωm(v) denotes the space of maximal configurations of Um(v), and that we
have at our disposal the isomorphism of measurable spaces φv : S(v) → Ωm(v),
defined by Eq. (12). In particular, if V is a stopping operator, it follows from
Point 1 in Def. 2 that we have ω ∈ S(

V (ω)
)
, and thus φV (ω)(ω) is well defined

if V (ω) is finite.
Definition 3 (shift operator). For V a stopping operator, the shift operator
θV associated with V is the mapping defined by:

∀ω ∈ Ω, θV (ω) = φV (ω)(ω) ,

if V (ω) is finite, θV (ω) is undefined otherwise.
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In particular, remark that we always have, if V (ω) is finite:

θV (ω) ∈ Ωm(V (ω)) . (16)

It seems that we now have all ingredients to formulate the Strong Markov
property: stopping operators, their associated σ-algebras and shift operators. A
last item is still needed, however. In the usual Markov property (11), real-valued
random variable h is to be seen as a test function. Remark that, in Eq. (11),
because of the action of the shift θT , h : Ω → R also acts on the probabilistic
futures of configurations. For concurrent systems, the unfolding formalism makes
it more convenient to consider that futures starting from different makings have
different sample spaces Ω’s. We are thus prompted to introduce the following
definition of test functions for concurrent systems.

Definition 4 (test functions). Let N be a safe Petri net, and let M denote
the set of reachable markings of N . We define a test function as a finite col-
lection h = (hm)m∈M, where hm : Ωm → R is a real-valued measurable function
for each m ∈ M.

We say that test function h = (hm)m∈M is nonnegative if every hm is non-
negative, for m ranging over M.

The Strong Markov property for concurrent systems takes then the following
form. Recall the notion E

m from Eq. (14).

Theorem 1 (Concurrent Markov Property). Let (N , P) be a Markov net.
The following identity holds for every stopping operator V and for every non-
negative test function h = (hm)m∈M:

E(h ◦ θV | FV ) = E
m◦V

(
hm◦V

)
, (17)

where, by convention, both members vanish on {ω ∈ Ω : V (ω) is not finite}.
The right member of Eq. (17) must be understood as the composition of the
mappings ω �→ m

(
V (ω)

)
and m ∈ M �→ E

m(hm), whereas the notation h ◦ θV

stands for the real-valued random variable defined on {V is finite} by:

h ◦ θV (ω) = hm(V (ω))

(
θV (ω)

)
,

which is well defined according to Eq. (16).

The proof of Th. 1 is found in [2–Ch. 5]. The remaining of the paper is
devoted to illustrate how the Concurrent Markov property can be applied to
derive results on the dynamics of Markov nets.

4 Global and Local Renewals for Markov Nets

This section is devoted to the application of the Concurrent Markov property
to the renewal properties of Markov nets. As we shall see, we can derive that
the initial marking of a Markov net has probability either 0 or 1 to return
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infinitely often—a precise definition of the return of the initial marking is given
below—, which is a generalization of a well known result for Markov chains. With
this result, we demonstrate that the formalism introduced above successfully
overcomes the absence of a global clock in probabilistic Petri nets. But we do not
make use of the concurrency properties of the models. Nevertheless, it is already
a first interesting result, showing that we are not helpless in the framework of
probabilistic concurrent systems. Finer results, that make a specific use of the
concurrency properties of Petri nets, are discussed at the end of the section.

Global Renewal Operator. We define a stopping operator, called renewal operator,
that gives in some sense the first return of the initial marking. We first recall
an easy and well-known result, that makes an essential use of the safeness of the
net. Recall that, for v a finite configuration of U , γ(v) denotes the set of terminal
conditions of v.

Lemma 1. Let U be the unfolding of a safe Petri net N .

1. Let v, v′ be two finite and compatible configurations of U . The following
formula holds, where Min�(A) denotes the set of �-minimal nodes of a sub-
set A ⊆ U :

γ(v ∩ v′) = Min�
(
γ(v) ∪ γ(v′)

)
.

2. Let M be a marking of N , and let u be a configuration of U . Denote by W0

the set of finite configurations of U , and set:

C(u) = {v ∈ W0 : v ⊆ u, m(v) = M} .

Then C(u) is a lattice.

Recall that c0 denotes the initial cut of U , and that M0 denotes the initial
marking of N . Keep the notation W0 from Lemma 1 to denote the set of finite
configurations of U , and set:

∀ω ∈ Ω, D(ω) = {v ∈ W0 : v ⊆ ω, m(v) = M0, γ(v) ∩ c0 = ∅} .

It follows from Lemma 1 that D(ω) is stable under finite intersections. Thus,
if non empty, D(ω) admits a unique minimal element, that belongs to D(ω),
whence the following definition.

Definition 5 (Global renewal operator). Let W denote the set of configu-
rations of unfolding U . We define the mapping R : Ω → W as follows:

R(ω) =

{
min

(
D(ω)

)
, if D(ω) 	= ∅,

ω, otherwise.

R is called the global renewal operator of N , or renewal operator for short.

Intuitively, for each ω, R(ω) is the smallest sub-configuration of ω that re-
turns back to the initial marking, making all the tokens move in N , if such
configuration exists. It must be compared in the sequential framework with the
hitting times introduced in §2.
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Fig. 1. Top, a safe Petri net N . Bottom, a partial execution of net N that illustrates
the renewal operator

Example 2. Consider the net N depicted at top of Fig. 1, and any maximal
configuration ω that contains the configuration depicted at bottom of Fig. 1.
Let p be the prefix of this configuration with events labeled by (ab), and ending
with the conditions indicated by the tokens in Fig. 1. Then p does not constitute
the renewal R(ω) since the token in C has not moved, although the marking
reached by p is indeed the initial marking. The renewal R(ω) is given instead
by the complete configuration depicted, and containing the events labeled by
(abcdbe). It is intuitively clear that the renewal R(ω) is the same for any ω
containing this configuration: this is precisely the meaning of Point 2 in the
definition of stopping operators (Def. 2). Whence the following lemma.

Lemma 2. The renewal operator R is a stopping operator.

Proof. We first check that, by construction, D(ω) ⊆ ω for all ω ∈ Ω. It remains
thus to check point 2 of Def. 2, i.e.:

∀ω, ω′ ∈ Ω : ω′ ⊇ R(ω) ⇒ R(ω′) = R(ω) . (18)

Let ω, ω′ ∈ Ω, and assume that ω′ ⊇ R(ω). According to Def. 5, we have to
distinguish two cases:

First case: D(ω) = ∅. Then R(ω) = ω, and thus ω′ ⊇ ω. Since ω is maximal, it
implies ω′ = ω, and thus R(ω) = R(ω′).

Second case: D(ω) 	= ∅. Set v = R(ω). Then, since ω′ ⊇ v, we have D(ω′) 	= ∅
and v ∈ D(ω′). By minimality, it implies that R(ω′) ⊆ v. Symmetrically, we
find that R(ω) ⊆ R(ω′) and thus finally: R(ω) = R(ω′).

Eq. (18) is satisfied in both cases: the proof of Lemma 2 is complete. �
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The Successive Renewal Operators. Having defined the renewal operator, we are
brought to iterate the renewal process. This is achieved without difficulty by
using the shift operator associated with the renewal operator. We first make the
following simple observation.

Lemma 3. Denote by θR the shift operator associated with the renewal opera-
tor R. Then we have:

∀ω ∈ Ω, R(ω) /∈ Ω ⇒ θR(ω) ∈ Ω .

Proof. Let ω ∈ Ω, and assume that R(ω) /∈ Ω. From Def. 5, it follows that
D(ω) 	= ∅ and thus R(ω) is finite. According to Eq. (16), it implies:

θR(ω) ∈ Ωm(R(ω)) ,

but m
(
R(ω)

)
= M0 by construction, and ΩM0 = Ω, hence finally: θR(ω) ∈ Ω,

what was to be shown. �

Consider then the following inductive construction. Start from an element
ω ∈ Ω such that R(ω) /∈ Ω. Then θR(ω) represents the tail of ω, after hav-
ing subtracted the beginning R(ω). Since θR(ω) ∈ Ω, according to Lemma 3
above, we can apply again the renewal operator to θR(ω), to obtain the ele-
ment R ◦ θR(ω). Since R(ω) ends with marking M0, whereas R ◦ θR(ω) begins
with marking M0, we can form their catenation in the unfolding U , that we
denote by:

R(ω) ⊕ R ◦ θR(ω) ,

and that corresponds indeed to the catenation of any pair of linearization se-
quences of configurations R(ω) and R ◦ θR(ω).

Continuing this inductive construction, we are brought to state the following
generic formula, illustrated by Fig. 2.

S1 = R, Sn+1 = Sn ⊕ R ◦ θSn
.

A more precise definition is as follows.

Definition 6. Denote by c0 the initial cut of U , and denote by W the set of con-
figurations of U . We define the successive renewal operators as the sequence
of mappings Sn : Ω → W, given by:

S0 = c0, Sn+1(ω) =

{
ω, if Sn(ω) ∈ Ω,
Sn(ω) ⊕ R ◦ θSn

(ω), if Sn(ω) /∈ Ω.

Remark that we have S1 = R. Generalizing Lemma 2, the following result
holds.

Lemma 4. For each integer n ≥ 0, Sn is a stopping operator.
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ω

S1

S2

S3

Fig. 2. The successive renewal operators applied to an element ω

Proof. We proceed by induction on integer n. The case n = 0 is trivial. As-
sume that Sn is a stopping operator for some integer n ≥ 0. By construction,
Sn+1(ω) ⊆ ω, so it remains to check Point 2 of Def. 2 applied to Sn+1. Let
ω, ω′ ∈ Ω, and assume that ω′ ⊇ Sn+1(ω). Without loss of generality, we can
assume that Sn(ω) /∈ Ω, otherwise Sn+1(ω′) = ω = Sn+1(ω) and we are done.
Then ω′ ⊇ Sn(ω), and since Sn is a stopping operator according to the induc-
tion hypothesis, it implies:

Sn(ω′) = Sn(ω) . (19)

It follows that θSn
(ω′) ⊇ R ◦ θSn

(ω). But since R is a stopping operator ac-
cording to Lemma 2, and since θSn

(ω′) and θSn
(ω) are two elements of Ω by

Lemma 3, we obtain that R ◦ θSn
(ω) = R ◦ θSn

(ω′). Together with Eq. (19) and
Def. 6, it implies that Sn+1(ω) = Sn+1(ω′), which completes the proof. �

Recurrent Nets. Now that we have defined the successive renewal operators, that
are the successive first returns to the initial marking—in the sense of Def. 5—
the natural question that arises is: will the successive renewal operators actu-
ally define non trivial renewals? Indeed, operator Sn falls into the trivial value
Sn(ω) = ω as soon as there is no nth return to the initial marking in execution ω.
This suggests the following definition.

Definition 7. We say that execution ω ∈ Ω has no trivial renewal if:

∀n ≥ 1, Sn(ω) /∈ Ω .

Theorem 2. Let (N , P) be a Markov net. Then there are only two possibilities:

1. Elements ω ∈ Ω have probability 1 to have no trivial renewal.
2. Elements ω ∈ Ω have probability 0 to have no trivial renewal.
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Case 1 holds if and only if P(R /∈ Ω) = 1.

Proof. We follow the formal proof that is usually given for sequential systems
(see for instance [11]), and that works with our formalism for concurrent systems.
From Def. 6, we have:

{Sn+1 /∈ Ω} = {Sn /∈ Ω} ∩ {R ◦ θSn
/∈ Ω} . (20)

Consider for j ≥ 0 the nonnegative random variables hj = 1{Sj /∈Ω}. Let n ≥ 0
and let G = FSn

be the σ-algebra associated with stopping operator Sn as in
Def. 2. Eq. (20) can be written as: hn+1 = hn1{R◦θSn /∈Ω}. Applying successively
properties (2) and (3) to hn+1 and σ-algebra G, we get, since hn is G-measurable:

P(Sn+1 /∈ Ω) = E(hn+1)

= E
(
E(hn+1 | G)

)

= E
(
hnE(1{R◦θSn /∈Ω} | G)

)
. (21)

By the Concurrent Markov property (Th. 1) applied to stopping operator Sn and
to any test function (Def. 4) that extends the nonnegative function 1{R◦θSn /∈Ω},
we have:

E(1{R◦θSn /∈Ω} | G) = E
m(Sn)(1{R/∈Ω}) = P(R /∈ Ω) ,

the later equality since m(Sn) = M0 on {Sn /∈ Ω}. Setting a = P(R /∈ Ω), and
using Eq. (21), we get:

P(Sn+1 /∈ Ω) = aE(hn) = aP(Sn /∈ Ω) . (22)

We distinguish thus two cases. If a = 1, then P(Sn /∈ Ω) = 1 for all n ≥ 1, which
implies:

P
( ⋂
n≥1

{Sn /∈ Ω}) = 1 ,

this is case 1 in Th. 2. Otherwise we have a < 1, and then, from Eq. (22):
∑
n≥1

P(Sn /∈ Ω) < ∞ .

By the Borel-Cantelli Lemma (Cf. for instance [6]), it implies that {Sn /∈ Ω} has
probability 0 to occur for infinitely many integers n, which is case 2 of Th. 2. �

Comment on Th. 2. In case 1 of Th. 2, we will say that (N , P) is recurrent.
Then recurrent nets reduce to recurrent Markov chains in case of a Markov net
that reduces to a sequential system, and thus simulates a Markov chain. It follows
that Th. 2 extends a well-known result on Markov chains, where “marking” must
be replaced by “state”.

A practical recurrence criterion is given by the following result. It is conve-
nient to say that a marking m is P-reachable if there is a finite configuration
v such that p(v) > 0 and m = m(v). γ(v) denotes as usual the set of terminal
conditions of v.
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Proposition 1. A Markov net (N , P) is recurrent if and only if:

1. there is a configuration v such that p(v) > 0 and c0 ∩ γ(v) = ∅, and
2. for every P-reachable marking m, M0 is P

m-reachable.

Example 3. Consider again the net depicted in Fig. 1. We have seen in §3, Ex-
ample 1, that this net can be made a Markov net, by using two probabilistic
parameters q1 and q2. These parameters correspond respectively to the proba-
bilities of “local choices” between a and d on the one hand, and between b and
b′ on the other hand. Assume that both parameters are non-degenerated, i.e.
p, q /∈ {0, 1}. Then, using Prop. 1, one sees that net N is recurrent.

The probabilistic framework is well adapted to state the recurrence properties
of N . Indeed, although N is recurrent, there exists executions ω ∈ Ω with trivial
renewal (i.e., that return only finitely many times to the initial marking), for
instance ω = (c ab ab ab . . . ). But, as stated by Th. 2, these executions are “rare”:
all together, they have probability zero.

Example 4. Consider the net depicted in Fig. 3. An analysis of configurations
similar to the one explained about the previous example can also be done. As
for the previous example, we derive from this analysis the construction of a
Markov net from some local probabilistic parameters. One of these parameters
is the probability of firing b versus a, say q0. As soon as q0 > 0, the net is non-
recurrent. If moreover q0 < 1, the random number of renewals, say N , has the
geometric law of parameter (1 − q0), so that P(N = n) = (1 − q0)qn

0 for n ≥ 0.
Remark that the law of N only depends on the local probabilistic parameter
that concerns the transitions a and b.

Local Renewal for Nets. So far we have shown that our formalism allows to free
the probabilistic framework from any global clock, but still keeping qualitative
results on the probabilistic behavior of systems. One can argue that the re-
sults presented above do not take benefit from the concurrency properties of the
model, they only deal with the problems brought by concurrency! Yes. . . It is
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however possible to obtain positive results due to concurrency, in particular with
the notion of local renewal. This new topic is a refinement of the global renewal
presented above. The techniques for dealing with both renewals are the same:
the basic tool is still the Concurrent Strong Markov property. We introduce local
renewal on an example.

Consider again the recurrent net N depicted in Fig. 1. Extending the dis-
cussion of §3, Example 1, the dynamics of N can be seen as a partially ordered
succession of local choices. For instance, the component E → e → C can be seen
as a trivial choice, but still as a choice. As an other example, the choices made
between b and b′ are non trivial local choices. The local renewal is concerned by
the arrivals of local choices. Consider for instance the local choices made between
b and b′. As a consequence of the safeness of N , the different arrivals of these
choices, inside a same execution ω, are totally ordered. The sub-configurations of
ω that lead to the successive local choices {b, b′} constitute the successive local
renewals associated to the choice {b, b′}. As for the successive global renewals,
it is shown that local renewals are stopping operators.

Local renewal has the following properties: the finiteness of the global re-
newal guarantees the finiteness of the local renewal—hence iterate local re-
newals are well defined for recurrent nets. If the net simulates a sequential
system, global and local renewals coincide. Finally, if we extend the construc-
tion of Markov nets detailed in §3, Example 1, obtained from the decomposi-
tion of configurations through local choices, the local choices are precisely de-
termined by the successive local renewals: the local renewals are the random
configurations that lead to the local choices. Moreover, the local decisions per-
formed by the net, and associated to the successive occurrences of the same local
choice, constitute a sequence of i.i.d. random variables. This quite intuitive re-
sult does not hold for general Markov nets. It is the basis for instance of a local
performance evaluation, as well as a basic tool for a statistical estimation of
parameters.

5 Conclusion and Perspectives

This paper has introduced a new definition of Markov nets. Markov nets are
a special case of probabilistic nets, which are true-concurrent random systems
based on the model of safe Petri nets. Markov nets are defined as memory-less
probabilistic nets. We have also introduced for Markov nets notions adapted from
Markov chains theory. In particular, stopping operators play the same role than
stopping times, and a Concurrent Strong Markov property holds. The efficiency
of the Concurrent Strong Markov property is demonstrated by establishing some
elements of a renewal theory for nets. In particular, recurrent nets extend the
notion of recurrent Markov chains. Interesting enough, nets have tow kinds of
renewal: a global and a local one, whereas both coincide for Markov chains.

For further research, one first thinks to a decomposition of nets into recurrent
components. Another continuation consists in studying the relationship between
stochastic Petri nets and probabilistic Petri nets. In particular, can a probabilis-



The (True) Concurrent Markov Property 89

tic Petri net be seen as the “uniformization” of a stochastic Petri net, gener-
alizing the relationship between discrete and continuous time Markov chains?
Finally, we currently work on a compositional theory for Markov nets. Indeed,
it is well known that synchronization of sequential systems leads to concurrent
systems—for example, synchronizing transition systems bring safe Petri nets. A
probabilistic interpretation of the synchronization could furnish elements for a
validation a posteriori of our results.
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