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The (True) Concurrent Markov Property and Some Applications to Markov Nets

We study probabilistic safe Petri nets, a probabilistic extension of safe Petri nets interpreted under the true-concurrent semantics. In particular, the likelihood of processes is defined on partial orders, not on firing sequences.

We focus on memoryless probabilistic nets: we give a definition for such systems, that we call Markov nets, and we study their properties. We show that several tools from Markov chains theory can be adapted to this true-concurrent framework. In particular, we introduce stopping operators that generalize stopping times, in a more convenient fashion than other extensions previously proposed. A Strong Markov Property holds in the concurrency framework. We show that the Concurrent Strong Markov property is the key ingredient for studying the dynamics of Markov nets. In particular we introduce some elements of a recurrence theory for nets, through the study of renewal operators. Due to the concurrency properties of Petri nets, Markov nets have global and local renewal operators, whereas both coincide for sequential systems.

Introduction

In the context of a continuously growing interest of the scientific community for distributed systems, Petri nets in general, and their true-concurrent dynamics in particular, become a paradigm used in various application areas. Good examples are found in systems theory, where more and more Petri nets models are proposed for the management of complex concurrent systems such as telecommunication networks and services [START_REF]Proc. of the 16 th Conference on Mathematical Theory of Networks and Systems (MTNS 2004)[END_REF][START_REF] Girault | Petri nets for systems engeneering[END_REF].

In turn, studies motivated by various applications can bring back new conceptions and results about Petri nets. This is in particular the case of probabilistic Petri nets that have interested both computer scientists [START_REF] Völzer | Randomized non-sequential processes[END_REF][START_REF] Varacca | Probabilistic event structures and domains[END_REF] and scientists from systems theory [START_REF] Benveniste | Markov nets: probabilistic models for distributed and concurrent systems[END_REF]. I intentionally choose the term of probabilistic Petri net to emphasize the difference with stochastic Petri nets. The latter refers to processes where a real time parameter t describes the random evolution of a Petri net-in this model, concurrency is interpreted through an interleaving semantics. The purpose of probabilistic Petri nets is different. The dynamics of a probabilistic Petri net is directly defined through random discrete partial orders, in order to fit the true-concurrent semantics of the underlying Petri net model.

The following advantages have been recognized to the true-concurrency semantics. First, for large scale concurrent systems, the true-concurrency semantics, by identifying different interleavings of a same process, saves a lot of computational complexity: true-concurrency tackles the "state explosion" problem. Second, events of a distributed system such as a telecommunication network with real asynchronous components may obey only to local clocks, without reference to any global clock [START_REF] Benvensite | Distributed monitoring of concurrent and asynchronous systems[END_REF]. This corresponds to events partially ordered, and thus to a true-concurrent semantics, not to an interleaving semantics. Statistical treatment of systems, such as state estimation or learning of parameters, need to have at hand a probabilistic model, including results on the asymptotic dynamics of systems. We contribute in this paper to the set up of this theory, within the model of safe Petri nets.

True-concurrent processes of a Petri net, i.e. Mazurkiewicz traces of firing sequences, can be regarded as configurations of the unfolding of the net [START_REF] Nielsen | Petri nets, event structures and domains, part 1[END_REF][START_REF] Engelfriet | Branching processes of Petri nets[END_REF]. Configurations are partially ordered by the relation of set-inclusion (traces are prefix from one another). Setting up a true-concurrent random dynamics for a safe Petri net is done by considering a probability measure P on the space Ω of maximal configurations of the unfolding of the net [START_REF] Völzer | Randomized non-sequential processes[END_REF][START_REF] Benveniste | Markov nets: probabilistic models for distributed and concurrent systems[END_REF][START_REF] Varacca | Probabilistic event structures and domains[END_REF]. Referring to the net as to a concrete device, the meaning of the so obtained probability space (Ω, P) is as follows: Let v be a finite trace of the net. The P-probability for v to occur in an execution of the net is P(A), where A is the subset of Ω defined by: A = {ω ∈ Ω : ω ⊇ v}. This extends the framework of sequential discrete events random processes studied from both the mathematical (e.g., [START_REF] Revuz | Markov chains[END_REF]) and the Computer Science (e.g., [START_REF] Rabin | Probabilistic automata[END_REF]) viewpoints.

The topic of this paper is the following: Can we go further in the generalization, and extend to concurrent systems both the definition and some properties of Markovian models such as finite Markov chains in discrete time (DTMC)? We demonstrate that the answer is "yes": we introduce a new definition for Markov nets, and we obtain qualitative results on their dynamics by studying their recurrence properties. This leads to elegant results with simple formulation, yet with some strong hidden mathematical background.

Our definition of Markov nets relies on the intuitive concept of memoryless systems. Here, the state of the system is the marking of the net. Hence a Markov net will be a probabilistic net such that the probabilistic future of a finite process v, ending to a marking M , only depends on M , and not on the entire process v. Starting from this definition, we follow the classical theory of Markov chains, adapting to concurrent systems several concepts and tools from this theory. The effective construction of Markov nets is known for a large class of safe Petri nets, including free-choice and confusion-free nets [START_REF] Abbes | Probabilistic model of distributed and concurrent systems[END_REF][START_REF] Abbes | Branching cells as local states for event structures and nets: probabilistic applications[END_REF]. But it is rather a technical construction, more complicated than the classical construction of Markov chains based on a transition matrix; therefore, in this paper, we will assume that the existence of Markov nets is an established fact, in order to focus on their properties.

A first basic result for Markov chains is the so-called Strong Markov Property, a formula which says in a condensed form that the system is indeed memoryless. This formula relies on the notion of stopping time. We adapt the notion of stopping time to true-concurrent systems, introducing stopping operator for nets-this part was already challenging, since our framework does not posses a global clock. Then we formulate and prove the Strong Markov property for Markov nets. The remaining of the paper is devoted to illustrate the use of the Strong Markov Property for concurrent systems. We present some elements of a recurrence theory in the framework of concurrent systems: We prove that the initial marking of a net has probability 0 or 1 to return infinitely often in an execution, an extension of the same well-known result for Markov chains with state instead of marking. Stopping operators, the Markov property for concurrent systems and its application to the recurrence properties of nets are the main contributions of this paper, beside an abstract definition of Markov nets.

Hence, the new techniques that we introduce allow to extend existing results from sequential to concurrent systems. But other developments are allowed where the concurrency properties of the Petri nets model play a more significant role. Due to lack of place, we only shortly introduce these properties that take into account the local characteristics of concurrent systems. This constitutes elements of a local recurrence theory, to be distinguished from the above recurrence, that appears a posteriori as a global recurrence. For sequential systems, global and local recurrences coincide, but not anymore for concurrent systems.

The paper is organized as follows. In §2 we recall the background from Probability and from finite Markov chains theory. We set up a symmetric framework for concurrent systems in §3, introducing Markov nets and ending with the statement of the Concurrent Strong Markov property. Then §4 is devoted to the application of this new Markov property to elements of a recurrence theory for Markov nets. Finally, §5 discusses some perspectives.

Background on Probability and Expectation

Notations for Usual Sets. We denote by N and R respectively, the sets of nonnegative integers and of real numbers. We consider the following extensions of N and R:

N = N ∪ {+∞}, R = R ∪ {-∞, +∞} . (1) 
σ-Algebra and Probability Spaces. Let Ω be a set, a family F of subsets of Ω is said to be a σ-algebra of

Ω if F is closed under countable intersection, if A ∈ F ⇒ Ω \ A ∈ F, and if ∅ ∈ F.
The pair (Ω, F) is called a measurable space, and the elements of F constitute the measurable sets of Ω. The set R defined by Eq. ( 1) is equipped with its Borel σ-algebra, generated by the Euclidean topology on R. If (Ω, F) and (Ω , F ) are two measurable spaces, a mapping f :

Ω → Ω is F-measurable (or simply, measurable) if f -1 (A) ∈ F for all A ∈ F .
Let (Ω, F) be a measurable space. A probability measure on (Ω, F) is a function P : F → R with P(Ω) = 1 and P(A) ≥ 0 for all A ∈ F, and such that for every countable family

(A n ) n∈N of measurable sets, if i = j ⇒ A i ∩ A j = ∅, then: P n∈N A n = n∈N P(A n ) .
The triple (Ω, F, P) is called a probability space.

We follow some traditional language conventions that are convenient when dealing with probability spaces. Measurable functions are called random variables. If X is a real-valued random variable, its integral under measure P is called its expectation, and is denoted E(X). We also write {X = 0} to denote the set of elements ω ∈ Ω such that X(ω) = 0, and P(X = 0) stands for "the probability that X = 0", i.e.:

P(X = 0) = P {X = 0} = P {ω ∈ Ω : X(ω) = 0} .
With a slight and classical abuse of terminology, we identify a random variable X and the class of random variables X that differ from X only on a set of probability zero, i.e. the class of X such that P(X = X ) = 0.

Finally, for A a subset of Ω, we use the notation 1 A to denote the characteristic function of A, defined by:

1 A (ω) = 1, if ω ∈ A 0, if ω / ∈ A .
Then 1 A is measurable if and only if A is measurable, in which case

P(A) = E(1 A ).
Conditional Expectation. We first recall the definition of conditional expectation w.r.t. a measurable subset. Let (Ω, F, P) be a probability space, let A be a measurable subset of Ω, and assume that P(A) > 0. Then the following formula defines a probability P A on (Ω, F), called probability conditional on A:

∀B ∈ F, P A (B) = P(B ∩ A) P(A) .

The probability P A ( • ) is usually denoted by P( • | A).

We now recall the definition of conditional expectation w.r.t. σ-algebras (see e.g. [START_REF] Breiman | Probability. SIAM[END_REF]). Let (Ω, F, P) be a probability space, let X be a nonnegative real random variable, and let F ⊆ F be a sub-σ-algebra of F. A classical result states that there is a unique F -measurable random variable X characterized by:

∀A ∈ F , E(1 A X) = E(1 A X ) .
X is called the expectation of X conditional on F , and is denoted by

X = E(X | F ). Intuitively, X is the best F -measurable approximation of X.
In the sequel, we will use the two following properties of conditional expectation:

1. For every nonnegative random variable X and sub-σ-algebra G of F, we have:

E(X) = E E(X | G) . ( 2 
)
2. For every sub-σ-algebra G of F and nonnegative random variables X, Y , if Y is G-measurable, then:

E(XY | G) = Y E(X | G) . ( 3 
)
Sequential Probabilistic Processes. Consider a finite set S, thought of as a state space. We define a process over S as a finite or infinite sequence of elements of S. If v = (s 0 , . . . , s n ) is a finite process, we say that s n is the end state of v, and we denote it s(v) = s n . We denote by Ω the set of infinite processes over S, i.e. Ω is the infinite product set Ω = S N . For each integer n ≥ 0, we denote by X n the n th projection Ω → S, so that we have:

∀ω ∈ Ω, ω = (X 0 (ω), X 1 (ω), . . .) .
For each integer n ≥ 0, consider the finite σ-algebra F n of Ω spanned by the subsets of the form:

{X 0 = s 0 , . . . , X n = s n },
with (s 0 , . . . , s n ) ranging over S n+1 . The product σ-algebra F on Ω is defined as the smallest σ-algebra that contains all F n , for n ≥ 0. We define a probabilistic process over S as a pair (S, P), where P is a probability on (Ω, F). If there is an element s 0 ∈ S such that X 0 = s 0 , we say that s 0 is the initial state of the probabilistic process (S, P). Let v = (s 0 , . . . , s n ) be a finite process, and consider the measurable subset of Ω defined by:

S(v) = {X 0 = s 0 , . . . , X n = s n } . ( 4 
)
We define the likelihood of v by: p(v) = P S(v) . Intuitively, p(v) is the probability of v to occur in an execution of the system. Be aware however that the likelihood function does not define a probability on the set of finite processes, since it does not sum to 1.

Sequential Probabilistic Future and Markov Chains. Let (S, P) be a probabilistic process, and let v be a finite process over S with p(v) > 0, with v given by v = (s 0 , . . . , s n ). Recall the definition (4) of S(v), and consider the measurable mapping ρ v : S(v) → Ω defined by: ρ v (s 0 , . . . , s n , X n+1 , X n+2 , . . .) = (s n , X n+1 , X n+2 , . . .) .

The mapping ρ v let us define a probability P v on (Ω, F) as follows:

∀A ∈ F, P v (A) = P ρ -1 v (A) | S(v) , ( 5 
)
where P • | S(v) is the probability conditional on S(v). We call the new probabilistic process (S, P v ) the probabilistic future of process v. We denote by the symbol E v the expectation on Ω under probability P v . By construction, s n = s(v) is the initial state of the probabilistic future of v.

We say that (S, P) is a Markov chain if, for every pair (v, v ) of finite processes over S with p(v), p(v ) > 0, we have:

s(v) = s(v ) ⇒ P v = P v . ( 6 
)
Equation ( 6) formulates the intuition that, for Markov chains, the probabilistic future of a process only depends on the current state of the system, i.e. state s(v), and not on the entire history the process v. As a consequence, it makes sense to denote by P s and E s the probability and the expectation starting from state s, and defined by:

P s = P v , E s = E v ,
for any finite process v with positive likelihood and with s as end state 1 .

Sequential Shift Operators. Stopping Times and the Markov Property. Consider again the measurable space (Ω, F) constructed as above from finite set S, and define the pointwise transformation θ : Ω → Ω as follows:

∀ω ∈ Ω, θ(ω) = (X 1 (ω), X 2 (ω), . . .) . ( 7 
)
Transformation θ is called the shift operator. The iterates of θ are traditionally denoted by θ n , for n ≥ 0, i.e. θ 0 = Id and θ n = θ n-1 • θ for n ≥ 1. Furthermore, assume that T : Ω → N is an integer random variable. We denote by θ T the pointwise transformation Ω → Ω that "iterates T times θ", which is defined by:

∀ω ∈ Ω, θ T (ω) = θ T (ω) (ω) . ( 8 
)
We shall authorize T to take an infinite value, so that T is defined Ω → N, with N = N ∪ {∞}. If T (ω) = ∞, then θ T (ω) is not defined. A random variable T : Ω → N is called a stopping time if for every n ≥ 0 (see e.g. [START_REF] Breiman | Probability. SIAM[END_REF][START_REF] Revuz | Markov chains[END_REF]):

{T = n} is a F n -measurable subset of Ω. ( 9 
)
We will see below the particular role of stopping times in the analysis of Markov chains. To make the notion intuitive, we mention a typical example of stopping time, the hitting time T x of a given state x:

for ω ∈ Ω, T x (ω) is the smallest integer n such that X n (ω) = x, if such an integer exists, otherwise T x (ω) = ∞.
A stopping time T defines a sub-σ-algebra of F, denoted by F T , as follows:

∀A ∈ F, A ∈ F T ⇔ ∀n ≥ 0, A ∩ {T = n} ∈ F n . ( 10 
)
We can now state the so-called "strong Markov property", a basic tool in the analysis of Markov chains (see for instance [START_REF] Revuz | Markov chains[END_REF]): Let (S, P) be a Markov chain over a finite set S. For every stopping time T , and for every nonnegative random variable h : Ω → R, the following identity holds:

E h • θ T | F T = E XT (h) , ( 11 
)
where, by convention, both members identically vanish on {T = ∞}. The second member must be understood as the composition of the two functions

ω ∈ Ω → X T (ω) (ω) and s ∈ S → E s (h).
Instead of showing the consequences that are usually obtained from the Markov property, we will instead show how the previous notions generalize in a concurrent framework. After having established a Concurrent Markov property, we will directly derive in the concurrent framework some of its classical consequences as it is usually done in the sequential framework.

Probabilistic Safe Petri Nets

We now analyze the case of concurrent systems, within the model of safe Petri nets. We will try to set up a probabilistic framework symmetric to the one that we have introduced above in §2.

Safe Petri Nets and Unfoldings. True-Concurrent Dynamics. We assume basic knowledge of the reader on Petri nets, true-concurrent dynamics and unfoldings of safe Petri nets, such as set up in [START_REF] Nielsen | Petri nets, event structures and domains, part 1[END_REF]. We consider a safe and finite Petri net N = (P, T, F, M 0 ), where P and T respectively denote the sets of places and transitions, F stands for the flow relation, and M 0 is the initial marking of the net. We denote by (U, λ) the unfolding of N , where U is the universal occurrence net associated with N , and λ : U → N is the canonical labeling mapping, with the slight abuse of notations that identifies a net and its set of nodes. According to the usual terminology, places of the unfolding are called conditions.

The causality relation in U is denoted by . The set of -minimal nodes of U is called the initial cut of U, and we denote it by c 0 . We recall that c 0 is in bijection with M 0 through λ. We say that a node x of a subset A ⊆ U is terminal in A if x is a maximal node of A, the maximality being defined w.r.t. the causality relation . The set of terminal nodes of A is denoted by γ(A).

We denote by M the set of reachable markings of N , and for M ∈ M, we note with M as an exponent all objects related to net (P, T, F, M ): N M stands precisely for this net, (U M , λ M ) for the unfolding of N M , etc.

We will analyze the dynamics of net N through the dynamics of its unfolding U. Define a configuration of U as a conflict-free prefix of U, containing the initial cut of U and with conditions only as terminal nodes. Configurations are partially ordered by set inclusion. For those readers used to deal with Mazurkiewicz traces instead, let us recall that both conceptions are equivalent, as stated by [9-Prop. 6], in the sense that every the posets of finite traces and of finite configurations are isomorphic. The end marking of a finite configuration v is the marking reached by any finite sequence linearizing v. We denote this marking by m(v), and it is well known that m(v) is given by:

m(v) = λ γ(v) ,
where γ(v) denotes the set of terminal nodes (actually, conditions) of v.

Probabilistic Petri Nets. To introduce a measurable space that will support a probability measure and model a probabilistic dynamics of a safe Petri net, it is not suitable to consider the set of infinite configurations of the unfolding. Indeed, one branch of a configuration may be infinite, whereas other branches remain finite, and this introduces non natural choices. A more convenient sample space is found by considering the set of maximal configurations of the unfolding, the maximality being defined w.r.t. the set inclusion.

Hence, considering a safe Petri net N with unfolding (U, λ), we denote by Ω the set of maximal configurations of U. Elements of Ω are generically denoted by ω; from time to time, we call an element ω an execution of the net. The properties of occurrence nets, combined with an application of Zorn's lemma, show that every configuration is subset of a maximal configuration, and in particular Ω is non empty. For v a configuration of U, we define the shadow of v as the following subset of Ω:

S(v) = {ω ∈ Ω : ω ⊇ v} .
The terminology of shadow is justified by thinking of U as lightened from its initial cut, and of Ω as to the boundary at infinity of U.

We say that a shadow S(v) is a finitary shadow if v is a finite configurationbe aware that S(v) is not a finite set however. The σ-algebra on Ω to be considered is the σ-algebra spanned by the finitary shadows S(v). We denote this σ-algebra by F, so that F is the smallest σ-algebra of Ω that makes measurable all the finitary shadows-and then every shadow is F-measurable. We define a probabilistic net as a pair (N , P), where P is a probability measure on the measurable space (Ω, F). This definition includes the case of probabilistic sequential processes defined in §2, provided that they have an initial state (this later technical restriction could be easily removed).

We immediately derive the notion of likelihood of a configuration v: the likelihood p(v), associated with probability P, is the probability of configuration v to occur in an execution of the system, and is defined by:

p(v) = P S(v) .
Probabilistic Future. Markov nets. From this definition of a probabilistic concurrent process, defining the probabilistic future is straightforward. Notice however the slight difference with the sequential case, where all futures are defined on the same measurable space. This could be done as well, but the following definition is more suitable.

Let v be a finite configuration over a safe petri net N , and assume that v has positive likelihood. Then the shadow S(v) is naturally equipped with the conditional probability P • | S(v) . It is straightforward to show (Cf. for instance [2-Ch. 3]) that the shadow S(v) is isomorphic, as a measurable space, to the space of maximal configurations of the unfolding U m(v) of net N m (v) . Denoting by Ω m(v) the set of maximal configurations of U m(v) , the isomorphism

φ v : S(v) → Ω m(v) is given by: ∀ω ∈ S(v), φ v (ω) = (ω \ v) ∪ γ(v) . ( 12 
)
Combined with the conditional probability P( • | S(v) , φ v is the key to define a probability P v on Ω m (v) , by setting (remark the analogy with the function ρ v defined in (5) for sequential systems):

∀A ∈ F m(v) , P v (A) = P φ -1 v (A) | S(v) ,
where F m(v) is the σ-algebra on Ω m (v) . We define then the probabilistic future of finite configuration v as the probabilistic net (N m(v) , P v ). Following our reformulation [START_REF] Breiman | Probability. SIAM[END_REF] of Markov chains, we introduce the following definition of Markov nets.

Definition 1 (Markov net). Let (N , P) be a probabilistic net. We say that (N , P) is a Markov net if, for every pair (v, v ) of finite configurations with positive likelihoods, the following holds:

m(v) = m(v ) ⇒ P v = P v . ( 13 
)
As for Markov chains, and from Eq. ( 13), it makes sense for a Markov net (N , P) and for a reachable marking m, to use the notations:

P m , E m , ( 14 
)
to respectively denote the probability P v and the expectation E v for any finite configuration v with positive likelihood, and such that m = m(v), provided that such a v exists. Table 1 summarizes and compares the definitions introduced so far, and emphasizes the symmetry between sequential and concurrent systems. 

Space Ω Ω = {Infinite sequences} Ω = {Maximal configurations of U} Probabilistic system (S, P) (N , P) Probabilistic future of finite process v (S, P v ) (N m(v) , P v ) Markovian system s(v) = s(v ) ⇒ P v = P v m(v) = m(v ) ⇒ P v = P v
Example 1. Although we do not provide in this paper a general construction for Markov nets (see [START_REF] Abbes | Probabilistic model of distributed and concurrent systems[END_REF][START_REF] Abbes | Branching cells as local states for event structures and nets: probabilistic applications[END_REF] for this topic), let us indicate an example. Consider the Petri net depicted in Fig. 1 (top), some pages forward. Let v be the configuration depicted at bottom, that we write v = (acbdbe) (different interleavings make this writing non unique). The choices involved in this configurations are the following: 1) the first choice between a and d, which gives a, 2) the first choice between b and b , which gives b, 3) the second choice between a and d, which gives d, and 4) the second choice between b and b , which gives b. Remark that, due to the true-concurrency semantics, we do not have to answer a question like: "What about the speed of the token coming from C to D? Does it influence the choice between a and d?" This simply has no meaning in the true-concurrency semantics. Hence the configuration v is the successive arrival of 4 choices. Although the net presents concurrent events, there is never concurrent choices-found in more sophisticated examples. We fix two probabilistic parameters q 1 and q 2 , with q 1 the probability of firing a versus d on the one hand, and q 2 the probability of firing b versus b on the other hand. Then we set the likelihood p(v) by:

p(v) = q 1 × q 2 × (1 -q 1 ) × q 2 .
This construction of the likelihood function p could have been done for any finite configuration. By a measure-theoretic extension argument, we conclude that there is a unique probability P on Ω with the likelihood p. Since each time we encounter a choice, we always use the same probabilistic parameter, it is intuitively clear (and can be shown rigorously) that the probabilistic net so constructed is indeed Markovian.

Stopping Operators. Still following and adapting the theory of sequential probabilistic processes, we wish to establish a Strong Markov property. For this, we need to formulate an adequate definition of stopping times for the concurrency framework. By an adequate definition, we mean a definition that:

1. reduces to usual stopping times if the concurrent system is actually a sequential system, 2. is general enough to deal in particular with "hitting times" in the concurrent framework, 3. is not too much general, so that the Markov property still holds.

It should be noticed that requirement 1 is not enough. For example, stopping times of [START_REF] Benveniste | Markov nets: probabilistic models for distributed and concurrent systems[END_REF] satisfy this requirement, but they are not compliant with the second requirement. We have thus proposed in [START_REF] Abbes | Probabilistic model of distributed and concurrent systems[END_REF] an other extension of stopping times to concurrent systems, that is reproduced below.

Intuitively, for a sequential probabilistic process, a stopping time T (recall that T is a integer random variable satisfying Eq. ( 9) is set up in order to evaluate state X T , or, equivalently, the finite process (X 0 , . . . , X T ). Hence the "abstract" order {0, . . . , T } is lifted into the "concrete" order {X 0 , . . . , X T }. The sequential framework takes benefit from the fact that all the "concrete" orders {X 0 , . . . , X n } corresponding to stopped executions of the system, can be abstractly seen as embedded in a same total order, the canonical chain of integers. This must be revised for concurrent systems, since different executions, supported by different partial orders, cannot be superimposed anymore. This suggests to forget about the abstract universal order, and to only retain the concrete orders. Whence the following definition. Definition 2 (stopping operator). Let (N , P) be a probabilistic safe Petri net, and denote by W the poset of configurations of the unfolding of N . We say that a random variable V : Ω → W is a stopping operator if V satisfies the two following properties:

1. ∀ω ∈ Ω : V (ω) ⊆ ω ( V (ω) is a prefix of ω), 2. ∀ω, ω ∈ Ω : ω ⊇ V (ω) ⇒ V (ω ) = V (ω).
We associate with V the σ-algebra F V , defined by:

∀A ∈ F, A ∈ F V ⇐⇒ ∀ω, ω ∈ Ω, ω ∈ A, ω ⊇ V (ω) ⇒ ω ∈ A . ( 15 
)
Point 1 of Def. 2 derives from the above discussion. The signification of Point 2 will be clear when discussing below the case of renewal operators, as a generalization of hitting times introduced in §2 (cf. §3, Example 2). Our stopping operators include in particular stopping times from [START_REF] Benveniste | Markov nets: probabilistic models for distributed and concurrent systems[END_REF]. If the safe Petri net considered actually simulates a sequential system, it is readily checked (Cf. [2-Ch. 5, Prop. II-4.7] ) that there is a one-to-one association between stopping times in the classical sense, and stopping operators of Def. 5. The association is defined as follows-note the coherence with the above discussion:

for T a stopping time, set: V T = (X 0 , . . . , X T ), for V a stopping operator, set T V such that: V = (X 0 , . . . , X TV ).

Moreover, the associated σ-algebras from Eq. ( 15) for V T and from Eq. ( 10) for T V coincide.

Shift Operators and the Concurrent Markov Property.

In order to set up a strong Markov property for concurrent systems, we need to adapt the notion of shift operators. If T is a stopping time defined for a sequential system, the shift operator θ T is defined by "iterating T times θ", where θ : Ω → Ω is the canonical shift operator, defined by Eq. ( 7). In the absence of a canonical shift operator for concurrent systems, we can still define shift operators adapted to stopping operators, as we detail next.

The following definition is based on a simple observation. Consider a safe Petri net N with associated object U, Ω, etc. Let v be a finite configuration of U. Recall that Ω m(v) denotes the space of maximal configurations of U m (v) , and that we have at our disposal the isomorphism of measurable spaces φ v : S(v) → Ω m(v) , defined by Eq. ( 12). In particular, if V is a stopping operator, it follows from Point 1 in Def. 2 that we have ω ∈ S V (ω) , and thus φ V (ω) (ω) is well defined if V (ω) is finite. Definition 3 (shift operator). For V a stopping operator, the shift operator θ V associated with V is the mapping defined by:

∀ω ∈ Ω, θ V (ω) = φ V (ω) (ω) , if V (ω) is finite, θ V (ω) is undefined otherwise.
In particular, remark that we always have, if V (ω) is finite:

θ V (ω) ∈ Ω m(V (ω)) . ( 16 
)
It seems that we now have all ingredients to formulate the Strong Markov property: stopping operators, their associated σ-algebras and shift operators. A last item is still needed, however. In the usual Markov property [START_REF] Revuz | Markov chains[END_REF], real-valued random variable h is to be seen as a test function. Remark that, in Eq. ( 11), because of the action of the shift θ T , h : Ω → R also acts on the probabilistic futures of configurations. For concurrent systems, the unfolding formalism makes it more convenient to consider that futures starting from different makings have different sample spaces Ω's. We are thus prompted to introduce the following definition of test functions for concurrent systems.

Definition 4 (test functions). Let N be a safe Petri net, and let M denote the set of reachable markings of N . We define a test function as a finite collection h = (h m ) m∈M , where h

m : Ω m → R is a real-valued measurable function for each m ∈ M.
We say that test function h = (h m ) m∈M is nonnegative if every h m is nonnegative, for m ranging over M.

The Strong Markov property for concurrent systems takes then the following form. Recall the notion E m from Eq. ( 14).

Theorem 1 (Concurrent Markov Property). Let (N , P) be a Markov net. The following identity holds for every stopping operator V and for every nonnegative test function h

= (h m ) m∈M : E(h • θ V | F V ) = E m•V h m•V , ( 17 
)
where, by convention, both members vanish on {ω ∈ Ω : V (ω) is not finite}. The right member of Eq. ( 17) must be understood as the composition of the mappings ω → m V (ω) and m ∈ M → E m (h m ), whereas the notation h • θ V stands for the real-valued random variable defined on {V is finite} by:

h • θ V (ω) = h m(V (ω)) θ V (ω) ,
which is well defined according to Eq. ( 16).

The proof of Th. 1 is found in . The remaining of the paper is devoted to illustrate how the Concurrent Markov property can be applied to derive results on the dynamics of Markov nets.

Global and Local Renewals for Markov Nets

This section is devoted to the application of the Concurrent Markov property to the renewal properties of Markov nets. As we shall see, we can derive that the initial marking of a Markov net has probability either 0 or 1 to return infinitely often-a precise definition of the return of the initial marking is given below-, which is a generalization of a well known result for Markov chains. With this result, we demonstrate that the formalism introduced above successfully overcomes the absence of a global clock in probabilistic Petri nets. But we do not make use of the concurrency properties of the models. Nevertheless, it is already a first interesting result, showing that we are not helpless in the framework of probabilistic concurrent systems. Finer results, that make a specific use of the concurrency properties of Petri nets, are discussed at the end of the section.

Global Renewal Operator. We define a stopping operator, called renewal operator, that gives in some sense the first return of the initial marking. We first recall an easy and well-known result, that makes an essential use of the safeness of the net. Recall that, for v a finite configuration of U, γ(v) denotes the set of terminal conditions of v. Lemma 1. Let U be the unfolding of a safe Petri net N .

1. Let v, v be two finite and compatible configurations of U. The following formula holds, where Min (A) denotes the set of -minimal nodes of a subset A ⊆ U:

γ(v ∩ v ) = Min γ(v) ∪ γ(v ) .
2. Let M be a marking of N , and let u be a configuration of U. Denote by W 0 the set of finite configurations of U, and set:

C(u) = {v ∈ W 0 : v ⊆ u, m(v) = M } .
Then C(u) is a lattice.

Recall that c 0 denotes the initial cut of U, and that M 0 denotes the initial marking of N . Keep the notation W 0 from Lemma 1 to denote the set of finite configurations of U, and set:

∀ω ∈ Ω, D(ω) = {v ∈ W 0 : v ⊆ ω, m(v) = M 0 , γ(v) ∩ c 0 = ∅} .
It follows from Lemma 1 that D(ω) is stable under finite intersections. Thus, if non empty, D(ω) admits a unique minimal element, that belongs to D(ω), whence the following definition.

Definition 5 (Global renewal operator).

Let W denote the set of configurations of unfolding U. We define the mapping R : Ω → W as follows:

R(ω) = min D(ω) , if D(ω) = ∅, ω, otherwise.
R is called the global renewal operator of N , or renewal operator for short.

Intuitively, for each ω, R(ω) is the smallest sub-configuration of ω that returns back to the initial marking, making all the tokens move in N , if such configuration exists. It must be compared in the sequential framework with the hitting times introduced in §2.
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Lemma 2. The renewal operator R is a stopping operator.

Proof. We first check that, by construction, D(ω) ⊆ ω for all ω ∈ Ω. It remains thus to check point 2 of Def. 2, i.e.:

∀ω, ω ∈ Ω : ω ⊇ R(ω) ⇒ R(ω ) = R(ω) . ( 18 
)
Let ω, ω ∈ Ω, and assume that ω ⊇ R(ω). According to Def. 5, we have to distinguish two cases:

First case: D(ω) = ∅. Then R(ω) = ω, and thus ω ⊇ ω. Since ω is maximal, it implies ω = ω, and thus R(ω) = R(ω ). Second case: D(ω) = ∅. Set v = R(ω). Then, since ω ⊇ v, we have D(ω ) = ∅ and v ∈ D(ω )
. By minimality, it implies that R(ω ) ⊆ v. Symmetrically, we find that R(ω) ⊆ R(ω ) and thus finally: R(ω) = R(ω ).

Eq. ( 18) is satisfied in both cases: the proof of Lemma 2 is complete.

The Successive Renewal Operators. Having defined the renewal operator, we are brought to iterate the renewal process. This is achieved without difficulty by using the shift operator associated with the renewal operator. We first make the following simple observation.

Lemma 3. Denote by θ R the shift operator associated with the renewal operator R. Then we have:

∀ω ∈ Ω, R(ω) / ∈ Ω ⇒ θ R (ω) ∈ Ω .
Proof. Let ω ∈ Ω, and assume that R(ω) / ∈ Ω. From Def. 5, it follows that D(ω) = ∅ and thus R(ω) is finite. According to Eq. ( 16), it implies: ∈ Ω. Then θ R (ω) represents the tail of ω, after having subtracted the beginning R(ω). Since θ R (ω) ∈ Ω, according to Lemma 3 above, we can apply again the renewal operator to θ R (ω), to obtain the element R • θ R (ω). Since R(ω) ends with marking M 0 , whereas R • θ R (ω) begins with marking M 0 , we can form their catenation in the unfolding U, that we denote by: R(ω

θ R (ω) ∈ Ω m(R(ω)) , but m R(ω) = M 0
) ⊕ R • θ R (ω) ,
and that corresponds indeed to the catenation of any pair of linearization sequences of configurations R(ω) and R • θ R (ω). Continuing this inductive construction, we are brought to state the following generic formula, illustrated by Fig. 2.

S 1 = R, S n+1 = S n ⊕ R • θ Sn .
A more precise definition is as follows. Definition 6. Denote by c 0 the initial cut of U, and denote by W the set of configurations of U. We define the successive renewal operators as the sequence of mappings S n : Ω → W, given by:

S 0 = c 0 , S n+1 (ω) = ω, if S n (ω) ∈ Ω, S n (ω) ⊕ R • θ Sn (ω), if S n (ω) / ∈ Ω.
Remark that we have S 1 = R. Generalizing Lemma 2, the following result holds. Proof. We proceed by induction on integer n. The case n = 0 is trivial. Assume that S n is a stopping operator for some integer n ≥ 0. By construction, S n+1 (ω) ⊆ ω, so it remains to check Point 2 of Def. 2 applied to S n+1 . Let ω, ω ∈ Ω, and assume that ω ⊇ S n+1 (ω). Without loss of generality, we can assume that S n (ω) /

∈ Ω, otherwise S n+1 (ω ) = ω = S n+1 (ω) and we are done. Then ω ⊇ S n (ω), and since S n is a stopping operator according to the induction hypothesis, it implies:

S n (ω ) = S n (ω) . ( 19 
)
It follows that θ Sn (ω ) ⊇ R • θ Sn (ω). But since R is a stopping operator according to Lemma 2, and since θ Sn (ω ) and θ Sn (ω) are two elements of Ω by Lemma 3, we obtain that R • θ Sn (ω) = R • θ Sn (ω ). Together with Eq. ( 19) and Def. 6, it implies that S n+1 (ω) = S n+1 (ω ), which completes the proof.

Recurrent Nets. Now that we have defined the successive renewal operators, that are the successive first returns to the initial marking-in the sense of Def. 5the natural question that arises is: will the successive renewal operators actually define non trivial renewals? Indeed, operator S n falls into the trivial value S n (ω) = ω as soon as there is no n th return to the initial marking in execution ω. This suggests the following definition. Proof. We follow the formal proof that is usually given for sequential systems (see for instance [START_REF] Revuz | Markov chains[END_REF]), and that works with our formalism for concurrent systems. From Def. 6, we have:

{S n+1 / ∈ Ω} = {S n / ∈ Ω} ∩ {R • θ Sn / ∈ Ω} . ( 20 
)
Consider for j ≥ 0 the nonnegative random variables h j = 1 {Sj / ∈Ω} . Let n ≥ 0 and let G = F Sn be the σ-algebra associated with stopping operator S n as in Def. 2. Eq. ( 20) can be written as:

h n+1 = h n 1 {R•θS n /
∈Ω} . Applying successively properties ( 2) and (3) to h n+1 and σ-algebra G, we get, since h n is G-measurable:

P(S n+1 / ∈ Ω) = E(h n+1 ) = E E(h n+1 | G) = E h n E(1 {R•θS n / ∈Ω} | G) . ( 21 
)
By the Concurrent Markov property (Th. 1) applied to stopping operator S n and to any test function (Def. 4) that extends the nonnegative function 1 {R•θS n / ∈Ω} , we have:

E(1 {R•θS n / ∈Ω} | G) = E m(Sn) (1 {R / ∈Ω} ) = P(R / ∈ Ω) ,
the later equality since m(S n ) = M 0 on {S n / ∈ Ω}. Setting a = P(R / ∈ Ω), and using Eq. ( 21), we get:

P(S n+1 / ∈ Ω) = aE(h n ) = aP(S n / ∈ Ω) . (22) 
We distinguish thus two cases. If a = 1, then P(S n / ∈ Ω) = 1 for all n ≥ 1, which implies:

P n≥1 {S n / ∈ Ω} = 1 ,
this is case 1 in Th. 2. Otherwise we have a < 1, and then, from Eq. ( 22):

n≥1 P(S n / ∈ Ω) < ∞ .
By the Borel-Cantelli Lemma (Cf. for instance [START_REF] Breiman | Probability. SIAM[END_REF]), it implies that {S n / ∈ Ω} has probability 0 to occur for infinitely many integers n, which is case 2 of Th. 2.

Comment on Th. 2. In case 1 of Th. 2, we will say that (N , P) is recurrent. Then recurrent nets reduce to recurrent Markov chains in case of a Markov net that reduces to a sequential system, and thus simulates a Markov chain. It follows that Th. 2 extends a well-known result on Markov chains, where "marking" must be replaced by "state".

A practical recurrence criterion is given by the following result. It is convenient to say that a marking m is P-reachable if there is a finite configuration v such that p(v) > 0 and m = m(v). γ(v) denotes as usual the set of terminal conditions of v.

Proposition 1. A Markov net (N , P) is recurrent if and only if:

1. there is a configuration v such that p(v) > 0 and c 0 ∩ γ(v) = ∅, and 2. for every P-reachable marking m, M 0 is P m -reachable. Example 3. Consider again the net depicted in Fig. 1. We have seen in §3, Example 1, that this net can be made a Markov net, by using two probabilistic parameters q 1 and q 2 . These parameters correspond respectively to the probabilities of "local choices" between a and d on the one hand, and between b and b on the other hand. Assume that both parameters are non-degenerated, i.e. p, q / ∈ {0, 1}. Then, using Prop. 1, one sees that net N is recurrent. The probabilistic framework is well adapted to state the recurrence properties of N . Indeed, although N is recurrent, there exists executions ω ∈ Ω with trivial renewal (i.e., that return only finitely many times to the initial marking), for instance ω = (c ab ab ab . . . ). But, as stated by Th. 2, these executions are "rare": all together, they have probability zero.

Example 4. Consider the net depicted in Fig. 3. An analysis of configurations similar to the one explained about the previous example can also be done. As for the previous example, we derive from this analysis the construction of a Markov net from some local probabilistic parameters. One of these parameters is the probability of firing b versus a, say q 0 . As soon as q 0 > 0, the net is nonrecurrent. If moreover q 0 < 1, the random number of renewals, say N , has the geometric law of parameter (1q 0 ), so that P(N = n) = (1q 0 )q n 0 for n ≥ 0. Remark that the law of N only depends on the local probabilistic parameter that concerns the transitions a and b.

Local Renewal for Nets. So far we have shown that our formalism allows to free the probabilistic framework from any global clock, but still keeping qualitative results on the probabilistic behavior of systems. One can argue that the results presented above do not take benefit from the concurrency properties of the model, they only deal with the problems brought by concurrency! Yes. . . It is ?>=< 89:; Local renewal has the following properties: the finiteness of the global renewal guarantees the finiteness of the local renewal-hence iterate local renewals are well defined for recurrent nets. If the net simulates a sequential system, global and local renewals coincide. Finally, if we extend the construction of Markov nets detailed in §3, Example 1, obtained from the decomposition of configurations through local choices, the local choices are precisely determined by the successive local renewals: the local renewals are the random configurations that lead to the local choices. Moreover, the local decisions performed by the net, and associated to the successive occurrences of the same local choice, constitute a sequence of i.i.d. random variables. This quite intuitive result does not hold for general Markov nets. It is the basis for instance of a local performance evaluation, as well as a basic tool for a statistical estimation of parameters.
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Conclusion and Perspectives

This paper has introduced a new definition of Markov nets. Markov nets are a special case of probabilistic nets, which are true-concurrent random systems based on the model of safe Petri nets. Markov nets are defined as memory-less probabilistic nets. We have also introduced for Markov nets notions adapted from Markov chains theory. In particular, stopping operators play the same role than stopping times, and a Concurrent Strong Markov property holds. The efficiency of the Concurrent Strong Markov property is demonstrated by establishing some elements of a renewal theory for nets. In particular, recurrent nets extend the notion of recurrent Markov chains. Interesting enough, nets have tow kinds of renewal: a global and a local one, whereas both coincide for Markov chains.

For further research, one first thinks to a decomposition of nets into recurrent components. Another continuation consists in studying the relationship between stochastic Petri nets and probabilistic Petri nets. In particular, can a probabilis-tic Petri net be seen as the "uniformization" of a stochastic Petri net, generalizing the relationship between discrete and continuous time Markov chains? Finally, we currently work on a compositional theory for Markov nets. Indeed, it is well known that synchronization of sequential systems leads to concurrent systems-for example, synchronizing transition systems bring safe Petri nets. A probabilistic interpretation of the synchronization could furnish elements for a validation a posteriori of our results.
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 1 Fig. 1. Top, a safe Petri net N . Bottom, a partial execution of net N that illustrates the renewal operator

  by construction, and Ω M0 = Ω, hence finally: θ R (ω) ∈ Ω, what was to be shown. Consider then the following inductive construction. Start from an element ω ∈ Ω such that R(ω) /
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 41232 Fig. 2. The successive renewal operators applied to an element ω
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 3 Fig. 3. A non recurrent net

Table 1 .

 1 Comparison of sequential and concurrent probabilistic processes

		Sequential systems	Concurrent systems
	Finite machine	Finite state space S	Finite safe Petri net N
	State	Element of S	Marking of N
	Finite process	Finite sequence of states	Finite configuration
	State reached by a finite process v	State s(v)	Marking m(v)

Definition 7 .

 7 We say that execution ω ∈ Ω has no trivial renewal if:

	Case 1 holds if and only if P(R / ∈ Ω) = 1.
	∀n ≥ 1, S n (ω) / ∈ Ω .
	Theorem 2. Let (N , P) be a Markov net. Then there are only two possibilities:
	1. Elements ω ∈ Ω have probability 1 to have no trivial renewal.
	2. Elements ω ∈ Ω have probability 0 to have no trivial renewal.

With our definition, the transition matrix P of the chain can be retrieved as follows: the s th row of matrix P is the probability vector P s (X1 = s ), for s ranging over S.
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