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ALGEBRAIC MODELLING OF FAULT TREES
WITH PRIORITY AND GATES

Guillaume Merle, Jean-Marc Roussel

LURPA, ENS Cachan
61, avenue du Président Wilson
94285 Cachan Cedex, France
{merle, roussel} Qlurpa.ens-cachan.fr

Abstract: This paper presents a formal framework allowing to extend the simpli-
fication of static fault trees to fault trees built with gates PRIORITY AND. The
laws which make these simplifications possible have been demonstrated thanks to
a homogeneous algebraic definition of each gate studied. These definitions use a
mathematical model of events able to take into account their order of appearance.
The processing of an example points out the possibilities offered by this algebraic
framework dedicated to non-repairable faults. Copyright (©2007 IFAC
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1. INTRODUCTION

A fault tree is a standardized well-known model
used in engineering to express graphically what
the causes of an undesired/catastrophic event are
(IEC 2006) (Vesely et al. 2002). A fault tree is
often built top-down starting from the undesired
event. All the intermediate events which con-
tribute to the undesired event are expanded recur-
sively. The recursion ends with the basic events,
which represent the finest level of abstraction cho-
sen for the study. Each analysed event — top or
intermediate event — is connected to its causes —
sub-events — by a gate. An AND gate indicates
that all sub-events are necessary to trigger the
analysed event; for an OR gate, only one sub-event
is necessary.

The rules of Boolean algebra are commonly ap-
plied to restructure fault trees to simpler, equiv-
alent forms. Amongst them, the minimal cut set
form allows quantitative and qualitative evalua-
tions to be performed in a straightforward manner
(Vesely et al. 2002). Qualitative analysis identifies
single failures or events that alone can cause the

top event to occur. Quantitative analysis consists
of the determination of top event probabilities and
basic event importances.

In the Fault Tree Handbook (Vesely et al. 1981),
a distinct gate was defined to allow priorities
between events: temporal gate PRIORITY AND
(PAND). In addition to the condition of gate
AND, one input event must occur before the
other one for its output event to occur. However,
Boolean algebra cannot take into account this
sequence of events since events are modelled by
Booleans. Consequently, the fault trees using this
gate could not be simplified with the laws of
Boolean algebra.

The aim of this paper is to define a homogeneous
and unambiguous formal framework able to give
gate PAND a semantics which would allow the
determination of the laws necessary to simplify
fault trees. In order to preserve the coherence with
the current results, the framework proposed must
necessarily give gates OR and AND a semantics
allowing to determine the laws commonly used for
the calculation of minimal cut sets.



This paper mainly focuses on the formal frame-
work proposed. Section 2 deals with the detailed
presentation of the problem and the hypotheses
made. The formal framework, described in section
3, relies on the mathematical definition of the
elements present in a fault tree: events, gates, ...
This definition allowed us to establish the laws
necessary to the simplification of fault trees. The
application of these laws is illustrated in section 4.

2. PROBLEM

In this paper, the term fault is used to refer to
fault tree events in order to avoid the confusion
between the concept of event used in fault trees
and the concept used in discrete event systems.

Let us consider the fault tree in figure 1. Its
top fault is s, its basic faults are a, b, ¢, d, and
its intermediate faults are m, n, p, q. This fault
tree contains five gates — three OR gates, one
AND gate and one PAND gate — whose definitions
proposed in the Fault Tree Handbook (Vesely et
al. 1981) are recalled in table 1.
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Fig. 1. Fault Tree with a temporal gate
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Under this form, this fault tree cannot be directly
exploited due to redundant parts. When fault
trees are static, i.e. trees only containing OR and
AND gates, the only knowledge of the state of the
basic faults — failing or not — is sufficient to sim-
plify these trees. For the tree in figure 1, sub-tree
m can be reduced to leaf a by using the following
simplification law: @ + (a.b) = a. When fault trees
are dynamic, e.g. trees containing temporal gates,
only knowing the state of the faults is no longer
sufficient since the gates also refer to the order
of appearance of the faults — cf. definition 3 of
table 1. As the Boolean model of a fault does not
contain this kind of information, the classical laws
of Boolean algebra cannot produce a solution.

Much work has been carried out to give an op-
erational semantics to temporal gates. Some au-
thors convert temporal fault trees into state-based
models to determine the basic fault sequences — or
minimal cut sequences, as suggested in (Tang and

Symbol Definition from (Vesely et al. 1981)
OR The output fault occurs only if one
i or more of the input faults occur.
from figure IV-2
AND The output fault occurs only if all
Q the input faults occur.
from figure IV-5
PRIORITY
amp L2

@ N -
from figure IV-12

Table 1. Definitions of the gates studied

Dugan 2004) — that trigger the top fault, as well
as its probability to appear. These state-based
models are mainly timed Petri nets, in (Adamyan
and He 2003), or Markov chains, in (Coppit et al.
2000). Deterministic and Stochastic Petri Nets are
also used in (Kaiser et al. 2007) to analyse quan-
titatively state/event fault trees, which combine
elements of fault tree analysis, Markov chains and
state automata. In (Buchacker 2000), an alterna-
tive solution to temporal gates is studied with Ex-
tended fault trees taking into account repairable
components and allowing stochastic dependencies
thanks to stochastic Petri nets.

The proposed approach is purely algebraic, as
in (Walker and Papadopoulos 2006). It aims at
defining the set of laws which is necessary to
simplify fault trees with PAND gates upstream,
in order to make the state-based models presented
above simpler. This paper deals with the trees
containing the three gates presented in table 1,
whose definitions come from (Vesely et al. 1981).

A definition can be commented upon: as stated
in (Coppit et al. 2000), the term ”"BEFORE”
is ambiguous: it is not clear whether the term
is considered strictly — A must appear before B
occurs — or not strictly — A must appear before B
occurs or at the same time as B occurs.

The hypotheses for this paper are as follows:

e the class of faults studied is limited to non-
repairable — persistent — faults.

e there is no restriction on the order of ap-
pearance of the faults. Two basic faults can
appear simultaneously.

e the term "BEFORE” is considered strictly.
This hypothesis is the same as that in (Wal-
ker and Papadopoulos 2006).

Taking these hypotheses into account, the ex-
pected behaviour of the three gates studied can
be represented with timing diagrams. They dis-



play the behaviour of output Q according to the
behaviour of inputs A and B. The three cases
to consider are as follows: A appears before B
appears, A appears at the same time as B appears,
A appears after B has appeared.

The expected behaviour of the three gates studied
is shown in table 2.

Symbol Expected behaviour
values of A, B and Q at discontinuity

points are represented by a black dot

OR Gate
ALY Y ! !
0 t0 t0 t
B! I ! I ! I
0 t0 t0 t
Q'[! B Y19
0 t0 t0 t
AND Gate
A y
ALY N ! !
0Oe—O—» t 0 t0 ¢——O—» t
! \ e Y19
0O¢——O—» t0 t0 ¢H—O—» t
! \ B ! !
0Oe———O0—» t0 t0 &—O—» t
PAND Gate
A A
ALY Y ! !
0Oe—O—» t0 t0 ¢——O0—» t
B! I ! I ! I
0O¢H——O—» t0 t0 ¢H—O—» t
1 *— 1 1
E Q \
0Oe———O0—» t0 t0 &——m» t

Table 2. Ezxpected behaviour in the case
of non-repairable faults

3. FORMAL FRAMEWORK PROPOSED

The aim of this work is to determine the laws
necessary to simplify fault trees containing PAND
gates. Consequently the gates of a fault tree were
formalized thanks to a mathematical description,
to obtain an algebraic form adapted to this kind of
calculation. For the sake of clarity during the mod-
elling phase, each concept and element present in
a fault tree were mathematically defined. Section
3.1 deals with this. The mathematical model of
gates OR and AND, together with the list of the
laws which were demonstrated thanks to it, is
presented in section 3.2. Section 3.3 deals with
operation "BEFORE” defined in order to model
gate PAND. The algebraic model of the three
gates studied is given in section 3.4.

3.1 Mathematical definition of fault tree concepts

3.1.1. Non-repairable faults In the case of non-
repairable or persistent faults, the knowledge of
the date of appearance of a fault allowed us to de-
scribe the fault without any ambiguity, provided
the occurrence of a fault is considered as instant.
Before that date, the fault is absent; at that date

and after that date, the fault is present. Taking
these hypotheses into account, a non-repairable
fault is shown in the timing diagram in figure 2.
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Fig. 2. A non-repairable fault ® a(t;)
From a mathematical point of view, a non-
repairable fault is a piecewise right-continuous
function on RTU{+o00}, whose range is B = {0,1},
and which allows at most a single change of value
— a single discontinuity. This function has the
following characteristics:

e it is worth 0 as long as there is no fault

e it is worth 1 as soon as the fault has appeared
— at the instant noted d(a) on the timing
diagram in figure 2

Let F,, be the set of non-repairable faults. F,.
contains two elements that are special since they
are constant. The always-present fault is noted e:
vVt € RT U {+cc}, e(t) = 1. The never-occurring
fault is noted e: Vt € RT U {400}, €(t) = 0.

Definition 1. (Date of appearance of a fault).
The date of appearance of a fault a is the instant ¢
at which fault a appears. This date is noted d(a).

In regards to the always-present fault and the
never-occurring fault, d(e) = 0 and d(e) = +oo.

Definition 2. (Simultaneous faults). Let a and
b be two elements of F,,. Faults ¢ and b are
simultaneous — noted a ~ b — if and only if they
have the same date of appearance: d(a) = d(b).

3.1.2. Fault functions A fault tree describes
how basic faults must combine to form the top
fault. From a mathematical point of view, the top
fault can be considered as the image of the n-tuple
of the basic faults by the fault function whose
expression is the considered fault tree.

Definition 3. (Fault function). A fault function
of order n is an application from (F,,.)" — Fp,
with n € N*,

Let U, = {f:(Fnr)™ — Fnr} be the set of
the fault functions of order n. ¥, contains two
fault functions that are special because they are
constant. These fault functions are noted T and
1 and are defined as follows. Henceforth, A is any
n-tuple (a1,as,...,a,) of (Fps)™.

Definition 4. (Function T). T is the fault func-
tion which associates the always-present fault e to
any n-tuple A € (F,,)™:



T: (For)™ — For

(a1,a9,...,a,) —> e

Definition 5. (Function L1). L is the fault func-
tion which associates the never-occurring fault e
to any n-tuple A € (F,,)™:

1 (]_-nr)n — fnr

(a1,a2,...,a,) — €

Definition 6. (Equivalent fault functions). Let
f and g be two elements of ¥,,. Fault functions f
and g are equivalent — noted f ~ g — if and only

if VA € (Fur)™, f(A) = g(A).

Comment: The concepts of fault and fault func-
tion are both mathematically described by func-
tions, but these functions are of different natures:

e faults are functions from RT U {+o00} — B
whose set is noted F,,,.

e fault  functions are functions from
(For)™ — Fpr whose set is noted ¥,
3.1.3. Expression of a fault function A fault

tree is the expression shown in a graphical form of
a fault function defined on the n-tuple of the basic
faults present in that tree. The fault tree shown
in figure 1 is the graphical representation of the
fault function which associates the top fault s to
the quadruple of basic faults (a,b, ¢, d).

Definition 7. (Equivalent trees). Two fault
trees are equivalent if and only if they describe
the same fault function or two equivalent fault
functions.

The simplification of the tree consists of finding
an equivalent expression of the fault function free
of redundant parts.

The link between a fault tree and a fault function
is the same as between a Boolean expression and
a Boolean function. This link is as follows:

e a Boolean function can be represented by
many Boolean expressions

e two Boolean expressions are equivalent if
they represent the same Boolean function

e the link between two equivalent Boolean ex-
pressions depends on the laws established
for operations defined on the set of Boolean
functions (Grimaldi 2003)

By analogy to Boolean expressions and Boolean
functions, fault trees have been simplified by using
the laws established for the operations defined on
the set of fault functions.

3.1.4. Mathematical model of fault tree elements
Each kind of gate of a fault tree is characterized

by an operation on a set of fault functions. It is
the set of the fault functions defined on the n-
tuple of the basic faults present in the fault tree.
The top fault and each intermediate fault are the
images of the n basic faults by a fault function. In
the interest of homogeneity, each leaf of the tree
should also be considered as a fault function. That
fault function is special since the image of the n-
tuple of basic faults by that function is the basic
fault having the same name.

Definition 8. (Basic fault function). The basic
fault functions are the n fault functions of order
n o; —with i € {1,2,...,n} — defined by:
o (Frr)"
(al,ag,...,ai,...

‘7:7’LT

7an) — a4

Each leaf of the fault tree presented in figure 1 is
one of the four basic fault functions.

3.2 Operations OR and AND

Be f,g,h € ¥,.

3.2.1. Definition of operations OR and AND
These operations model the behaviour of gates
OR and AND shown in table 2.

Definition 9. (Operation OR).

+ ¥, xV¥, — ¥,

(f,9) — f+yg
f + g being defined, for all A € (F,)", by:
f(A) it d(f(A)) < d(g(A))
g(A) if d(f(A)) > d(g(A))
f(A) it d(f(A)) = d(g(A))
Definition 10. (Operation AND).
v, xVv, — U,

(f +9)(A) =

(fr9) +— fg
f-g being defined, for all A € (F,,.)™, by:
g(A) if d(f(A)) < d(g(A))
(f-9)(A) = ¢ f(A) if d(f(A)) > d(g(A))
f(A) it d(f(A)) = d(g(A))

Comment: These definitions appear to privilege
f with regard to g when d(f(A)) = d(g(A)); that
is not the case, since operations OR and AND
have been demonstrated as being commutative.

3.2.2. Laws of operations OR and AND  These
two definitions allowed the demonstration of the
following 14 laws:



frg~g+f (1)
fg~g.f (2)
f+(g+h)~(f+g9) +h (3)
fg-h) ~ (f.9).h (4)
f+r~7f (5)
ff~f (6)
f+(g-h) ~ (f+9).(f +h) (7)
f(g+h)~(f.g9)+(fh) (8)
f+(f9) ~f (9)
f(f+g)~f (10)
fHLl~f (11)
£T~f (12)
f+4T~T (13)
fl~L (14)

The obtention of laws 1 to 10 was mandatory
in order to guarantee that this formal framework
could replace the classical Boolean algebra for the
calculation of the minimal cut sets of static fault
trees with non-repairable faults.

The main benefit of this formal framework is to
allow the definition of a new operation to take into
account the sequence order between faults.

3.8 Operation BEFORE

This operation was introduced to model the con-
cept of priority between faults on which the defi-
nition of gate PAND depends.

3.3.1. Definition The expected behaviour of the
composition of f and g by operation BEFORE —
noted f<1g — is illustrated by the timing diagrams
in figure 3 — Case 1: d(f(A)) < d(g(A)), Case 2:
d(f(A)) = d(g(A)), Case 3: d(f(A)) > d(g(A)).

{79 U0 S 5 SN S S
s(A) T, LI, LI
(fag)(A), ] C o S SR
Case 1 Case 2 Case 3

Fig. 3. Expected behaviour for (f <1 g)(A)

Definition 11. (Operation BEFORE).
< U, xV¥, — U,
(f,9) — f<y
f < g being defined, for all A € (F,,.)", by:

f(A) ifd(f(A)) < d(g(A))

(f <9)(A) = {J_(.A) if d(f(A)) > d(g(A))

3.3.2. Laws of operation BEFORE  The defini-
tion of these three operations allowed us to deter-
mine the 14 following laws:

f+(f<g)~f (15)
g+(f<g)~f+g (16)
f(f<g)~f<g (17)
fH{(f<g)h)~f (18)
f<a(g+h)~(f<g).(f<h) (19)
(f+g9)<h~(f<h)+(g<h)  (20)
f<(gh)~(f<g)+(f<h) (21)
(f.9) <h~(f<h).(g<h) (22)
(f<9).(g<h).(f<ah)~(f<g).(g9ah)(23)
(fag)g<f)~1L (24)
faf~1 (25)
faln~f (26)
L<af~l (27)
faT~L1 (28)

The algebraic definition of this operation was one
of the objectives of this work. The homogeneous
framework defined above thus allows the mod-
elling and algebraic manipulation of fault trees
with PAND gates.

3.4 Algebraic model of the gates
Table 3 recalls the elements of table 1 and presents
the algebraic model associated with each gate.

OR Gate AND Gate PAND Gate

/\
%] [7]

Q~ B.(A<B)

Q~ A+B
Table 3. Algebraic model of gates OR,
AND and PAND

Q~A.B

Regarding gate PAND, the following simplified
form can be found:

Q ~ (A.B).(A<B) X B.(A.(A<B))

W B.(A<aB)

4. SIMPLIFICATION OF FAULT TREES
WITH PAND GATES

Determining laws 15 to 28 was the operational
objective of this work. Combined with laws 1
to 14, they allow the simplification of the fault
trees which contain gate PAND. These laws are



sufficient to analyse any fault tree which does not
contain imbricated combinations of PAND gates
— i.e. PAND gates whose input sub-trees contain
PAND gates.

In order to simplify any tree containing PAND
gates whatever its structure, the development laws
of forms f <1 (g < h) and (f<1g)<th are mandatory.

The simplification of a fault tree consists in:

(1) expressing the output of each gate according
to its inputs, thanks to the algebraic model
given in table 3

(2) developping the expression obtained by ap-
plying laws (8)(19)(20)(21)(22) as many times
as necessary

(3) simplifying it by applying the other laws as
many times as necessary

(4) building the fault tree related to the simpli-
fied expression obtained

The application of this method to the tree in figure
1 allows us to obtain the equivalent fault tree
given in figure 4. Its simplification is as follows:

s ~ m+n~(a+p)+(d(g<d))
~ (a+(a.b))+ (d.((a+c)<d))

2 (4 + (ab) + (d((a < d) + (c < d)))
D (@t (ab) +d(a<d) +d(c<ad)
@ a+d.(a<d)+d.(c<d)

(2,18)

~a+d.(c<d)

The simplification technique presented above has
been validated by the development of a symbolic
calculus module on Mathematica™ dedicated to
the simplification of fault trees with PAND gates.
It contains all the laws presented in this paper.

Fig. 4. Fault Tree equivalent to Fault Tree
n figure 1

5. CONCLUSION

The first contribution of this work is the definition
of a homogeneous and unambiguous framework
for the formalization of gate PAND. This frame-
work allowed us to determine the laws necessary
to the simplification of fault trees containing PRI-
ORITY AND gates. The hypotheses made were

as follows: basic faults are non-repairable faults,
they can appear simultaneously, and the notion of
priority is considered strictly.

On-going work deals with determining the devel-
oped forms of the two laws presented in section
4, which will allow the simplification of fault trees
with PAND gates compositions.

In the short term, the consequences of the hypoth-
esis made on priority — strict priority — will be
studied by developing a new operation for which
the output fault would also occur if both input
faults occur simultaneously, as it was supposed in
(Coppit et al. 2000). The extension of the work to
other temporal gates — such as gate SEQ (Coppit
et al. 2000) — is also planned.
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