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Abstra
t. Sin
e their introdu
tion by Alur and Dill, timed automatahave been one of the most widely studied models for real-time systems.The synta
ti
 extension of so-
alled updatable timed automata allowsmore powerful updates of 
lo
ks than the reset operation proposed inthe original model.We prove that any language a

epted by an updatable timed automa-ton (from 
lasses where emptiness is de
idable) is also a

epted by a�
lassi
al� timed automaton. We propose even more pre
ise results onbisimilarity between updatable and 
lassi
al timed automata.
1 Introdu
tionSin
e their introdu
tion by Alur and Dill [2, 3℄, timed automata have beenone of the most studied models for real-time systems (see [4, 1, 16, 8, 12, 17, 13℄).In parti
ular numerous works proposed extensions of timed automata [7, 10, 11℄.This paper fo
uses on one of this extension, the so-
alled updatable timedautomata, introdu
ed in order to model the ATM proto
ol ABR [9℄. Updatabletimed automata are 
onstru
ted with updates of the following forms:x :� 
 j x :� y + 
 where x; y are 
lo
ks; 
 2 Q + and �2 f<;�;=; 6=;�; >gIn [5℄, the (un)de
idability of emptiness of updatable timed automata hasbeen 
hara
terized in a pre
ise way (see Se
tion 2 for detailed results). We ad-dress here the open question of the expressive power of updatable timed au-tomata (from de
idable 
lasses). We solve 
ompletely this problem by provingthat any language a

epted by an updatable timed automaton is also a

eptedby a �
lassi
al� timed automaton with "-transitions. In fa
t, we propose evenmore pre
ise results by showing that any updatable timed automaton using onlydeterministi
 updates is strongly bisimilar to a 
lassi
al timed automaton andthat any updatable timed automaton using arbitrary updates is weakly bisimilar(but not strongly bisimilar) to a 
lassi
al timed automaton.The paper is organized as follows. In Se
tion 2, we present updatable timedautomata, generalizing 
lassi
al de�nitions of Alur and Dill. Several natu-ral equivalen
es of updatable timed automata are introdu
ed in Se
tion 3. Thebisimulation algorithms are presented in Se
tion 4.For la
k of spa
e, this paper 
ontains only some sket
hs of proofs. They areavailable on the te
hni
al report [6℄.



2 Updatable Timed AutomataTimed Words and Clo
ksIf Z is any set, let Z� (respe
tively Z!) be the set of �nite (resp. in�nite)sequen
es of elements in Z and let Z1 = Z� [Z!. We 
onsider as time domainT the set of non-negative rational Q + and � as �nite set of a
tions. A timesequen
e over T is a �nite or in�nite non de
reasing sequen
e � = (ti)i�1 2 T1 .A timed word ! = (ai; ti)i�1 is an element of (� � T)1 .We 
onsider an at most 
ountable set X of variables, 
alled 
lo
ks. A 
lo
kvaluation over X is a mapping v : X ! T that assigns to ea
h 
lo
k a time value.Let t 2 T, the valuation v + t is de�ned by (v + t)(x) = v(x) + t, 8x 2 X .Clo
k ConstraintsGiven a subset of 
lo
ks X � X , we introdu
e two sets of 
lo
k 
onstraints overX. The most general one, denoted by C(X), is de�ned by the following grammar:' ::=x�
 jx�y�
 j'^' j :' j true; with x; y2X; 
2Q + ;�2f<;�;=; 6=;�; >gThe proper subset Cdf (X) of �diagonal-free� 
onstraints in whi
h the 
omparisonbetween two 
lo
ks is not allowed, is de�ned by the grammar:' ::=x�
 j'^' j :' j true; with x2X; 
2Q + and �2f<;�;=; 6=;�; >gWe write v j= ' when the 
lo
k valuation v satis�es the 
lo
k 
onstraint '.UpdatesAn update is a fun
tion whi
h assigns to ea
h valuation a set of valuations. Here,we restri
t ourselves to lo
al updates whi
h are de�ned in the following way. Asimple update over a 
lo
k z is of one of the two following forms:up ::= z :� 
 j z :� y + d; where 
; d 2 Q + ; y 2 X and �2 f<;�;=; 6=;�; >gWhen the operator � is the equality (=), the update is said to be deterministi
,non deterministi
 otherwise. Let v be a valuation and up be a simple updateover z. A valuation v0 is in up(v) if v0(y) = v(y) for any 
lo
k y 6= z and ifv0(z) � 
 (v0(z) � v(y) + d resp.) if up = z :� 
 (up = z :� y + d resp.)The set lu(U) of lo
al updates generated by a set of simple updates U is de�nedas follows. A 
olle
tion up = (upi)1�i�k is in lu(U) if, for ea
h i, upi is a simpleupdate of U over some 
lo
k xi 2 X (note that it 
ould happen that xi = xjfor some i 6= j). Let v; v0 2 Tn be two 
lo
k valuations. We have v0 2 up(v)if and only if, for any i, the 
lo
k valuation v00 de�ned by v00(xi) = v0(xi) andv00(y) = v(y) for any y 6= xi veri�es v00 2 upi(v).Note that up(v) may be empty. For instan
e, the lo
al update (x :< 1; x :> 1)leads to an empty set. But if we take the lo
al update (x :> y; x :< 7), the valuev0(x) has to satisfy : v0(x) > v(y) ^ v0(x) < 7.For any subset X of X , U(X) is the set of lo
al updates whi
h are 
olle
tions ofsimple updates over 
lo
ks of X. In the following, U0(X) denotes the set of resetupdates. A reset update is an update up su
h that for every 
lo
k valuation v,v0 with v0 2 up(v) and any 
lo
k x 2 X, either v0(x) = v(x) or v0(x) = 0. It ispre
isely this set of updates whi
h was used in �
lassi
al� timed automata [3℄.



Updatable Timed AutomataAn updatable timed automaton over T is a tuple A = (�;Q;X; T; I; F;R), where� is a �nite alphabet of a
tions, Q a �nite set of states, X � X a �nite set of
lo
ks, T � Q� [C(X)�� [ f"g � U(X)℄�Q a �nite set of transitions, I � Q(F � Q, R � Q resp.) the subset of initial (�nal, repeated resp.) states.Let C � C(X) be a subset of 
lo
k 
onstraints and U � U(X) be a subset ofupdates, the 
lass Aut"(C;U) is the set of all timed automata whose transitionsonly use 
lo
k 
onstraints of C and updates of U . The usual 
lass of timedautomata, de�ned in [2℄, is the family Aut"(Cdf (X);U0(X)).A path in A is a �nite or an in�nite sequen
e of 
onse
utive transitions:P = q0 '1;a1;up1������! q1 '2;a2;up2������! q2 : : : ; where (qi�1; 'i; ai; upi; qi) 2 T; 8i > 0The path is said a

epting if q0 2 I and either it is �nite and it ends in an �nalstate, or it is in�nite and passes in�nitely often through a repeated state. A runof the automaton through the path P is a sequen
e of the form:hq0; v0i '1;a1;up1������!t1 hq1; v1i '2;a2;up2������!t2 hq2; v2i : : :where � = (ti)i�1 is a time sequen
e and (vi)i�0 are 
lo
k valuations su
h that8x 2 X ; v0(x) = 0 and 8i � 1; vi�1+(ti�ti�1) j= 'i and vi 2 upi(vi�1+(ti�ti�1).Remark that any set upi(vi�1 + (ti � ti�1)) of a run is non empty.The label of the run is the sequen
e (a1; t1)(a2; t2) � � � 2 ((� [ f"g)� T)1 . Thetimed word asso
iated with this sequen
e is w = (ai1 ; ti1)(ai2 ; ti2) : : : whereai1ai2 : : : is the sequen
e of a
tions whi
h are in � (i.e. distin
t from "). If thepath P is a

epting then the timed word w is a

epted by the timed automaton.About De
idability of Updatable Timed AutomataFor veri�
ation purposes, a fundamental question is to know if the emptiness of(the language a

epted by) an updatable timed automaton is de
idable or not.The paper [5℄ proposes a pre
ise 
hara
terization whi
h is summarized in thepi
ture below. Note that de
idability 
an depend on the set of 
lo
k 
onstraintsthat are used � diagonal-free or not � whi
h makes an important di�eren
ewith �
lassi
al� timed automata for whi
h it is well known that these two kindsof 
onstraints are equivalent. The te
hnique proposed in [5℄ shows that all thede
idability 
ases are Pspa
e-
omplete.diagonal-free 
lo
k 
onstraints general 
lo
k 
onstraints
Determin
isti
 updates

x := 
 ; x := y De
idable De
idablex := y + 
, 
 2 Q+ De
idable Unde
idablex := y + 
, 
 2 Q� Unde
idable Unde
idable

Nondete
rministi
 updates

x :< 
, 
 2 Q+ De
idable De
idablex :> 
, 
 2 Q+ De
idable Unde
idablex :< y + 
, 
 2 Q+ De
idable Unde
idablex :> y + 
, 
 2 Q+ De
idable Unde
idable



The present paper adresses the natural question of the exa
t expressive powerof the de
idable 
lasses. To solve this problem, we �rst introdu
e natural and
lassi
al equivalen
es between updatable timed automata.
3 Some Equivalen
es of Updatable Timed AutomataLanguage Equivalen
eTwo updatable timed automata are language-equivalent if they a

ept the sametimed language. By extension, two families Aut1 and Aut2 are said to be equiv-alent if any automaton of one of the families is equivalent to one automatonof the other. We write �` in both 
ases. For instan
e, Aut"(Cdf (X);U0(X)) �`Aut"(C(X);U0(X)), (see e.g. [7℄).BisimilarityBisimilarity [15, 14℄ is stronger than language equivalen
e. It de�nes a step bystep 
orresponden
e between two transition systems. Two labelled transition sys-tems T = (S; S0; E; ( e�!)e2E) and T 0 = (S0; S00; E; ( e�!)e2E) are bisimilar when-ever there exists a relation R � S � S0 whi
h meets the following 
onditions:initialization : �8s0 2 S0, 9s00 2 S00 su
h that s0Rs008s00 2 S00, 9s0 2 S0 su
h that s0Rs00

propagation : 8>>><>>>:
if s1Rs01 and s1 e�! s2 then there exists s02 2 S0su
h that s01 e�! s02 and s2Rs02if s1Rs01 and s01 e�! s02 then there exists s2 2 Ssu
h that s1 e�! s2 and s2Rs02Strong and Weak BisimilarityTimed transition systems - Ea
h updatable timed automaton A =(�;Q;X; T; I; F;R) in Aut"(C(X);U(X )) de�nes a timed transition system TA =(S; S0; E; ( e�!)e2E) as follows :� S = Q� TX , S0 = fhq; vi j q 2 I and 8x 2 X; v(x) = 0g, E = � [ f"g [ Q +� 8a2� [ f"g, hq; vi a�!hq0; v0i i� 9(q; '; a; up; q0)2T s.t. v j= ' and v02up(v)� 8d 2 Q + , hq; vi d�! hq0; v0i i� q = q0 and v0 = v + dWhen " is 
onsidered as an invisible a
tion, ea
h updatable timed automaton Ain Aut"(C(X);U(X )) de�nes another transition system T 0A = (S; S0; E0; ( e))e2E)as follows:� S = Q� TX , S0 = fhq; vi j q2I and 8x2X; v(x) = 0g, E0 = � [ Q +� 8a2�, hq; vi a) hq0; v0i i� hq; vi "�!� a�! "�!� hq0; v0i� 8d2Q + , hq; vi d)hq0; v0i i� hq; vi "�!� d1�! "�!�: : : dk�! "�!� hq0; v0i and d =Pki=1diTwo bisimilarities for timed automata - Two updatable timed automata A andB are strongly bisimilar, denoted A �s B, if TA and TB are bisimilar. They areweakly bisimilar, denoted A �w B, if T 0A and T 0B are bisimilar.



Remark 1. Two timed strongly bisimilar automata are obviously weakly bisim-ilar. If the bisimulation R preserves the �nal and repeated states, weakly orstrongly bisimilar updatable timed automata re
ognize the same language.Let A a timed automaton and � be a 
onstant. We denote by �A the timedautomaton in whi
h all the 
onstants whi
h appear are multiplied by the 
onstant�. The proof of the following lemma is immediate and similar to the one ofLemma 4.1 in [3℄. This lemma allows us to treat only updatable timed automatawhere all 
onstants appearing in the 
lo
k 
onstraints and in the updates areinteger (and not arbitrary rationals).Lemma 1. Let A and B be two timed automata and � 2 Q + be a 
onstant.Then A �w B () �A �w �B and A �s B () �A �s �B4 Expressive Power of Deterministi
 UpdatesWe �rst deal with updatable timed automata where only deterministi
 updatesare used. The following theorem is often 
onsidered as a �folklore� result.Theorem 1. Let C � C(X) be a set of 
lo
k 
onstraints and let U � lu(fx :=d jx 2 X and d 2 Q +g [ fx := y jx; y 2 Xg). Let A be in Aut"(C;U). Thenthere exists B in Aut"(C(X);U0(X)) su
h that A �s B.The next theorem is 
lose to the previous one. Note nevertheless that this theo-rem be
omes false if we 
onsider arbitrary 
lo
k 
onstraints, sin
e as we re
alledin se
tion 2, the 
orresponding 
lass is unde
idable.Theorem 2. Let C � Cdf (X) be a set of diagonal-free 
lo
k 
onstraints. LetU � lu(fx := d jx 2 X and d 2 Q +g [ fx := y + d jx; y 2 X and d 2 Q +g).Let A be in Aut"(C;U). Then there exists B in Aut"(Cdf (X);U0(X)) su
h thatA �s B.5 Expressive Power of Non Deterministi
 UpdatesIn the 
ase of non deterministi
 updates, we �rst show that it is hopeless toobtain strong bisimulation with 
lassi
al timed automata. To this purpose, letus 
onsider the automaton C of Figure 1. It has been proved in [7℄ that thereis no 
lassi
al timed automaton without "�transitions that re
ognize the samelanguage than C.Now, it is not di�
ult to prove that the automaton C re
ognizes the same lan-guage than the automaton B and that B re
ognizes itself the same language thanA. If A was strongly bisimilar to some automaton D of Aut"(C(X);U0(X)), thisautomaton D would not 
ontain any "�transition (sin
e A does not 
ontain su
htransition). Hen
e L(D) would be equal to L(A) = L(C), in 
ontradi
tion withthe result of [7℄ re
alled above. Sin
e A belongs to the 
lass Aut"(C(X);U1(X))(where U1(X) denotes the set of updates 
orresponding to the 
ells labelled �de-
idable� in the �general 
lo
k 
onstraints� 
olumn in tabular of Se
tion 2), wethus have proved:



A

0<x<1; b; y :<0
x=1^x=y�1;a; x :=0

y=1^y=x�1;a; y :=0
�1<y<0; b; x :<0

0<x<1^x=y�1; b; y :<0
0<y<1^y=x�1; b; x :<0x=1;a;x :=0 y=1;a;y :=0

B C
x=1;a;x :=0 0<x<1;b;x :=x�1 x=1;a;x :=0 0<x<1; b

x=1; "; x :=0Fig. 1. Timed automata A, B and CProposition 1. Aut"(C(X);U1(X)) 6�s Aut"(C(X);U0(X))We now fo
us on weak bisimilarity. As it will appear, the 
onstru
tion ofan automaton of Aut(C(X);U0(X)) weakly bisimilar to a given automaton ofAut(C(X);U1(X)) is rather te
hni
al. As we re
alled in Se
tion 2, the de
idable
lasses of updatable timed automata depend on the set of 
lo
k 
onstraints thatare used. We 
onsider �rst the 
ase of diagonal-free 
lo
k 
onstraints.We �rst propose a normal form for diagonal-free updatable automata. Let(
x)x2X be a family of 
onstants of N . In what follows we will restri
t ourselvesto the 
lo
k 
onstraints x � 
 where 
 � 
x. We de�ne: Ix = f℄d; d+1[ j 0 � d <
xg [ f[d℄ j 0 � d � 
xg [ f℄
x;1[gA 
lo
k 
onstraint ' is said to be total if ' is a 
onjun
tion Vx2X Ix where forea
h 
lo
k x, Ix is an element of Ix. Any diagonal free 
lo
k 
onstraint boundedby the 
onstants (
x)x2X is equivalent to a disjun
tion of total 
lo
k 
onstraints.We de�ne I 0x = f℄d; d+1[ j 0 � d < 
xg[f℄
x;1[g. An update upx is elementaryif it is of one of the two following forms:- x := 
 or x 2 I 0x with I 0x 2 I 0x,- Vy2H x :� y+
^x 2 I 0x with �2 f=; <;>g, I 0x 2 I 0x and 8y 2 H, 
x � 
y+
.An elementary update ((Vy2H x :� y + 
) ^ x 2 I 0x) is 
ompatible with a totalguard Vx2X Ix if, for any y 2 H, Iy + 
 � I 0x. By applying 
lassi
al rulesof propositional 
al
ulus and splitting the transitions, we obtain the followingnormal form for diagonal-free updatable timed automata.Proposition 2. Any diagonal-free updatable timed automaton fromAut"(Cdf (X);U(X)) is strongly bisimilar to a diagonal-free updatable timedautomaton from Aut"(Cdf (X);U(X)) in whi
h for any transition (p; '; a; up; q)it holds:� ' is a total guard� up = Vx2X upx with for any x, upx is an elementary update 
ompatiblewith '



Constru
tion for Diagonal-Free Updatable Timed AutomataWe 
an now state our main result 
on
erning updatable diagonal-free timedautomata:Theorem 3. Let C � Cdf (X) be a set of diagonal-free 
lo
k 
onstraints. LetU � U(X) be a set of updates. Let A be in Aut(C;U). Then there exists B inAut"(Cdf (X);U0(X)) su
h that A �w B. In parti
ular A and B a

ept the sametimed language.Proof (Sket
h of proof). Thanks to Lemma 1 and Proposition 2, we assume thatall the 
onstants appearing in A are integers and that A is in normal form forsome 
onstants (
x)x2X . For ea
h 
lo
k x, we denote by I 00x the set of intervalsf℄
; 
+ 1[ j 0 � 
 < 
xg.A 
lo
k x is said �xed if the last update of x was of the form either x := 
 or(Vy2H x := y + 
) ^ x :2 I 0x where all the 
lo
ks of H were �xed themselves. A
lo
k whi
h is not �xed is said �oating.The transformation algorithm 
onsists in 
onstru
ting (a lot of) 
opies of theoriginal automaton A, adding suitable 
lo
ks, transforming the existing transi-tions and �nally adding "�transitions going from one 
opy to another.Dupli
ation of the initial automaton - For ea
h subset Y � X, for ea
h tuple(Iy)y2Y with Iy 2 I 00y , for ea
h partial preorder � de�ned on Y and for ea
hsubset Z � Y , we 
onsider a 
opy of A, denoted by A(Iy)y2Y ;�;Z . Intuitively,ea
h 
lo
k y 2 Y will be �oating and with Iy as set of possible values. Thepreorder � 
orresponds to the partial order between the fra
tional parts of the
lo
ks of Y . The role of Z will be explained below.Keeping in mind the fra
tional part of the 
lo
ks - We asso
iate with ea
h
lo
k x an other 
lo
k zx representing the fra
tional part of x. In an automatonA(Iy)y2Y ;�;Z , we need to for
e the fra
tional part of any 
lo
k x to stay in [0; 1[.If a fra
tional part rea
hs the value 1, then either the 
lo
k is in Y and we will
hange of automaton (see below) or the 
lo
k is not in Y and the fra
tional parthas to be reset to 0. To this purpose, we add to this automaton:� on ea
h transition, the 
lo
k 
onstraint Vx2X(zx < 1)� on ea
h state r, for ea
h 
lo
k x 2 X n Y , a loop (r; zx = 1; "; zx := 0; r)Erasing some transitions - Sin
e in an automaton A(Iy)y2Y ;�;Z , a 
lo
k y 2 Ywill always verify y 2 Iy, a total 
lo
k 
onstraint ' ^Vx x 2 I 0x 
an be satis�edonly if I 0y = Iy for all y 2 Y . Therefore, we erase all the transitions with 
lo
k
onstraints whi
h do not have this property.Modi�
ation of the updates - We 
onsider a 
opy A(Iy)y2Y ;�;Z and a transi-tion (q; '; a; up; q0) inside this 
opy. This transition will be repla
ed by anothertransition (q; '; a;
up; bq0) from A(Iy)y2Y ;�;Z to another automaton A( bIy)y2 bY ;b�;bZ(whi
h 
an be possibly A(Iy)y2Y ;�;Z itself) and where bq0 is the 
opy of q0 in thenew automaton. The elements bY , (Iy)y2Y , b� and 
up are 
onstru
ted indu
tivelyby 
onsidering one after the other the updates upx involved in up (the order inwhi
h the updates are treated is irrelevant). The new update 
up will be only




onstituted of updates of the form x := 
 or x := y + 
. Initially, we set bY = Y ,bIy = Iy for all y 2 Y , b� =�, 
up = true and bZ = Z.Before listing the di�erent updates, let us explain the role of the set Z. Assumethat a 
lo
k x is updated by an instru
tion x :< y + 
 where y is �oating.Then the 
lo
k x is added to the set of �oating 
lo
ks. Sin
e we do not want touse anymore non deterministi
 updates, we update the fra
tional part zx to 0,zx := 0. But we need to keep the 
urrent value of zy in order to ensure that zx,whi
h has to be smaller than zy, will not rea
h 1 before zy. Of 
ourse, it 
an be
he
ked easily if y is not updated but if it is the 
ase, we do not have any wayto verify this fa
t. Therefore, in su
h a 
ase, we add the 
lo
k x to the set Z andwe use a new 
lo
k wx to keep in mind the 
urrent value of zy: wx := zy. Therequired property is then veri�ed by the 
ondition wx � 1.� if upx is equal to x := 
 then we just have to 
onsider x as �xed:� bY  bY n fxg, bZ  bZ n fxg, 
up 
up ^ x := 
 ^ zx := 0� if upx is equal to Vy2H x := y + 
 ^ x :2 I 0x then :1. if I 0x is bounded, then we write H as the disjoint union of H1 = H \ Yand H2 = H n Y . We distinguish two 
ases:(a) if H1 = ;, then:� bY  bY n fxg, bZ  bZ n fxg� 
up 
up ^Vy2H(x := y + 
 ^ zx := zy)(b) if H1 6= ;, then:� bY  bY [ fxg, bIx  I 0x, bZ  bZ [ fxg� for ea
h y 2 H1, xb�y and yb�x� 
up  
up ^ Vy2H2(x := y + 
 ^ zx := zy) ^ Vy2H2(wx := zy) ifH2 6= ; ; 
up 
up ^ (zx := 0) if H2 = ;2. if I 0x is non bounded, then we writeH as the disjoint union ofH1 = H\Yand H2 = H n Y . We distinguish two 
ases:(a) if H1 = ;, then:� bY  bY n fxg, bZ  bZ n fxg� 
up 
up ^Vy2H(x := y + 
 ^ zx := zy)(b) if H1 6= ;, then:� bY  bY [ ftg n fxg where t is some 
lo
k of H2� bIt is some tested interval (we test whether the value of t is insome interval ℄
; 
 + 1[ and the 
lo
k t be
omes a �oating 
lo
kin this interval)� bZ  bZ [ ftg n fxg, for ea
h 
lo
k y 2 H1, tb�y and yb�t� 
up 
up^Vy2H2(x0 := y+
)^(x := 
x+1^zx := 0)^(wt := zt)� if upx is equal to Vy2H x :< y + 
 ^ x :2 I 0x then there are two 
ases:1. if I 0x is bounded, then:� bY  bY [ fxg, bIx  I 0x� for all y 2 Y \H, xb�y (but not yb�x) is added to b�� bZ  bZ n fxg if H � Y ; bZ  bZ [ fxg if H 6� Y� 
up 
up ^ (zx := 0) ^Vy2HnY (wx := zy)2. if I 0x is non bounded, then:� bY  bY n fxg, 
up 
up ^ (x := 
x + 1) ^ (zx := 0)



� if upx is equal to Vy x :> y + 
 ^ x :2 I 0x then:1. if I 0x is non bounded, then:� bY  bY [ fxg, bIx  I 0x, bZ  bZ n fxg� yb�x (but not xb�y) is added to b�, 
up 
up ^ zx := zy2. if I 0x is bounded, then:� bY  bY n fxg, 
up 
up ^ (x := 
x + 1) ^ (zx := 0)Adding deterministi
 updates to go from one 
opy to another- We 
onsidera parti
ular 
opy A(Iy)y2Y ;�;Z . We add new "�transitions in order to leave thisautomaton as soon as some 
lo
k y leaves the interval Iy. By de�nition, the
lo
ks whi
h will �rst leave Iy belong to the maximal elements of the preorder�. Therefore, for any subset M of Y su
h that the elements of M are maximalelements of the preorder � and if y 2M , x � y and y � x then x 2M , we adda transition from any 
opy of a state q in A(Iy)y2Y ;�;Z to the 
opy of q in theautomaton A(Iy)y2Y 0 ;�0;Z0 with Y 0 = Y nM , �0=� \(Y 0 � Y 0), Z 0 = Z nM .This transition is labelled by^x2X\Z(zx � 1) ^ ^x2XnZ(zx < 1) ^ ^x2Z\M(wx � 1); "; 8x 2M x := sup(Ix)where sup(Ix) is the least upper bound of the interval Ix.Intuitively it means that the values of some maximal elements have rea
hed theupper bound of their �oating interval and thus be
ome �xed.Now, we just need to de�ne a weak bisimulation R. Roughly, a state of theoriginal timed automaton will be in relation with all the 
opies of this state(with appropriate valuations). This 
on
ludes the proof of Theorem 3.When we deal with the general updatable timed automata, as we re
alled inSe
tion 2, we need to restri
t deeply the updates that are used in order to havede
idable 
lasses. As states the next theorem, these 
lasses are on
e again weaklybisimilar to 
lassi
al timed automata with "�transitions.Theorem 4. Let C � C(X) be a set of general 
lo
k 
onstraints and U �lu(fx := y jx; y 2 Xg [ fx :� 
 jx 2 X; 
 2 Q + and �2 f<;�;=gg) be aset of updates. Let A be in Aut(C;U). Then there exists B in Aut"(C(X);U0(X))su
h that A �w B. In parti
ular A and B a

ept the same timed language.The proof is quite similar to the one of Theorem 3, and even simpler be
ausethere is no non deterministi
 update allowed and involving two 
lo
ks.
6 Con
lusionOur results are summarized in the following tabular (a � denotes an unde
idable
ase). A 
ell labelled �(Strongly/Weakly) bisimilar� means that any updatabletimed automaton of the 
lass represented by the 
ell is (strongly/weakly) bisim-ilar to a �
lassi
al� timed automaton with "�transitions:



Diagonal-free 
onstraints General 
onstraints
Determ. updates x := 
 ; x := y Strongly bisimilar Strongly bisimilarx := y + 
, 
 2 Q+ Strongly bisimilar �
NonDeter
m. updates x :< 
, 
 2 Q+ Weakly bisimilar Weakly bisimilarx :> 
, 
 2 Q+ Weakly bisimilar �x :� y + 
; 
 2 Q+ ; �2 f<;>g Weakly bisimilar �
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