N

N
N

HAL

open science

Expressiveness of Updatable Timed Automata

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit

» To cite this version:

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, Antoine Petit. Expressiveness of Updatable
Timed Automata. 25th International Symposium of Mathematical Foundation of Computer Science
(MFCS’2000), 2000, Bratislava, Slovakia. pp.232-242, 10.1007/3-540-44612-5_19 . hal-00350490

HAL Id: hal-00350490
https://hal.science/hal-00350490
Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00350490
https://hal.archives-ouvertes.fr

http://lwww.Isv.ens—cachan.fr/Publis/

In Proc. 25th Int. Symp. Math. Found. Comp. Sci. (MFCS’2000), Bratislava, Slovakia, Aug. 2000.
volume 1893 of Lecture Notes in Computer Science, pages 232-242. Springer, 2000.

Expressiveness of Updatable Timed Automata

P. Bouyer, C. Dufourd, E. Fleury, A. Petit

LSV, UMR 8643, CNRS & ENS de Cachan,
61 Av. du Président Wilson, 94235 Cachan cedex, France
{bouyer, dufourd, fleury, petit}@lsv.ens-cachan.fr

Abstract. Since their introduction by ALUR and DiLL, timed automata
have been one of the most widely studied models for real-time systems.
The syntactic extension of so-called updatable timed automata allows
more powerful updates of clocks than the reset operation proposed in
the original model.

We prove that any language accepted by an updatable timed automa-
ton (from classes where emptiness is decidable) is also accepted by a
“classical” timed automaton. We propose even more precise results on
bisimilarity between updatable and classical timed automata.

1 Introduction

Since their introduction by ALUR and DILL [2, 3], timed automata have been
one of the most studied models for real-time systems (see [4,1,16,8,12,17,13]).
In particular numerous works proposed extensions of timed automata [7,10, 11].

This paper focuses on one of this extension, the so-called updatable timed
automata, introduced in order to model the ATM protocol ABR [9]. Updatable
timed automata are constructed with updates of the following forms:

x i~ c|xi~y+ c where x,y are clocks,c € Q4 and ~€ {<,<,=,#,>, >}

In [5], the (un)decidability of emptiness of updatable timed automata has
been characterized in a precise way (see Section 2 for detailed results). We ad-
dress here the open question of the expressive power of updatable timed au-
tomata (from decidable classes). We solve completely this problem by proving
that any language accepted by an updatable timed automaton is also accepted
by a “classical” timed automaton with e-transitions. In fact, we propose even
more precise results by showing that any updatable timed automaton using only
deterministic updates is strongly bisimilar to a classical timed automaton and
that any updatable timed automaton using arbitrary updates is weakly bisimilar
(but not strongly bisimilar) to a classical timed automaton.

The paper is organized as follows. In Section 2, we present updatable timed
automata, generalizing classical definitions of ALUR and DILL. Several natu-
ral equivalences of updatable timed automata are introduced in Section 3. The
bisimulation algorithms are presented in Section 4.

For lack of space, this paper contains only some sketchs of proofs. They are
available on the technical report [6].

2 Updatable Timed Automata

Timed Words and Clocks

If 7 is any set, let Z* (respectively Z“) be the set of finite (vesp. infinite)
sequences of elements in Z and let Z7°° = Z* U Z“. We consider as time domain
T the set of non-negative rational Q4 and X as finite set of actions. A time
sequence over T is a finite or infinite non decreasing sequence 7 = (t;);>1 € T*.
A timed word w = (a;,t;);>1 is an element of (X' x T)>°.

We consider an at most countable set X of variables, called clocks. A clock
valuation over X is a mapping v : X — T that assigns to each clock a time value.
Let ¢t € T, the valuation v + t is defined by (v +t)(x) = v(z) + ¢, Vo € X.

Clock Constraints

Given a subset of clocks X C X, we introduce two sets of clock constraints over
X. The most general one, denoted by C(X), is defined by the following grammar:

pu=x~clz—y~cloNp|—pltrue, withe,yeX, ceQy, ~e{<, <, =, #,>, >}

The proper subset Cqp(X) of “diagonal-free” constraints in which the comparison
between two clocks is not allowed, is defined by the grammar:

pu=xz~cloAp|-|true, with ze X, ceQy and ~e{<,<,=,#,>,>}
We write v = ¢ when the clock valuation v satisfies the clock constraint ¢.

Updates

An update is a function which assigns to each valuation a set of valuations. Here,
we restrict ourselves to local updates which are defined in the following way. A
simple update over a clock z is of one of the two following forms:

up n=z:~clz:~y+d, where c,d € Qy,y € Xand ~€ {<, <, = #,> >}

When the operator ~ is the equality (=), the update is said to be deterministic,
non deterministic otherwise. L.et v be a valuation and up be a simple update
over z. A valuation v’ is in up(v) if v'(y) = v(y) for any clock y # z and if
v'(z) ~ e (v'(2) ~v(y) +dresp.) if up=2z:~c (up=2:~y+dresp.)

The set lu(U) of local updates generated by a set of simple updates ¢/ is defined
as follows. A collection up = (up;)1<i< is in lu(U) if, for each i, up; is a simple
update of U over some clock x; € X (note that it could happen that z; = z;
for some i # j). Let v, v’ € T" be two clock valuations. We have v’ € up(v)
if and only if, for any ¢, the clock valuation v defined by v”(x;) = v'(z;) and
v"(y) = v(y) for any y # z; verifies v" € up;(v).

Note that up(v) may be empty. For instance, the local update (z :< 1,2 :> 1)
leads to an empty set. But if we take the local update (z :> y,x :< 7), the value
v'(x) has to satisfy : v'(z) > v(y) Av'(z) < 7.

For any subset X of X, U(X) is the set of local updates which are collections of
simple updates over clocks of X. In the following, U (X) denotes the set of reset
updates. A reset update is an update up such that for every clock valuation v,
v’ with v' € up(v) and any clock z € X, either v'(z) = v(x) or v'(z) = 0. Tt is
precisely this set of updates which was used in “classical” timed automata [3].

Updatable Timed Automata

An updatable timed automaton over T is a tuple A = (X,Q, X, T, I, F, R), where
XY is a finite alphabet of actions, () a finite set of states, X C X a finite set of
clocks, T C Q x [C(X) x XU {e} xU(X)] X Q a finite set of transitions, I C Q
(F CQ, R C Q resp.) the subset of initial (final, repeated resp.) states.

Let C C C(X) be a subset of clock constraints and & C U(X) be a subset of
updates, the class Aut.(C,U) is the set of all timed automata whose transitions
only use clock constraints of C and updates of /. The usual class of timed
automata, defined in [2], is the family Aut.(Cqr(X), Uy (X)).

A path in A is a finite or an infinite sequence of consecutive transitions:
P= $1,a1,Up1 $2,02,Up2
=40 q

qa - .., where (gi—1,pi,a;,up;,q;) €T, Vi >0

The path is said accepting if go € I and either it is finite and it ends in an final
state, or it is infinite and passes infinitely often through a repeated state. A run
of the automaton through the path P is a sequence of the form:

(g0, v0) % (q1,v1) % (g2,v2) ...

where 7 = (¢;);>1 is a time sequence and (v;);>¢ are clock valuations such that
Vo € X, v (l‘) =0and Vi > 1,Ui,]+(ti—ti,]) ‘: piandv; € upi(vi,l—i-(ti—ti,]).
Remark that any set up;(vi—1 + (t; — t;—1)) of a run is non empty.

The label of the run is the sequence (a1,t1)(ag,t2) - € ((X¥ U {e}) x T)*. The
timed word associated with this sequence is w = (a;,,t;,)(@i,,t;,) ... Where
@, Gi, - - . is the sequence of actions which are in X' (i.e. distinct from ¢). If the
path P is accepting then the timed word w is accepted by the timed automaton.

About Decidability of Updatable Timed Automata

For verification purposes, a fundamental question is to know if the emptiness of
(the language accepted by) an updatable timed automaton is decidable or not.
The paper [5] proposes a precise characterization which is summarized in the
picture below. Note that decidability can depend on the set of clock constraints
that are used — diagonal-free or not — which makes an important difference
with “classical” timed automata for which it is well known that these two kinds
of constraints are equivalent. The technique proposed in [5] shows that all the
decidability cases are PSpPACE-complete.

diagonal-free clock constraints | general clock constraints

© rTi=c;xr:=9 DECIDABLE DECIDABLE
2
12} 73]
£ g
E _zg z:=y+c ceQF DECIDABLE UNDECIDABLE
1l
) -
£ r:=y+cceQ UNDECIDABLE UNDECIDABLE
© r:<c ceQf DECIDABLE DECIDABLE
2
3
E 2| x:>c ceE Q+ DECIDABLE UNDECIDABLE

g
[
¢ -
= . +
g glz:<y+tcce Q DECIDABLE UNDECIDABLE
=1
2 z:>y+ec ceqQt DECIDABLE UNDECIDABLE

The present paper adresses the natural question of the exact expressive power
of the decidable classes. To solve this problem, we first introduce natural and
classical equivalences between updatable timed automata.

3 Some Equivalences of Updatable Timed Automata

Language Equivalence

Two updatable timed automata are language-equivalent if they accept the same
timed language. By extension, two families Aut; and Auts are said to be equiv-
alent if any automaton of one of the families is equivalent to one automaton
of the other. We write =, in both cases. For instance, Aut.(Cqr(X),Up (X)) =,
Aut.(C(X), Uy (X)), (see e.g. [T]).

Bisimilarity

Bisimilarity [15, 14] is stronger than language equivalence. Tt defines a step by
step correspondence between two transition systems. Two labelled transition sys-
tems T = (S, S0, E, (5)eer) and T' = (5", S}, E, ()eer) are bisimilar when-
ever there exists a relation R C S x S’ which meets the following conditions:

Vsq € Sp, dsg € S such that soRsq

INITIALIZATION :
{st] € S}, dsp € Sp such that soRsj

if s;Rs" and s; < so then there exists s € S’
such that s/ 5 s and soRsh

if s;Rs) and s = sl then there exists sy € S
such that s; = s, and syRs)

PROPAGATION :

Strong and Weak Bisimilarity
Timed transition systems - Fach updatable timed automaton A =
(X2,Q,X,T,1,F,R) in Aut.(C(X),U(X)) defines a timed transition system T4 =
(S, S0, E, ()eer) as follows :
~ S=QxTX Sy={(g,v)|geTand Vo € X,v(z) =0}, E=YU{c}UQ,
~VYae X U{e}, {q,v) 5 (¢, v") iff I(q, ¢, a,up,q')ET s.t. v = ¢ and v’ Eup(v)
- Vd e Q4, (g,v) 4, (¢, W)ifgq=¢ and v =v+d

When ¢ is considered as an invisible action, each updatable timed automaton A
€

in Aut.(C(X),U(X)) defines another transition system T} = (5, So, E', (=)ecr)
as follows:
- S=QxTX, Sg={{g,v)|gel and V€ X, v(z) =0}, E' = X UQ,
~VYae X, (qg,v) = (¢, ') iff (¢, v) LOENCN (¢',v")
- VdeQy, (g,v) :d><q’,v'> iff <q,1)>i>*d—1>i>*. NN (¢, v') and d = SF_d,

i=1

Two bisimilarities for timed automata - Two updatable timed automata A and
B are strongly bisimilar, denoted A =, B, if T4 and Tz are bisimilar. They are
weakly bisimilar, denoted A =,, B, if T} and T} are bisimilar.

Remark 1. Two timed strongly bisimilar automata are obviously weakly bisim-
ilar. If the bisimulation R preserves the final and repeated states, weakly or
strongly bisimilar updatable timed automata recognize the same language.

Let A a timed automaton and A be a constant. We denote by AA the timed
automaton in which all the constants which appear are multiplied by the constant,
A. The proof of the following lemma is immediate and similar to the one of
Lemma 4.1 in [3]. This lemma allows us to treat only updatable timed automata
where all constants appearing in the clock constraints and in the updates are
integer (and not arbitrary rationals).

Lemma 1. Let A and B be two timed automata and A € QF be a constant.
Then A=, B <= M=, \Band A=, B < M=, \B

4 Expressive Power of Deterministic Updates

We first deal with updatable timed automata where only deterministic updates
are used. The following theorem is often considered as a “folklore” result.

Theorem 1. Let C C C(X) be a set of clock constraints and let U C lu({x :=
dlz € X andd € QU {z := y|z,y € X}). Let A be in Aut.(C,U). Then
there exists B in Aut.(C(X),Up(X)) such that A=, B.

The next theorem is close to the previous one. Note nevertheless that this theo-
rem becomes false if we consider arbitrary clock constraints, since as we recalled
in section 2, the corresponding class is undecidable.

Theorem 2. Let C C Cy(X) be a set of diagonal-free clock constraints. Let
UCIu{z:=d|lr e X andd e Qt}U{z =y +d|z,y € X andd € Qt}).
Let A be in Aut.(C,U). Then there exists B in Aut.(Caf(X),Uo(X)) such that
A=, B.

5 Expressive Power of Non Deterministic Updates

In the case of non deterministic updates, we first show that it is hopeless to
obtain strong bisimulation with classical timed automata. To this purpose, let
us consider the automaton C of Figure 1. It has been proved in [7] that there
is no classical timed automaton without e—transitions that recognize the same
language than C.

Now, it is not difficult to prove that the automaton C recognizes the same lan-
guage than the automaton B and that 5 recognizes itself the same language than
A. Tf A was strongly bisimilar to some automaton D of Aut.(C(X),Uy(X)), this
automaton D would not contain any e—transition (since A does not contain such
transition). Hence L(D) would be equal to L(A) = L(C), in contradiction with
the result of [7] recalled above. Since A belongs to the class Aut.(C(X), U (X))
(where U (X)) denotes the set of updates corresponding to the cells labelled “de-
cidable” in the “general clock constraints” column in tabular of Section 2), we
thus have proved:

O<z<1,b,y:<0

0<a:<1/\x=y—17b7y:<0\] y=1Ay=xz—1, l

I:17 a,y:= y:17
a, a,
2:=0 r=1Nr=y—1 y:=0

a,r:=0 O<y<lAny=z—1,b,2:<0
A
—1<y<0,b,2:<0
O<z<1,b

=1, O<z<1, =1,
x:=0 ri=x—1 x:=0

? i z=1,g,2:=0

B C

Fig. 1. Timed automata A, B and C

Proposition 1. Aut. (C(X),U; (X)) #s Aut.(C(X),U (X))

We now focus on weak bisimilarity. As it will appear, the construction of
an automaton of Aut(C(X),Uy (X)) weakly bisimilar to a given automaton of
Aut(C(X), U, (X)) is rather technical. As we recalled in Section 2, the decidable
classes of updatable timed automata depend on the set of clock constraints that
are used. We consider first the case of diagonal-free clock constraints.

We first propose a normal form for diagonal-free updatable automata. Let
(¢z)zex be a family of constants of N. In what follows we will restrict ourselves
to the clock constraints « ~ ¢ where ¢ < ¢,. We define: Z, = {]d;d+1[|0 < d <
o} U{[d]|0 < d < cp} U{Jeq. 00}

A clock constraint ¢ is said to be total if ¢ is a conjunction A .y I, where for
each clock x, I, is an element of Z,. Any diagonal free clock constraint bounded
by the constants (¢,).ex is equivalent to a disjunction of total clock constraints.

We define 7, = {]d; d+ 1[0 < d < ¢ } U{]ca, oo[}. An update up, is elementary
if it is of one of the two following forms:

-x:=corx €l with I, €T,

- Nyem @ i~ ytehz € I with~e {=,<,>}, I} € T, and Vy € H, c; < ¢y+c.
An elementary update ((A\,cg i~y +c) Az € I) is compatible with a total
guard A .y I, if, for any y € H, I, + ¢ C I,. By applying classical rules
of propositional calculus and splitting the transitions, we obtain the following
normal form for diagonal-free updatable timed automata.

Proposition 2. Any diagonal-free updatable timed automaton from
Aut(Cap(X),U(X)) is strongly bisimilar to a diagonal-free updatable timed
automaton from Aut.(Cqr(X),U(X)) in which for any transition (p, ¢, a, up,q)
it holds:

— @ is a total guard
—up = N,ex upe with for any x, up, is an elementary update compatible

Construction for Diagonal-Free Updatable Timed Automata

We can now state our main result concerning updatable diagonal-free timed
automata:

Theorem 3. Let C C Cy(X) be a set of diagonal-free clock constraints. Let
U CU(X) be a set of updates. Let A be in Aut(C,U). Then there exists B in
Aut. (Cap(X),Us(X)) such that A =, B. In particular A and B accept the same
timed language.

Proof (Sketch of proof). Thanks to Lemma 1 and Proposition 2, we assume that
all the constants appearing in A are integers and that A is in normal form for
some constants (¢;)zex. For each clock z, we denote by Z! the set of intervals
{lJege+1[]10< e <z}

A clock x is said fized if the last update of x was of the form either x := ¢ or
(Ayer ® ==y +c) Aw:€ I, where all the clocks of H were fixed themselves. A
clock which is not fixed is said floating.

The transformation algorithm consists in constructing (a lot of) copies of the
original automaton A, adding suitable clocks, transforming the existing transi-
tions and finally adding e—transitions going from one copy to another.

Duplication of the initial automaton - For each subset Y C X, for each tuple
(Iy)yey with I, € I;ﬂ for each partial preorder < defined on Y and for each
subset 7 C Y, we consider a copy of A, denoted by A(y,), ., <,z Intuitively,
each clock y € Y will be floating and with I, as set of possible values. The
preorder < corresponds to the partial order between the fractional parts of the

clocks of Y. The role of Z will be explained below.

Keeping in mind the fractional part of the clocks - We associate with each
clock z an other clock z, representing the fractional part of z. In an automaton
A(1,),ev.<,z, we need to force the fractional part of any clock = to stay in [0;1].
If a fractional part reachs the value 1, then either the clock is in Y and we will
change of automaton (see below) or the clock is not in Y and the fractional part
has to be reset to 0. To this purpose, we add to this automaton:

— on each transition, the clock constraint Ay (2, < 1)
— on each state r, for each clock x € X \ Y, aloop (1,2, = 1,&,2, :=0,7)

Erasing some transitions - Since in an automaton A) ., <z, a clock y € Y
will always verify y € I, a total clock constraint ¢ A Az € I, can be satisfied
only if I?’J = I, for all y € Y. Therefore, we erase all the transitions with clock
constraints which do not have this property.

Modification of the updates - We consider a copy A(z,),.y <,z and a transi-
tion (g, ¢, a,up,q") inside this copy. This transition will be replaced by another

transition (¢, ¢, a,up,q') from Ay, ., < 7 to another automaton .A(IA) ey
y)yey ™

(which can be possibly A(z,), .« z itself) and where q is the copy of ¢’ in the
new automaton. The elements lA/, (I,)yey, < and up are constructed inductively
by considering one after the other the updates up, involved in up (the order in
which the updates are treated is irrelevant). The new update up will be only

constituted of updates of the form x := c or z := y + c. Initially, we set Y = Y,
I =1, forallyeyY, < =<, up—trueandZ Z.

Before listing the different updates, let us explain the role of the set Z. Assume
that a clock = is updated by an instruction x :< y + ¢ where y is floating.
Then the clock z is added to the set of floating clocks. Since we do not want to
use anymore non deterministic updates, we update the fractional part z, to 0,
zy = 0. But we need to keep the current value of z, in order to ensure that z,
which has to be smaller than z,, will not reach 1 before z,. Of course, it can bhe
checked easily if y is not updated but if it is the case, we do not have any way
to verify this fact. Therefore, in such a case, we add the clock = to the set Z and
we use a new clock w, to keep in mind the current value of z,: w, := z,. The
required property is then verified by the condition w, > 1.

— if up, is equal to x := ¢ then we just have to consider z as fixed:
e VeV \{2}, Z« Z\{a}, up+ WpAx:=cAz =0
— if up, is equal to /\yeH’I‘ =y+cAx:€ I, then :
1. if I, is bounded, then we write H as the disjoint union of H1 = HNY
and Hy = H \ Y. We distinguish two cases:
(a) if Hy =0, then:
o VeV \{a},Z+ Z\{z}
o Up < Up A Ny (T =y + Az = zy)
(b) if Hy # 0, then:
oV VUu{a) LI, Z« ZU{x}
e for each y € Hy, 23y and Y=<
o Uup < up A /\yeHo(x =yt Az = 2y) A Nep, (we 1= 2y) if
Hy# 05 up <+ up A (zp :=0) if Hy =)
2. if I, is non bounded, then we write H as the disjoint union of H; = HNY
and Hy = H \ Y. We distinguish two cases:
(a) 1fH1—Q) then:
o VeV \ {2}, Z+ Z\{z}
o Up — Up A Ny (T =y + Az = 2zy)
(b) if Hy # 0, then:
o Y « Y U{t}\ {2} where ¢ is some clock of Hy
e I, is some tested interval (we test whether the value of ¢ is in
some interval Je; ¢ + 1] and the clock ¢ becomes a floating clock
in this interval)
o 7« ZU{t}\ {z}, for each clock y € Hy, t=3y and y=t
o Up < UpAN e gy, (7' = Y+)N (7= o + 1A 2 := 0)A(wy = 2z)
—if upz is equal to /\yEH x:<y + ¢ Az :€ I, then there are two cases:
. if I, is bounded, then:
Y<—YU{$}, Iz<—I;
for all y € Y N H, =3y (but not y=<z) is added to =
Z+ Z\{a}ifHCY ;Z+ ZU{2}ifHZY
up < up A (25 :=0) A /\yeH\Y(wr = 2zy)
2. if I, is non bounded, then:
o VeV \ {2}, ip wpA(x:=co+1)A (2, :=0)

— if up, is equal to A\ x>y +c Az :€ I} then:
1. if I, is non bounded, then:
oV YU{a) I« I, Z+ Z\{x}
e y=z (but not z=3y) is added to <, Up « Up A 2, 1= 2,
2. if I}, is bounded, then:
o Ve Y\ {2}, p upA(x:=cy+1) A (25 :=0)

Adding deterministic updates to go from one copy to another- We consider
a particular copy A(1,),.y,<,z- We add new e—transitions in order to leave this
automaton as soon as some clock y leaves the interval I,. By definition, the
clocks which will first leave I, belong to the maximal elements of the preorder
<. Therefore, for any subset M of Y such that the elements of M are maximal
elements of the preorder < and if y € M, x < y and y < = then x € M, we add
a transition from any copy of a state ¢ in A(z,), ., <z to the copy of ¢ in the
automaton Ay) _, oz with Y =Y\ M, <'=< N’ xY'), Z' = Z\ M.
This ‘rran@l‘rlon is labelled by

/\(zr <A /\(zx <1)A /\ (wy > 1), €, Ve € Mz := sup(I,)

reXNZ reX\Z r€ZNM
where sup(l,,) is the least upper bound of the interval I,.
Intuitively it means that the values of some maximal elements have reached the
upper bound of their floating interval and thus become fixed.
Now, we just need to define a weak bisimulation R. Roughly, a state of the
original timed automaton will be in relation with all the copies of this state
(with appropriate valuations). This concludes the proof of Theorem 3.

When we deal with the general updatable timed automata, as we recalled in
Section 2, we need to restrict deeply the updates that are used in order to have
decidable classes. As states the next theorem, these classes are once again weakly
bisimilar to classical timed automata with s—transitions.

Theorem 4. Let C C C(X) be a set of general clock constraints and U C
lu({z :==ylz,y € X}U{x i~ clz € X,c € Q" and ~€ {<,<,=}}) be a
set of updates. Let A be in Aut(C,U). Then there exists B in Aut (C(X) 0 (X))
such that A =, B. In particular A and B accept the same timed language.

The proof is quite similar to the one of Theorem 3, and even simpler because
there is no non deterministic update allowed and involving two clocks.

6 Conclusion

Our results are summarized in the following tabular (a x denotes an undecidable
case). A cell labelled “(Strongly/Weakly) bisimilar” means that any updatable
timed automaton of the class represented by the cell is (strongly /weakly) bisim-
ilar to a “classical” timed automaton with e—transitions:

Diagonal-free constraints | General constraints
gz ri=c;r =Yy Strongly bisimilar [Strongly bisimilar
gz z:=y+c ceQr Strongly bisimilar X
g r:<c, ceQF Weakly bisimilar Weakly bisimilar
g% z:>c ceQt Weakly bisimilar X
=
“ zi~vy+ec ceQF, ~e{<, >} Weakly bisimilar X

References

1. R. Alur, C. Courcoubetis, and T.A. Henzinger. The observational power of clocks.
In Proc. of CONCUR’94, LNCS 836, pages 162—-177, 1994.

2. R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. of
ICALP’90, LNCS 443, pages 322-335, 1990.

3. R. Alur and D. Dill. A theory of timed automata. T(CS’9/, pages 183-235, 1994.

4. R. Alur, T.A. Henzinger, and M. Vardi. Parametric real-time reasoning. In Proc.
of the 25th ACM STOC, pages 592 601, 1993.

5. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable ?
In Proc. of CAV’2000, LNCS, 2000. To appear.

6. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of updatable timed
automata. Research report, ENS de Cachan, 2000.

7. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae, pages
145-182, 1998.

8. B. Bérard and C. Dufourd. Timed automata and additive clock constraints. Re-
search report LSV-00-4, LSV, ENS de Cachan, 2000.

9. B. Bérard and L. Fribourg. Automatic verification of a parametric real-time pro-
gram : the ABR conformance protocol. In Proc. of CAV’99, LNCS 1633, pages
96-107, 1999.

10. C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.
Technical Report 99/28, LIAFA, Université Paris VII, 1999.

11. F. Demichelis and W. Zielonka. Controlled timed automata. In Proc. of CON-
CUR’98, LNCS 1466, pages 455-469, 1998.

12. T.A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In Software Tools for Technology Transfer, pages 110-122, 1997. (special
issue on Timed and Hybrid Systems).

13. K.G. Larsen, P. Pettersson, and W. Yi. UppPaAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1:134-152, 1997.

14. R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.

15. D. M. Park. Concurrency on automata and infinite sequences. In CTCS’81, LNCS
104, pages 167-183, 1981.

16. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In Proc. of FTRT-FTS, LNCS 863, pages 694-715, 1994.

17. S. Yovine. A verification tool for real-time systems. Springer International Journal
of Software Tools for Technology Transfer, 1, 1997.

