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Abstra
t. In 
lassi
al timed automata, as de�ned by Alur and Dill[AD90,AD94℄ and sin
e widely studied, the only operation allowed tomodify the 
lo
ks is the reset operation. For instan
e, a 
lo
k 
an neitherbe set to a non-null 
onstant value, nor be set to the value of another
lo
k nor, in a non-deterministi
 way, to some value lower or higher thana given 
onstant. In this paper we study in details su
h updates.We 
hara
terize in a thin way the frontier between de
idability and un-de
idability. Our main 
ontributions are the following :- We exhibit many 
lasses of updates for whi
h emptiness is unde
id-able. These 
lasses depend on the 
lo
k 
onstraints that are used �diagonal-free or not � whereas it is well known that these two kindsof 
onstraints are equivalent for 
lassi
al timed automata.- We propose a generalization of the region automaton proposed byAlur and Dill, allowing to handle larger 
lasses of updates. The
omplexity of the de
ision pro
edure remains Pspa
e-
omplete.
1 Introdu
tionSin
e their introdu
tion by Alur and Dill [AD90,AD94℄, timed automata areone of the most studied models for real-time systems. Numerous works have beendevoted to the �theoreti
al� 
omprehension of timed automata and their exten-sions (among a lot of them, see [ACD+92℄, [AHV93℄, [AFH94℄, [ACH94℄, [Wil94℄,[HKWT95℄, [BD00℄, [BDGP98℄) and several model-
he
kers are now available(HyTe
h1 [HHWT95,HHWT97℄, Kronos2 [Yov97℄, Uppaal3 [LPY97℄). Theseworks have allowed to treat a lot of 
ase studies (see the web pages of the tools)and it is pre
isely one of them � the ABR proto
ol [BF99,BFKM99℄ � whi
h hasmotivated the present work. Indeed, the most simple and natural modelizationof the ABR proto
ol uses updates whi
h are not allowed in 
lassi
al timed au-tomata, where the only authorized operations on 
lo
ks are resets. Therefore we? This work has been partly supported by the fren
h proje
t RNRT �Calife�1 http://www-
ad.ee
s.berkeley.edu/�tah/HyTe
h/2 http://www-verimag.imag.fr/TEMPORISE/kronos/3 http://www.do
s.uu.se/do
s/rtmv/uppaal



2have 
onsidered updates 
onstru
ted from simple updates of one of the followingforms:x :� 
 j x :� y + 
; where x; y are 
lo
ks, 
 2 Q + ; and � 2 f<;�;=; 6=;�; >gMore pre
isely, we have studied the (un)de
idability of the emptiness problemfor the extended timed automata 
onstru
ted with su
h updates. We 
all thesenew automata updatable timed automata. We have 
hara
terized in a thin waythe frontier between 
lasses of updatable timed automata for whi
h emptinessis de
idable or not. Our main results are the following :- We exhibit many 
lasses of updates for whi
h emptiness is unde
idable. Asurprising result is that these 
lasses depend on the 
lo
k 
onstraints that areused � diagonal-free (i.e. where the only allowed 
omparisons are between a
lo
k and a 
onstant) or not (where the di�eren
e of two 
lo
ks 
an also be
ompared with a 
onstant). This point makes an important di�eren
e with�
lassi
al� timed automata for whi
h it is well known that these two kindsof 
onstraints are equivalent.- We propose a generalization of the region automaton proposed by Alur andDill, whi
h allows to handle large 
lasses of updates. We thus 
onstru
t an(untimed) automaton whi
h re
ognizes the untimed language of the 
onsid-ered timed automaton. The 
omplexity of this de
ision pro
edure remainsPspa
e-
omplete.Note that these de
idable 
lasses are not more powerful than 
lassi
al timedautomata in the sense that for any updatable timed automaton of su
h a
lass, a 
lassi
al timed automaton (with "�transitions) re
ognizing the samelanguage � and even most often bisimilar � 
an be e�e
tively 
onstru
ted.But in most 
ases, an exponential blow-up seems unavoidable and thus atransformation into a 
lassi
al timed automaton 
an not be used to obtainan e�
ient de
ision pro
edure. These 
onstru
tions of equivalent automataare available in [BDFP00b℄.The paper is organized as follows. In se
tion 2, we present basi
 de�nitions of
lo
k 
onstraints, updates and updatable timed automata, generalizing 
lassi
alde�nitions of Alur and Dill. The emptiness problem is brie�y introdu
ed inse
tion 3. Se
tion 4 is devoted to our unde
idability results. In se
tion 5, we pro-pose a generalization of the region automaton de�ned by Alur and Dill. Wethen use this pro
edure in se
tions 6 (resp. 7) to exhibit large 
lasses of updat-able timed automata using diagonal-free 
lo
k 
onstraints ( resp. arbitrary 
lo
k
onstraints) for whi
h emptiness is de
idable. A short 
on
lusion summarizesour results.For la
k of spa
e, this paper does not 
ontain proofs whi
h 
an be found in[BDFP00a℄.2 About Updatable Timed AutomataIn this se
tion, we brie�y re
all some basi
 de�nitions before introdu
ing an ex-tension of the timed automata, initially de�ned byAlur andDill [AD90,AD94℄.



32.1 Timed words and 
lo
ksIf Z is any set, let Z� (resp. Z!) be the set of �nite (resp. in�nite) sequen
es ofelements in Z. And let Z1 = Z� [ Z!.In this paper, we 
onsider T as time domain, Q + as the set of non-negativerational and � as a �nite set of a
tions. A time sequen
e over T is a �nite orin�nite non de
reasing sequen
e � = (ti)i�1 2 T1 . A timed word ! = (ai; ti)i�1is an element of (� � T)1 , also written as a pair ! = (�; �), where � = (ai)i�1is a word in �1 and � = (ti)i�1 a time sequen
e in T1 of same length.We 
onsider an at most 
ountable set X of variables, 
alled 
lo
ks. A 
lo
kvaluation over X is a mapping v : X ! T that assigns to ea
h 
lo
k a time value.The set of all 
lo
k valuations over X is denoted TX . Let t 2 T, the valuationv + t is de�ned by (v + t)(x) = v(x) + t, 8x 2 X .2.2 Clo
k 
onstraintsGiven a subset of 
lo
ks X � X , we introdu
e two sets of 
lo
k 
onstraints overX. The most general one, denoted by C(X), is de�ned by the following grammar:' ::= x � 
 jx� y � 
 j' ^ ' j :' j truewhere x; y 2 X; 
 2 Q + ; � 2 f<;�;=; 6=;�; >gWe will also use the proper subset of diagonal-free 
onstraints, denoted byCdf (X), where the 
omparison between two 
lo
ks is not allowed. This set isde�ned by the grammar:' ::= x � 
 j' ^ ' j :' j true;where x 2 X; 
 2 Q + and � 2 f<;�;=; 6=;�; >gWe write v j= ' when the 
lo
k valuation v satis�es the 
lo
k 
onstraint '.2.3 UpdatesAn update is a fun
tion from TX to P(TX) whi
h assigns to ea
h valuation aset of valuations. In this work, we restri
t ourselves to lo
al updates whi
h arede�ned in the following way.A simple update over a 
lo
k z has one of the two following forms:up ::= z :� 
 j z :� y + dwhere 
 2 Q + ; d 2 Q ; y 2 X and � 2 f<;�;=; 6=;�; >gLet v be a valuation and up be a simple update over z. A valuation v0 is in up(v)if v0(y) = v(y) for any 
lo
k y 6= z and if v0(z) veri�es:�v0(z) � 
 if up = z :� 
v0(z) � v(y) + d if up = z :� y + d



4A lo
al update over a set of 
lo
ks X is a 
olle
tion up = (upi)1�i�k of simpleupdates, where ea
h upi is a simple update over some 
lo
k xi 2 X (note thatit 
ould happen that xi = xj for some i 6= j). Let v; v0 2 Tn be two 
lo
kvaluations. We have v0 2 up(v) if and only if, for any i, the 
lo
k valuation v00de�ned by �v00(xi) = v0(xi)v00(y) = v(y) for any y 6= xiveri�es v00 2 upi(v). The terminology lo
al 
omes from the fa
t that v0(x) dependson x only and not on the other values v0(y).Example 1. If we take the lo
al update (x :> y; x :< 7), then it means that thevalue v0(x) must verify : v0(x) > v(y)^v0(x) < 7. Note that up(v) may be empty.For instan
e, the lo
al update (x :< 1; x :> 1) leads to an empty set.For any subset X of X , U(X) is the set of lo
al updates whi
h are 
ol-le
tions of simple updates over 
lo
ks of X. In the following, we needto distinguish the following subsets of U(X) :- U0(X) is the set of reset updates. A reset update up is an update su
h thatfor every 
lo
k valuations v, v0 with v0 2 up(v) and any 
lo
k x 2 X, eitherv0(x) = v(x) or v0(x) = 0.- U
st(X) is the set of 
onstant updates. A 
onstant update up is an updatesu
h that for every 
lo
k valuations v, v0 with v0 2 up(v) and any 
lo
kx 2 X, either v0(x) = v(x) or v0(x) is a rational 
onstant independent ofv(x).2.4 Updatable timed automataAn updatable timed automaton over T is a tuple A = (�;Q; T; I; F;R;X), where� is a �nite alphabet of a
tions, Q is a �nite set of states, X � X is a �nite setof 
lo
ks, T � Q � [C(X)� � � U(X)℄ �Q is a �nite set of transitions, I � Qis the subset of initial states, F � Q is the subset of �nal states, R � Q is thesubset of repeated states.Let C � C(X) be a subset of 
lo
k 
onstraints and U � U(X) be a subset ofupdates, the 
lass Aut(C;U) is the set of all timed automata whose transitionsonly use 
lo
k 
onstraints of C and updates of U . The usual 
lass of timedautomata, de�ned in [AD90℄, is the family Aut(Cdf (X);U0(X)).A path in A is a �nite or an in�nite sequen
e of 
onse
utive transitions:P = q0 '1;a1;up1������! q1 '2;a2;up2������! q2 : : : ; where (qi�1; 'i; ai; upi; qi) 2 T; 8i > 0The path is said to be a

epting if it starts in an initial state (q0 2 I) and eitherit is �nite and it ends in an �nal state, or it is in�nite and passes in�nitelyoften through a repeated state. A run of the automaton through the path P isa sequen
e of the form:hq0; v0i '1;a1;up1������!t1 hq1; v1i '2;a2;up2������!t2 hq2; v2i : : :



5where � = (ti)i�1 is a time sequen
e and (vi)i�0 are 
lo
k valuations su
h that:8<:v0(x) = 0; 8x 2 Xvi�1 + (ti � ti�1) j= 'ivi 2 upi (vi�1 + (ti � ti�1))Remark that any set upi(vi�1 + (ti � ti�1)) of a run is non empty.The label of the run is the timed word w = (a1; t1)(a2; t2) : : : If the path P isa

epting then the timed word w is said to be a

epted by the timed automaton.The set of all timed words a

epted by A over the time domain T is denoted byL(A; T), or simply L(A).Remark 1. A �folklore� result on timed automata states that the familiesAut(C(X);U0(X)) and Aut(Cdf (X);U0(X)) are language-equivalent. This is be-
ause any 
lassi
al timed automaton (using reset updates only) 
an be trans-formed into a diagonal-free 
lassi
al timed automaton re
ognizing the samelanguage (see [BDGP98℄ for a proof). Another �folklore� result states that
onstant updates are not more powerful than reset updates i.e. the familiesAut(C(X);U
st(X)) and Aut(C(X);U0(X)) are language-equivalent.3 The Emptiness ProblemFor veri�
ation purposes, a fundamental question about timed automata is tode
ide whether the a

epted language is empty. This problem is 
alled the empti-ness problem. To simplify, we will say that a 
lass of timed automata is de
idableif the emptiness problem is de
idable for this 
lass. The following result, due toAlur and Dill [AD90℄, is one of the most important about timed automata.Theorem 1. The 
lass Aut(C(X);U0(X)) is de
idable.The prin
iple of the proof is the following. Let A be an automaton ofAut(C(X);U0(X)), then a Bü
hi automaton (often 
alled the region automaton ofA) whi
h re
ognizes the untimed language Untime(L(A)) of L(A) is e�e
tively
onstru
tible. The untime language of A is de�ned as follows : Untime(L(A)) =f� 2 �1 j there exists a time sequen
e � su
h that (�; �) 2 L(A)g.The emptiness of L(A) is obviously equivalent to the emptiness of Un-time(L(A)) and sin
e the emptiness of a Bü
hi automaton on words is de
idable[HU79℄, the result follows. In fa
t, the result is more pre
ise: testing emptinessof a timed automaton is Pspa
e-
omplete (see [AD94℄ for the proofs).Remark 2. From [AD94℄ (Lemma 4.1) it su�
es to prove the theorem above fortimed automata where all 
onstants appearing in 
lo
k 
onstraints are integers(and not arbitrary rationals). Indeed, for any timed automaton A, there existssome positive integer Æ su
h that for any 
onstant 
 of a 
lo
k 
onstraint of A,Æ:
 is an integer. Let A0 be the timed automaton obtained from A by repla
ingea
h 
onstant 
 by Æ � 
, then it is immediate to verify that L(A0) is empty if andonly if L(A) is empty.



64 Unde
idable Classes of Updatable Timed AutomataIn this se
tion we exhibit some important 
lasses of updatable timed automatawhi
h are unde
idable. All the proofs are redu
tions of the emptiness problemfor 
ounter ma
hines.4.1 Two 
ounters ma
hineRe
all that a two 
ounters ma
hine is a �nite set of instru
tions over two 
ounters(x and y). There are two types of instru
tions over 
ounters:- in
rementation instru
tion of 
ounter i 2 fx; yg :p : i := i+ 1 ; goto q (where p and q are instru
tion labels)- de
rementation (or zero-testing) instru
tion of 
ounter i 2 fx; yg :p : if i > 0 � then i := i� 1 ; goto qelse goto q0The ma
hine starts at instru
tion labelled by s0 with x = y = 0 and stops at aspe
ial instru
tion Halt labelled by sf .Theorem 2. The emptiness problem of two 
ounters ma
hine is unde
idable[Min67℄.4.2 Diagonal-free automata with updates x := x� 1We 
onsider here a diagonal-free 
onstraints 
lass.Proposition 1. Let U be a set of updates 
ontaining both fx := x � 1 jx 2 Xgand U0(X). Then the 
lass Aut(Cdf (X);U) is unde
idable.Sket
h of proof. We simulate a two 
ounters ma
hine M with an updatabletimed automaton AM = (�;Q; T; I; F;R;X) with X = fx; y; zg, � = fag (for
onvenien
e reasons labels are omitted in the proof) and equipped with updatesx := x� 1 and y := y � 1. Clo
ks x and y simulate the two 
ounters.Simulation of an in
rement appears on Figure 1. Counter x is impli
itly in
re-mented by letting the time run during 1 unit of time (this is 
ontrolled with thetest z = 1). Then the other 
ounter y is de
remented with the y := y�1 update.
p qz = 1; z := 0 z = 0; y := y � 1z = 0Fig. 1. Simulation of a in
rementation operation over 
ounter x.

Simulation of a de
rement appears on Figure 2. Counter x is either de
rementedusing the x := x� 1 update if x � 1, or un
hanged otherwise.



7p qq'
x � 1 z = 0; x := x� 1z = 0 x = 0Fig. 2. Simulation of a de
rementation operation on the 
ounter x.Remark that we never 
ompare two 
lo
ks but only use guards of the form i � 
with i 2 fx; y; zg and 
 2 f0; 1g.To 
omplete the de�nition of AM, we set I = fs0g and F = fsfg. The languageof M is empty if and only if the language of AM is empty and this impliesunde
idability of emptiness problem for the 
lass Aut(Cdf (X);U).4.3 Automata with updates x := x+1 or x :> 0 or x :> y or x :< ySurprisingly, 
lasses of arbitrary timed automata with spe
ial updates are unde-
idable.Proposition 2. Let U be a set of updates 
ontaining U0(X) and (1) fx := x+1 jx 2 Xg or (2) fx :> 0 jx 2 Xg or (3) fx :> y jx; y 2 Xg or (4) fx :< y jx; y 2Xg, then the 
lass Aut(C(X);U) is unde
idable.Sket
h of proof. The proofs are four variations of the 
onstru
tion given forproposition 1. The idea is to repla
e every transition labelled with updates x :=x� 1 or y := y� 1 (framed with dashed lines on pi
tures) by a small automatoninvolving the other kinds of updates only. The 
ounter ma
hine will be nowsimulated by an updatable timed automaton with four 
lo
ks fw; x; y; zg. Weshow how to simulate an x := x� 1 in any of the four 
ases :(1) Firstly 
lo
k w is reset, then update w := w+1 is performed until x�w = 1(re
all that x simulates a 
ounter and that we are interested to its integervalues). Se
ondly, 
lo
k x is reset and update x := x+ 1 is performed untilx = w.(2) A w :> 0 is guessed, followed by a test x�w = 1. Then a x :> 0 is guessed,followed by a test x = w.(3) Clo
k w is reset, w :> w is guessed and test x� w = 1 is made. Then 
lo
kx is reset, x :> x is guessed and test x = w is made.(4) A w :< x is guessed, followed by test x � w = 1. Then a x :< x is guessed,followed by a test x = w.In the four 
ases, operations are made instantaneously with the help of test z = 0performed at the beginning and at the end of the de
rementation simulation.Remark that for any 
ase we use 
omparisons of 
lo
ks. We will see in se
tion 6that 
lasses of diagonal-free timed automata equipped with any of these fourupdates are de
idable.Let us end the 
urrent se
tion with a result about mixed updates. Updates ofthe kind y + 
 �: x :� z + d (with 
; d 2 N ) 
an simulate 
lo
k 
omparisons. Infa
t, in order to simulate a test x�w = 1, it su�
es to guess a w+1 �: z0 :� x



8followed by a x �: z0 :� w + 1. Both guesses have solutions if and only if[w+1;x℄ = [x;w+1℄ = fxg if and only if (x�w = 1). In 
on
lusion, we 
annotmix di�erent kinds of updates anyhow, while keeping diagonal-free automatade
idable:Proposition 3. Let U be a set of updates 
ontaining U0(X) and fx+ 
 �: y :�z + d jx; y; z 2 X ; 
; 
0 2 N g. Then the 
lass Aut(Cdf (X);U) is unde
idable.
5 Constru
tion of an Abstra
t Region AutomatonWe want to 
he
k emptiness of the timed language a

epted by some timed au-tomaton. To this aim, we will use a te
hnique based on the original 
onstru
tionof the region automaton ([AD94℄).5.1 Constru
tion of a region graphLet X � X be a �nite set of 
lo
ks. A family of regions over X is a 
ouple(R; Su

) where R is a �nite set of regions (i.e. of subsets of TX ) and thesu

essor fun
tion Su

 : R! R veri�es that for any region R 2 R the followingholds:- for ea
h v 2 R, there exists t 2 T su
h that v + t 2 Su

(R) and for every0 � t0 � t, v + t0 2 (R [ Su

(R))- if v 2 R, then for all t 2 T, v + t 2 Su

�(R)Let U � U(X) be a �nite set of updates. Ea
h update up 2 U indu
es naturally afun
tion
up : R! P(R) whi
h maps ea
h region R into the set fR0 2 R jup(R)\R0 6= ;g. The set of regions R is 
ompatible with U if for all up 2 U and for allR; R0 2 R: R0 2 
up(R) () 8v 2 R; 9v0 2 R0 su
h that v0 2 up(v)Then, the region graph asso
iated with (R; Su

;U) is a graph whose set of nodesis R and whose verti
es are of two distin
t types:R �! R0 if R0 = Su

(R)R =)up R0 if R0 2 
up(R)Let C � C(X) be a �nite set of 
lo
k 
onstraints. The set of regions R is 
om-patible with C if for all ' 2 C and for all R 2 R: either R � ' or R � :'.5.2 Constru
tion of the region automatonLet A be a timed automaton in Aut(C;U). Let (R; Su

) be a family of re-gions su
h that R is 
ompatible with C and U . We de�ne the region automaton�R;Su

(A) asso
iated with A and (R; Su

), as the �nite (untimed) automatonde�ned as follows:



9- Its set of lo
ations is Q�R; its initial lo
ations are (q0;0) where q0 is initialand 0 is the region where all 
lo
ks are equal to zero; its repeated lo
ationsare (r; R) where r is repeated in A and R is any region; its �nal lo
ationsare (f;R) where f is �nal in A and R is any region.- Its transitions are de�ned by:� (q; R) "�! (q; R0) if R! R0 is a transition of the region graph,� (q; R) a�! (q0; R0) if there exists a transition (q; '; a; up; q0) in A su
hthat R � ' and R =)up R0 is a transition of the region graph.Theorem 3. Let A be a timed automaton in Aut(C;U) where C (resp. U) isa �nite set of 
lo
k 
onstraints (resp. of updates). Let (R; Su

) be a family ofregions su
h that R is 
ompatible with C and U . Then the automaton �R;Su

(A)a

epts the language Untime(L(A)).Assume we 
an en
ode a region in a polynomial spa
e, then we 
an de
ide theemptiness of the language in polynomial spa
e. It su�
es to guess an a

eptedrun in the automaton by remembering only the two 
urrent su

essive 
on�gu-rations of the region automaton (this is the same proof than in [AD94℄).We will now study some 
lasses of timed automata, and 
onsider parti
ularregions whi
h verify the 
onditions required by the region automaton. This willlead us to some de
idability results using the above 
onstru
tion.6 Considering Diagonal-Free Updatable Timed AutomataDe�nition of the regions we 
onsider - We 
onsider a �nite set of 
lo
ks X � X .We asso
iate an integer 
onstant 
x to ea
h 
lo
k x 2 X, and we de�ne the setof intervals:Ix = f[
℄ j 0 � 
 � 
xg [ f℄
; 
+ 1[ j 0 � 
 < 
xg [ f℄
x; +1[gLet � be a tuple ((Ix)x2X ;�) where:- 8x 2 X, Ix 2 Ix- � is a total preorder on X0 = fx 2 X j Ix is an interval of the form ℄
; 
+1[gThe region (de�ned by) � is thus
R(�) = 8<: j 8x 2 X; v(x) 2 Ixjv 2 TX j 8x; y 2 X0; the following holdsjj x � y () fra
(v(x)) � fra
(v(y))

9=;The set of all regions de�ned in su
h a way will be denoted by R(
x)x2X .
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Example 2. As an example, assume we haveonly two 
lo
ks x and y with the 
onstants
x = 3 and 
y = 2. Then, the set of regionsasso
iated with those 
onstants is des
ribed inthe �gure beside. The hashed region is de�nedby the following: Ix =℄1; 2[, Iy =℄0; 1[ and thepreorder � is de�ned by x � y and y 6� x.



10We obtain immediately the following proposition:Proposition 4. Let C � Cdf (X) be su
h that for any 
lo
k 
onstraint x � 
 ofC, it holds 
 � 
x. Then the set of regions R(
x)x2X is 
ompatible with C.Note that the result does not hold for any set of 
onstraints in
luded in C(X).For example, the region (℄1;+1[�℄1; +1[; ;) is neither in
luded in x � y � 1nor in x� y > 1.
Computation of the su

essor fun
tion - Let R = ((Ix)x2X ;�) be a region. Weset Z = fx 2 X j Ix is of the form [
℄g. Then the region Su

(R) = ((I 0x)x2X ;�0)is de�ned as follows, distinguishing two 
ases:1. If Z 6= ;, then- I 0x = 8<: Ix if x 62 Z℄
; 
+ 1[ if Ix = [
℄ with 
 6= 
x℄
x;1[ if Ix = [
x℄- x �0 y if (x � y) or Ix = [
℄ with 
 6= 
x and I 0y has the form ℄d; d+ 1[2. If Z = ;, let M be the set of maximal elements of �. Then- I 0x = � Ix if x 62M[
+ 1℄ if x 2M and Ix =℄
; 
+ 1[- �0 is the restri
tion of � to fx 2 X j I 0x has the form ℄d; d+ 1[gTaking the previous example, the su

essor of the gray region is de�ned byIx =℄1; 2[ and Iy = [1℄ (drawn as the thi
k line).We will now de�ne a suitable set of updates 
ompatible with the regions.
What about the updates ? - We 
onsider now a lo
al update up = (upx)x2X overa �nite set of 
lo
ks X � X su
h that for any 
lo
k x, upx is in one of the fourfollowing subsets of U(X), ea
h of them being given by an abstra
t grammar:- detx ::= x := 
 jx := z + d with 
 2 N , d 2 Z and z 2 X.- infx ::= x :C 
 jx :C z + d j infx ^ infx with C2 f<;�g, 
 2 N , d 2 Z andz 2 X.- supx ::= x :B 
 jx :B z + d j supx ^ supx with B2 f>;�g, 
 2 N , d 2 Z andz 2 X.- intx ::= x :2 (
; d) jx :2 (
; z + d) jx :2 (z + 
; d) jx :2 (z + 
; z + d) where( and ) are either [ or ℄, z is a 
lo
k and 
, d are in Z.Let us denote by U1(X) this set of lo
al updates. As in the 
ase of simple updates,we will give a ne
essary and su�
ient 
ondition for R0 to be in 
up(R) when R,R0 are regions and up is a lo
al update.



11Case of simple updates - We will �rst prove that for any simple update up,R(
x)x2X is 
ompatible with up. To this aim, we 
onstru
t the regions belongingto 
up(R) by giving a ne
essary and su�
ient 
ondition for a given region R0 tobe in 
up(R).Assume that R = ((Ix)x2X ;�) where � is a total preorder on X0 and that up isa simple update over z, then the region R0 = ((I 0x)x2X ;�0) (where �0 is a totalpreorder on X 00) is in 
up(R) if and only if I 0x = Ix for all x 6= z and :if up = z :� 
 with 
 2 N : I 0z 
an be any interval of Iz whi
h interse
tsf
 j 
 � 
g and� either I 0z has the form [d℄ or ℄
z ; +1[, X 00 = X0 n fzg and �0=� \(X 00�X 00).� either I 0z has the form ℄d; d + 1[, X 00 = X0 [ fzg and �0 is any totalpreorder whi
h 
oin
ides with � on X0 n fzg.if up = z :� y + 
 with 
 2 Z : we assume in this 
ase that 
z � 
y + 
. Thusif Iy is any interval in Iy then Iy + 
 is in
luded in an interval of Iz (inparti
ular, whenever Iy is non bounded then Iy + 
 is non bounded, whi
his essential in order to prove the 
ompatibility).I 0z 
an be any interval of Iz su
h that there exists � 2 I 0z, � 2 Iy with� � � + 
 and� either I 0z has the form [d℄ or ℄
z ; +1[, X 00 = X0 n fzg and �0=� \(X 00�X 00).� either I 0z has the form ℄d; d+ 1[, X 00 = X0 [ fzg and� If y 62 X0, �0 is any total preorder on X 00 whi
h 
oin
ides with � onX0 n fzg.� If y 2 X0, then:� either Iy + 
 6= I 0z and �0 is any total preorder on X 00 whi
h
oin
ides with � on X0 n fzg� either Iy + 
 = I 0z and �0 is any total preorder on X 00 whi
h
oin
ides with � in X0 n fzg and veri�es:� z �0 y and y �0 z if � is =� z �0 y and y 6�0 z if � is <� z �0 y if � is �� y �0 z if � is �� z 6�0 y and y �0 t if � is >� (z �0 y and y 6�0 z) or (z 6�0 y and y �0 z) if � is 6=From this 
onstru
tion, it is easy to verify that R(
x)x2X is 
ompatible with anysimple update.
2
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Example 3. We take the regions des
ribed in the�gure beside. We want to 
ompute the updatingsu

essors of the region 0 by the update x :> y+2.The three updating su

essors are drawn in the�gure beside. Their equations are:- Region 1: I 0x =℄2; 3[, I 0y =℄0; 1[ and y �0 x- Region 2: I 0x = [3℄, I 0y =℄0; 1[- Region 3: I 0x =℄3;+1[, I 0y =℄0; 1[



12Remark 3. Note that the fa
t that updates of the form z := z�1 (even used withdiagonal-free 
onstraints only) lead to unde
idability of emptiness (Se
tion 4),is not in 
ontradi
tion with our 
onstru
tion. This is be
ause we 
an not assumethat 
z � 
z � 1.Case of lo
al updates - We will use the semanti
s of the lo
al updates fromse
tion 2.3 to 
ompute the updating su

essors of a region. Assume that R =((Ix)x2X ;�) and that up = (upx)x2X is a lo
al update over X then R0 =((I 0x)x2X ;�0) 2 
up(R) if and only if there exists a total preorder �00 on a subsetof X [X 0 (where X 0 is a disjoint 
opy of X) verifyingy �00 z () y � z for all y; z 2 Xy0 �00 z0 () y �0 z for all y; z 2 Xand su
h that, for any simple update upi appearing in upx, the regionRi = ((Ii;x)x2X ;�i) de�ned by
Ii;x = � Ix if x 6= xiI 0x otherwise and � y �i z () y � z for y; z 6= xi� xi �i z () x0i �00 z for z 6= xi� z �i xi () z �00 x0i for z 6= xibelongs to 
upi(R).Assume now that U is a set of updates in
luded in U1(X). It is then te
hni
al,but without di�
ulties, to show that under the following hypothesis:- for ea
h simple update y :� z + 
 whi
h is part of some lo
al update of U ,
ondition 
y � 
z + 
 holdsthe family of regions (R(
x)x2X ; Su

) is 
ompatible with U . In fa
t, the setX [X 0 and the preorder �00 both en
ode the original and the updating regions.This 
onstru
tion allows us to obtain the desired result for lo
al updates.Remark 4. In our de�nition of U1(X), we 
onsidered restri
ted set of lo
al up-dates. Without su
h a restri
tion, it 
an happen that no su
h preorder �00 exists.For example, let us take the lo
al update x :> y ^ x :< z and the region R de-�ned by Ix = [0℄, Iy = Iz =℄0; 1[, z � y and y 6� z. Then the preorder �00 shouldverify the following : y �00 x0, x0 �00 z, z �00 y and y 6� z, but this leads to a
ontradi
tion. There is no su
h problem for the lo
al updates from U1(X), as weonly impose to ea
h 
lo
k x0 to have a value greater than or lower than someother 
lo
k values.For the while, we have only 
onsidered updates with integer 
onstants but animmediate generalization of Remark 2 allows to treat updates with any rational
onstants. We have therefore proved the following theorem:Theorem 4. Let C � Cdf (X) be a set of diagonal-free 
lo
k 
onstraints. Let U �U1(X) be a set of updates. Let (
x)x2X be a family of 
onstants su
h that for ea
h
lo
k 
onstraint y � 
 of C, 
ondition 
 � 
y holds and for ea
h update z :� y+ 
of U , 
ondition 
z � 
y + 
 holds. Then the family of regions (R(
x)x2X ; Su

) is
ompatible with C and U .



13Remark 5. Obviously, it is not always the 
ase that there exists a family ofinteger 
onstants su
h that for ea
h update y :� z+ 
 of U , 
ondition 
y � 
z+ 
holds. Nevertheless:� It is the 
ase when all the 
onstants 
 appearing in updates y :� z + 
 arenon-negative.� In the general 
ase, the existen
e of su
h a family is de
idable thanks toresults on systems on linear Diophantine inequations [Dom91℄.For any 
ouple (C;U) verifying the hypotheses of theorem 4, by applying theo-rem 3, the family Aut(C;U) is de
idable. Moreover, sin
e we 
an en
ode a regionin polynomial spa
e, testing emptiness is Pspa
e, and even Pspa
e-
omplete(sin
e it is the 
ase for 
lassi
al timed automata).Remark 6. The p-automata used in [BF99℄ to modelize the ABR proto
ol 
anbe easily transformed into updatable timed automata from a 
lass whi
h ful�llsthe hypotheses of theorem 4. Their emptiness is then de
idable.
7 Considering Arbitrary Updatable Timed Automata
In this se
tion, we allow arbitrary 
lo
k 
onstraints. We thus need to de�ne abit more 
ompli
ated set of regions. To this purpose we 
onsider for ea
h pairy, z of 
lo
ks (taken in X � X a �nite set of 
lo
ks), two 
onstants d�y;z � d+y;zand we de�ne Jy;z = f℄�1; d�y;z [g [ f[d℄ j d�y;z � d � d+y;zg [f℄d; d+ 1[ j d�y;z � d < d+y;zg [ f℄d+y;z ; +1[gThe region de�ned by a tuple ((Ix)x2X ; (Jx;y)x;y2X ;�) where- 8x 2 X; Ix 2 Ix- if X1 denotes the set f(y; z) 2 X2 j Iy or Iz is non boundedg, then8(y; z) 2 X1; Jy;z 2 Jy;z- � is a total preorder on X0 = fx 2 X j Ix is an interval of the form ℄
; 
+1[gis the following subset of TX :8>><>>:

j 8x 2 X; v(x) 2 Ixjj 8x; y 2 X0; it holdsjv 2 TX jj x � y () fra
(v(x)) � fra
(v(y))jj 8y; z 2 X1; v(y)� v(z) 2 Jy;zj
9>>=>>;



14In fa
t, we do not have to keep in mind the values d��;� as y and z play symmetri
alroles and d�y;z is equal to �d+z;y , thus we set dy;z = d+y;z . The set of all regionsde�ned in su
h a way will be denoted by R(
y)x2X ;(dy;z)y;z2X .
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Example 4. Assume that we have only two 
lo
ksx and y and that the maximal 
onstants are 
x =3 and 
y = 2, with 
lo
ks 
onstraints x�y � 0 andx�y � 1. Then, the set of regions asso
iated withthose 
onstants is des
ribed in the �gure beside.The gray region is de�ned by Ix =℄3;+1[, Iy =℄2;+1[ and �1 < y�x < 0 (i.e. Jy;x is ℄� 1; 0[).
The region Su

(R) 
an be de�ned in a way similar to the one used in thediagonal-free 
ase. We also have to noti
e that this set of regions is 
ompatiblewith the 
lo
k 
onstraints we 
onsider.Indeed we de�ne the set U2(X) of lo
al updates up = (upx)x2X where for ea
h
lo
k x, upx is one of the following simple updates:x := 
 jx := y jx :< 
 jx :� 
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From the unde
idability results of Se
tion 4,we have to restri
t the used updates if wewant to preserve de
idability. For example, ifwe 
onsider the update y := y + 1 and theregions des
ribed in the �gure beside, the im-ages of the region 1 are the regions 1, 2 and 3.But we 
an not rea
h region 1 (resp. 2, resp.3) from any point of region 1. Thus, this set ofregions does not seem to be 
ompatible withthe update y := y + 1.By 
onstru
tions similar to the ones of Se
tion 6, we obtain the following theo-rem:Theorem 5. Let C � C(X) be a set of 
lo
k 
onstraints. Let U � U2(X) be aset of updates. Let (
x)x2X and (dy;z)y;z2X be families of 
onstants su
h that- for ea
h 
lo
k 
onstraint y � 
 of C, 
ondition 
 � 
y holds,- for ea
h 
lo
k 
onstraint x� y � 
, 
ondition 
 � dx;y holds,- for ea
h update y :< 
 or y :� 
 or y := 
, it holds 
 � 
y, and for ea
h 
lo
kz, 
ondition 
z � 
+ dy;z holds,- for ea
h update y := z, 
ondition 
y � 
z holdsThen the family of regions (R(
x)x2X ;(dy;z)y;z2X;Su

) is 
ompatible with C and U.Thus, the 
lass Aut(C;U) is de
idable, and as in the previous 
ase, testingemptiness of updatable timed automata is Pspa
e-
omplete (unlike the 
aseof diagonal-free updates, the previous system of Diophantine equations alwayshas a solution).
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2 Example 5. We take the regions we used before.We want to 
ompute the updating su

essors ofthe region 0 by the update x :< 2. The four up-dating su

essors are drawn in the �gure beside.Their equations are:- Region 1: I 0x = [0℄ and I 0y =℄2;+1[- Region 2: I 0x =℄0; 1[, I 0y =℄2;+1[and Jy;x =℄1;+1[- Region 3: I 0x = [1℄ and I 0y =℄2;+1[- Region 4: I 0x =℄1; 2[, I 0y =℄2;+1[and Jy;x =℄1;+1[8 Con
lusionThe main results of this paper about the emptiness problem are summarized inthe following table:U0(X) [ � � � Cdf (X) C(X); Pspa
e Pspa
efx := 
 jx 2 Xg [ fx := y jx; y 2 Xg Pspa
e Pspa
efx :< 
 jx 2 X ; 
 2 Q +g Pspa
e Pspa
efx := x+ 1 jx 2 Xg Pspa
e Unde
idablefx :> 
 jx 2 X ; 
 2 Q +g Pspa
e Unde
idablefx :> y jx; y 2 Xg Pspa
e Unde
idablefx :< y jx; y 2 Xg Pspa
e Unde
idablefx :� y + 
 jx; y 2 X ; 
 2 Q +g Pspa
e Unde
idablefx := x� 1 jx 2 Xg Unde
idable Unde
idableOne of the surprising fa
ts of our study is that the frontier between what isde
idable and not depends on the diagonal 
onstraints (ex
ept for the x := x�1update), whereas it is well-known that diagonal 
onstraints do not in
rease theexpressive power of 
lassi
al timed automata.Note that, as mentionned before, the de
idable 
lasses are not more power-ful than 
lassi
al timed automata in the sense that for any updatable timedautomaton of su
h a 
lass, a 
lassi
al timed automaton (with "�transitions)re
ognizing the same language � and even most often bisimilar � 
an be e�e
-tively 
onstru
ted [BDFP00b℄. However, in most 
ases an exponential blow-upseems unavoidable. This means that transforming updatable timed automatainto 
lassi
al timed automata 
annot 
onstitute an e�
ient strategy to solve theemptiness problem.In the existing model-
he
kers, time is represented through data stru
tures likeDBM (Di�eren
e Bounded Matrix) or CDD (Clo
k Di�eren
e Diagrams). Aninteresting and natural question is to study how su
h stru
tures 
an be used todeal with updatable timed automata.A
knowledgements: We thank Béatri
e Bérard for helpful dis
ussions.
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