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Abstract. By definition Timed Automata have an infinite state-space, thus for
verification purposes, an exact finite abstraction is required. We propose alocation-
based finite zone abstraction, which computes an abstraction based on therele-
vant guards for a particular state of the model (as opposed toall guards). We
show that the location-based zone abstraction is sound and complete with respect
to location reachability; that it generalisesactive-clock reduction, in the sense that
an inactive clock has no relevant guards at all; that itenlargesthe class of timed
automata, that can be verified. We generalise the new abstraction to the case of
networksof timed automata, and experimentally demonstrate a potentially expo-
nential speedup compared to the usual abstraction.

1 Introduction

Since their introduction by Alur and Dill [3], timed automata have become one of the
most well-studied and well-established models for real-time systems. By their defini-
tion timed automata models describe infinite state-spaces.Thus, to enable algorithmic
verification, exact finite abstractions are required. Here,the original region-graph con-
struction of Alur and Dill provides a “universal” such abstraction. However, whereas
indispensable as a key to decidability for several timed automata related decision prob-
lems, the enormous size of the region-graph construction makes it highly impractical
for tool-implementation. In fact, most real-time verification tools (e.g. UPPAAL [20,
6], KRONOS [12] and CMC [19]) apply abstractions based on so-called zones and in a
highly model-dependent manner in order to be as coarse (and hence small and efficient)
as possible.

To insure finiteness, it is essential for the (region- as wellas zone-based) abstrac-
tions to take into account the maximum constants to which clocks are compared. In
particular, the abstractions identify states which are identical except for the values of
clocks exceeding the (relevant) maximum constants. Obviously, the smaller we choose
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A1 : A2 :

Fig. 1.Network of timed automataA1 ‖ A2.

these maximum constants, the coarse the abstraction will be. So far, the maximum con-
stants have been determined by a global examination ofall guards in the model. In this
paper we propose a coarserlocation-basedabstraction, using location-dependent (and
smaller) maximum constants based on therelevantguards for a particular state of the
timed automaton.

Consider the timed automata network in Fig. 1. Here, global examination identifies
106 as a maximum constant fory. However, the guardy ≥ 106 is clearly irrelevant in
ℓ2 andℓ3 as any path from these locations to the guard must pass through a reset ofy.
Thus, it should be possible to choose valid maximum constants, max2 andmax3, for
y in ℓ2 andℓ3 substantially smaller than106. Obviously,max2, max3 ≥ 5, due to the
relevant guardy ≥ 5. However,5 may not necessarily be a valid maximum constant for
y in ℓ2 andℓ3: the combination of the updatez := y + 1 with the guardz < 8 in A2

suggests the relevance of the derived guardy < 8 − 1. Thusmax2, max3 ≥ 7. In fact
realizing that also the updatex := z + 3 and the invariantx ≤ 14 are relevant inℓ2 and
ℓ3 yieldsmax2, max3 = 10 as smallest valid maximal constants fory in ℓ2 andℓ3.

In this paper, we will offer efficient methods for identification of location-dependent
maximal constants based on a static analysis for determining and combiningrelevant
guards and updates for a given location. In particular, we prove that the maximal con-
stants determined are valid in the sense that the resulting relevant guard abstraction is
exact with respect to location reachability. Furthermore,to keep the static analysis as
light as possible, we offer a computational method allowingvalid location-dependent
maximal constants of a network to be derived from the component automata. We fur-
ther experimentally demonstrate that the use of location-dependent maximal constants
in abstractions provides a potential exponential speedup1.

The closest related work to our static analysis method for relevant guards and up-
dates is theactive-clock reductiontechnique for timed automata presented in [15]. In
fact, active-clock reduction is a special case of our relevant guard abstraction, in the
sense that an inactive clock has no relevant guards at all. Also related is the work in [13]
on using precomputed influence information.

1 E.g.an exponential speedup is obtained for the reachability of the network in Fig. 1.
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2 The Model and its Semantics

The model used in this paper is that of networks of timed automata. LetX be a set
of non-negative real-valued variables calledclocks, andAct a set of actions and co-
actions (denoteda! anda?) and the non-synchronising action (denotedτ ). The set of
guards, denoted byG(X), and the set of updates, denoted byU(X), are generated by
the grammars

g ::= x ⊲⊳ c | g1 ∧ g2 up ::= x := c | x := y + c | up1 ∧ up2 ,

wherex, y ∈ X , c ∈ N, ⊲⊳ ∈ {<,≤, =,≥, >}, base(up1)∩base(up2) = ∅, andbase is
a function such thatbase(x := c) = base(x := y + c) = {x} andbase(up1 ∧ up2) =
base(up1) ∪ base(up2). For the static analysis to follow we also define the function
used such thatused(x ⊲⊳ c) = {x}, used(x := y + c) = {y} andused(ϕ1 ∧ ϕ2) =
used(ϕ1) ∪ used(ϕ2), whereϕi is either a guard or an update.

Definition 1. A timed automatonover (Act, X) is a tuple(L, ℓ0, I, E), whereL is
a set of locations,ℓ0 ∈ L is an initial location,I : L → G(X) assigns invariants to
locations, andE is a set of edges such thatE ⊆ L×G(X)×Act×U(X)×L. Anetwork
of timed automataA1 ‖ · · · ‖ An over(Act, X) is defined as the parallel composition
of n timed automata over(Act, X). LetAi = (Li, ℓ

0
i , Ii, Ei) for 1 ≤ i ≤ n. We write

ℓ
g,a,u

−−−−→i ℓ′ iff (ℓ, g, a, u, ℓ′) ∈ Ei andI(ℓ) =
∧

1≤i≤n Ii(ℓi), whereℓ is our standard
notation for a vectorℓ = (ℓ1, . . . , ℓn).

The semantics of a network of timed automata is defined in terms of a transition
system over states of the network. Intuitively, there are three kinds of transitions: delay
transitions, internal transitions, and synchronisations. Before formally stating the se-
mantics, we introduce a few definitions. A clock valuationσ ∈ R

X
≥0 is a function which

assigns values to clocks. Ifd ∈ R>0 is a delay, thenσ + d denotes the clock valuation
such that for each clockx, (σ + d)(x) = σ(x) + d. If up ∈ U(X) is an update, then
up(σ) denotes the valuation which mapsx to c if x := c is in up, mapsx to σ(y) + c if
x := y + c is in up, and agrees withσ in all other cases. We writeσ |= g if and only if
the clock valuationσ satisfies the guardg (defined in the natural way).

Definition 2. The semantics of a network of timed automataA1 ‖ · · · ‖ An is defined
by a transition system(S, s0,−→), whereS = (L1 × · · · × Ln) × R

X
≥0 is the set of

states,s0 = (ℓ0, σ0) is the initial state,∀x ∈ X : σ0(x) = 0, and−→⊆ S × S is the
set of transitions defined by:

∀0 ≤ d′ ≤ d : σ + d′ |= I(ℓ)

(ℓ, σ)
d

−→ (ℓ, σ + d)
if d ∈ R>0

ℓi
g,τ,up

−−−−→i ℓ′i σ |= g up(σ) |= I(ℓ[ℓ′i/ℓi])

(ℓ, σ)
τ
−−→ (ℓ[ℓ′i/ℓi], up(σ))

ℓi

gi,a!,upi−−−−−→i ℓ′i
ℓj

gj ,a?,upj

−−−−−−→j ℓ′j
σ |= gi ∧ gj σ′ |= I(ℓ′)

(ℓ, σ)
τ
−−→ (ℓ′, σ′)

if i 6= j,
ℓ

′ = ℓ[ℓ′i/ℓi, ℓ
′
j/ℓj],

σ′ = (upi ∧ upj)(σ)
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In contrast to UPPAAL and KRONOS, we allow updates of the formx := y + c. In
the next section, we restrict ourselves to individual timedautomata (i.e. consider only
τ actions). Extensions to networks of timed automata will be considered in section 6.

3 Forward Analysis

A standard forward breadth-first or depth-first state-spaceexploration based directly on
the transition relation ’−→’ defined in section 2 is unlikely to terminate, since the state
space is uncountably infinite. The classical approach used to prove decidability of the
reachability problem for timed automata involves the construction of a region graph [3].
Intuitively, regions are sets of clock valuations indistinguishable by arbitrary guards and
behaving identical under delay and update operations. In practice, tools like UPPAAL

and KRONOSuse zones rather than regions to build a coarser representation of the state-
space. Zones are sets of clock valuations definable by conjunctions of constraints of the
formsx ⊲⊳ c andx − y ⊲⊳ c, wherex andy are clocks andc is an integer. Using zones
makes the state-space countable, but not finite. In order to make it finite, an abstraction
of the state-space is needed. In the following, we will useZ to refer to zones andW to
arbitrary sets of valuations.

In this section we will recall the symbolic semantics of timed automata, the DBM
representation of zones, and the DBM based abstraction usedin order to obtain a finite
state-space.

Symbolic Semantics. For universality, the definition of the symbolic semantics uses
arbitrary sets of clock valuations, rather than zones.

Definition 3. The symbolic semantics of a timed automatonA = (L, ℓ0, I, E) is based
on the abstract transition system(S, s0, =⇒), whereS = L×P(RX

≥0)
2, s0 = (ℓ0, {σ0}),

and ’=⇒’ is defined by the following two rules:

DELAY: (ℓ, W ) =⇒ (ℓ, W ′),

whereW ′ =
{

σ + d | σ ∈ W ∧ d ≥ 0 ∧ ∀ 0 ≤ d′ ≤ d : σ + d′ |= I(ℓ)
}

ACTION: (ℓ, W ) =⇒ (ℓ′, W ′)if there exists a transitionℓ
g,a,up

−−−−−→ ℓ′ in A,

such thatW ′ =
{

up(σ) | σ ∈ W ∧ σ |= g ∧ up(σ) |= I(ℓ′)
}

.

Example 1.The timed automaton in the following figure illustrates thatalthough the
symbolic semantics results in a countable state-space, it is not necessarily finite. When-
ever one time unit has passed, the loop will be taken andy will be reset to zero. However
x keeps growing thus resulting in an infinite state-space.

(y ≤ 1)

y := 0,
x := 0

x ≥ 1 ∧ y = 1,
y := 0

0 1 2 3 4 5 x

1

2

y

2 P(A) denotes the power set ofA.

4



To obtain a finite graph, we suggest to apply some abstractiona : P(RX
≥0) →֒ P(RX

≥0),
such thatW ⊆ a(W ). The abstract transition system ’=⇒a’ will then be given by the
following induction rules:

(ℓ, W ) =⇒ (ℓ′, W ′)

(ℓ, W ) =⇒a

(

ℓ′, a(W ′)
)

if W = a(W )

A simple way to assure that the reachability graph induced by’=⇒a’ is finite is to
establish that there is only finitely many abstractions of sets of valuations, that is, the
set{a(W ) | a defined onW} is finite. In this casea is said to be afinite abstraction.
Moreover,=⇒a is said to besoundandcompletewhenever:

SOUND: (ℓ0, {σ0}) =⇒∗
a

(ℓ, W ) implies∃σ ∈ W : (ℓ0, σ0) −→∗ (ℓ, σ)

COMPLETE: (ℓ0, σ0) −→∗ (ℓ, σ) implies∃W : σ ∈ W ∧ (ℓ0, {σ0}) =⇒∗
a

(ℓ, W )

Completeness follows trivially from the definition of abstraction. Of course, ifa
andb are two abstractions such that for any set of valuationsW , a(W ) ⊆ b(W ), we
prefer to use abstractionb, because the graph induced by it, isa priori smaller than
the one induced bya. Our aim is thus to propose an abstraction which is finite and
which induces a sound abstract transition system. We also require that this abstraction
is effective, in the sense that it can be efficiently computed.

Zones. A First step in finding an effective abstraction is realizingthatW will always
be a zone for any(ℓ0, {σ0}) =⇒∗ (ℓ, W ). Zones can be represented usingDifference
Bound Matrices(DBM). We will briefly recall the definition of DBMs, but referto [16,
14, 5, 8] for more details.

A DBM is a square matrixM = 〈mi,j ,≺i,j〉0≤i,j≤n such thatmi,j ∈ Z and
≺i,j∈ {<,≤} or mi,j = ∞ and≺i,j=<. M represents the zoneJMK which is defined
by JMK = {σ | ∀0 ≤ i, j ≤ n : σ(xi) − σ(xj) ≺i,j mi,j}, where{xi | 1 ≤ i ≤ n}
is the set of clocks, andx0 is a clock which is always0, (i.e. ∀σ: σ(x0) = 0). DBMs
are not a canonical representation of zones, but a normal form can be computed by
considering the DBM as an adjacency matrix of a weighted directed graph and com-
puting all shortest paths. In particular, ifM = 〈mi,j ,≺i,j〉0≤i,j≤n is a DBM in normal
form, then it satisfies thetriangular inequality, that is, for every0 ≤ i, j, k ≤ n, we
have that(mi,j ,≺i,j) ≤ (mi,k,≺i,k) + (mk,j ,≺k,j) where comparisons and additions
are defined in a natural way (see [8]). All operations needed to compute ’=⇒’ can be
implemented by manipulating the DBM.

The ’Maximum Constants’ Abstraction. The abstraction currently in use in model-
checkers, is based on the idea that the automaton is only sensitive to changes on a clock
if its value is below a certain constant. That is, for each clock there is a maximum con-
stant and once the value of a clock has passed this constant, its exact value is no longer
relevant – only the fact that it is larger than the maximum constant matters. Transform-
ing a DBM to reflect this idea is often referred to asextrapolationor normalisation[15].

Definition 4 (Extrapolation). Given a set of clocks{xi | 1 ≤ i ≤ n}, a maximum
constantki for each clockxi, and a DBMM = 〈mi,j ,≺i,j〉0≤i,j≤n, theextrapolation
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of M is M ′ = 〈m′
i,j ,≺

′
i,j〉0≤i,j≤n such that:

(m′
i,j ,≺

′
i,j) =











(∞, <) if mi,j > ki,

(−kj , <) if mi,j < −kj,

(mi,j ,≺i,j) otherwise.

Let Λk denote the extrapolation operator corresponding to the tuple of constantsk =
(k1, . . . , kn). In an abuse of notation, we useΛk as an abstraction function.

The actual choice of constantsk is based on the guards, invariants, and updates of
the system. For the simple subset of timed automata without guards on clock differences
and with clock updates limited to reset to a constant, the constantki for clock xi is
simply the maximum constant in any guard or invariant thatxi is ever compared to.
In the general case, findingk requires solving a system of simple linear Diophantine
inequalities [10, 8], having one variable,px, for each clockx. The inequalities are on
the formpx ≤ py + c whenever there is an updatex := y + c in the automaton, or
px ≥ d whenever there is a guardx ⊲⊳ d in the automaton. The system of inequalities
has the nice property that whenever it has a solutionk, then it is safe to useΛk as an
abstraction. The graph induced by the transition relation ’=⇒Λk

’ is obviously finite and
has an effective implementation. Its soundness has been proved in [9].

4 Location-Dependent Abstractions

The symbolic transition relation ’=⇒Λk
’ defined in the previous section is based on

a location-independent abstraction of zones. That is, for agiven symbolic state(ℓ, Z)
the abstraction applied toZ is independent ofℓ, but merely uses global information of
the constants to which clocks are compared throughout the automaton. However, for
a given location not all of these comparisons may be of relevance: if all paths in the
automaton from a locationℓ to a guardx ⊲⊳ c passes through an update ofx, then
intuitively the guard is not relevant or active inℓ.

To illustrate this, consider the timed automaton in Fig. 2. Here the guardy ≥ 106

is irrelevant inℓ2 as any path fromℓ2 to the guard necessarily must pass through the
reset ofy. In contrast the guardy ≥ 5 is relevant inℓ2. It is easy to see that for any pair
(ℓ2, vx, vy), (ℓ2, vx, wy), wherevy, wy > 5, the set of reachable locations is identical,
stipulating the irrelevance of the guardy ≥ 106. Now using ’=⇒Λk

’, observing that

ℓ4 ℓ3 (x ≤ 14)

ℓ1 ℓ2
(x ≤ 14)

y ≥ 106

x ≤ 5

y := 0

y ≥ 5,

x := 0

Fig. 2. Timed AutomatonA.
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kx = 5 andky = 106, iteration of the cycle betweenℓ2 andℓ3 leads to the following
sequence of symbolic states for the timed automaton in Fig. 2:

(ℓ1, x = 0 ∧ y = 0)

=⇒Λk
(ℓ1, x = y) =⇒Λk

(ℓ2, 5 ≤ x, y ≤ 14 ∧ x = y)

=⇒2
Λk

(ℓ2, x ∈ [0, 14] ∧ y ∈ [5, 28] ∧ y − x ∈ [5, 14])
. . . . . .

=⇒n
Λk

(ℓ2, x ∈ [0, 14] ∧ y ∈ [5, 14n] ∧ y − x ∈ [5, 14n− 14])

. . . . . .

=⇒∗
Λk

(ℓ2, 0 ≤ x ≤ 14 ∧ 5 ≤ y ∧ 5 ≤ y − x);

wheren ≤ ⌈106/14⌉ + 1. We observe that the symbolic states in this sequence are
strictly increasing, and hence termination of a forward symbolic exploration using
’=⇒Λk

’ occurs only extremely slowly. Obviously, we look for a moreabstract ’=⇒Λk
’

which will take into account the irrelevance of the guardy ≥ 106 in locationℓ2. In
the remainder of this section we suggest three such abstractions, all ignoring location-
irrelevant guards and sound and completew.r.t. location reachability, but differing in
efficiency of representation. Let us consider for the rest ofthis section a given timed
automatonA = (L, ℓ0, I, E).

Location-based Bisimulation. In Fig. 2, states of the form(ℓ2, vx, vy) with vy > 5
andvx ≤ 14, do not only agree on location-reachability but arelocation-bisimilar. We
definelocation-based bisimularity, ≡, as the largest relations.t.:

– (ℓ, σ) ≡ (ℓ′, σ′) impliesℓ = ℓ′,
– if (ℓ1, σ1) ≡ (ℓ2, σ2) and(ℓ1, σ1)

τ
−−→ (ℓ′1, σ

′
1),

then∃σ′
2, such that(ℓ2, σ2)

τ
−−→ (ℓ′2, σ

′
2) and(ℓ′1, σ

′
1) ≡ (ℓ′2, σ

′
2),

– if (ℓ1, σ1) ≡ (ℓ2, σ2) and(ℓ1, σ1)
d1−−→ (ℓ′1, σ

′
1),

then∃σ′
2, ∃d2, such that(ℓ2, σ2)

d2−−→ (ℓ′2, σ
′
2) and(ℓ′1, σ

′
1) ≡ (ℓ′2, σ

′
2),

– vice-versa(for the two last conditions).

If W is a set of valuations, we denote byW≡,ℓ the set{σ | ∃σ′ ∈ W s.t. (ℓ, σ) ≡
(ℓ, σ′)} and we define the induced symbolic transition relation=⇒≡ by the rule:

(ℓ, W ) =⇒ (ℓ′, W ′)

(ℓ, W ) =⇒≡ (ℓ′, W ′
≡,ℓ′)

if W = W≡,ℓ

Lemma 1. =⇒≡ is soundandcompletew.r.t. location-reachability.

Though inducing a sound and complete symbolic transition relation, there is no
simple way to represent≡-closures. In particular, as shown in the following example,
for a given locationℓ and zoneZ, the setZ≡,ℓ might not be a zone.

Example 2.Assume that we reach stateℓ with the zoneZ = (0 ≤ x, y ≤ 1). The set
Z≡,ℓ is {σ | σ(x) ≤ 3 or σ(y) ≥ 2}, which is not a zone (non-convex).
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ℓ

x ≤ 3, a, x := 0 ∧ y := 0

y ≥ 2, a, x := 0 ∧ y := 0

. . . . . .

Location-Dependent Maximal Constants. Even with a suitable representation of
the≡-closed sets (e.g.using lists of zones or structures as CDDs [4], DDDs [21]), the
actual computation of the closure would be at least as difficult as solving the location-
reachability problem itself [1, 2]. What we are looking for is an alternative abstraction
obtained by a more efficient analysis of the relevance of guards. The method proposed
in the following determines for each clockx and each locationℓ a maximum constant
maxℓ

x beyond which the actual value ofx in ℓ is irrelevant. Let{maxℓ
x | x ∈ X, ℓ ∈ L}

be a set of variables and define the system of inequalities,SA, as follows:

Definition 5 (Location-dependent max constants).For each transitionℓ
g,τ,up

−−−−→ ℓ′

ofA, we have the following inequalities inSA:






maxℓ
x ≥ c, if (x ⊲⊳ c) is in the constraintsg or I(ℓ),

maxℓ
x ≥ maxℓ′

y −c, if (y := x + c) is in up andx ≤ d or x < d is not ing,

maxℓ
x ≥ maxℓ′

x , if x 6∈ base(up).

Example 3.Consider the timed automatonA of Fig. 2. ThenSA consists of the follow-
ing inequalities:3

{

maxℓ1
x ≥5, maxℓ2

x maxℓ2
x ≥14, maxℓ3

x maxℓ3
x ≥14, maxℓ4

x maxℓ4
x ≥maxℓ1

x

maxℓ1
y ≥maxℓ2

y maxℓ2
y ≥maxℓ3

y maxℓ3
y ≥5 maxℓ4

y ≥106, maxℓ1
y

}

Let α = (maxℓ
x)x∈X,ℓ∈L be a solution ofSA. The equivalence∼=α is defined by

(ℓ, σ) ∼=α (ℓ′, σ′)
def
⇐⇒ ℓ = ℓ′ and∀x : σ(x) = σ′(x) or σ(x), σ′(x) > maxℓ

x.

Lemma 2. Whenever(ℓ, σ) ∼=α (ℓ, σ′) then(ℓ, σ) ≡ (ℓ, σ′).

For W a set of valuations, letW∼=α,ℓ = {σ′ | ∃σ ∈ W s.t. (ℓ, σ) ∼=α (ℓ, σ′)} and
let ’=⇒∼=α

’ be the induced abstracted symbolic transition relation. From the previous
Lemma 2 it follows thatW∼=α,ℓ ⊆ W≡,ℓ for any set of valuationsW . As clearlyW ⊆
W∼=α,ℓ, we have immediately:

Lemma 3. =⇒∼=α
is soundandcompletew.r.t. location-reachability.

Note that, ifα andβ are two solutions, it is clear thatW∼=β ,ℓ ⊆ W∼=α,ℓ whenever
α ≤ β.4 Thus, to maximize abstraction in the interest of early termination, we look for
a smallest solution ofSA. For example, given the automatonA of Fig. 2, the smallest
solution ofSA, as described in Example 3, ismaxℓi

x = 14 for i ∈ {1, 2, 3, 4}, maxℓi
y =

5 for i ∈ {1, 2, 3} andmaxℓ4
y = 106.

3 We writea ≥ b, c as a shorthand for the set of inequalitiesa ≥ b, a ≥ c.
4 Hereα ≤ β is defined componentwise,i.e.α ≤ β iff ∀ℓ ∈ L, ∀x ∈ X : αℓ

x ≤ βℓ
x.
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However, as for≡, there is no efficient way to represent∼=α-
closures. Indeed, even ifZ is a zone, it is not guaranteed that
Z∼=α,ℓ will be. For example, consider the zoneZ (hashed)
depicted in the figure on the right and letαℓ = (2, 1). Then
the set of valuationsZ∼=α,ℓ is obtained by adding the right
part (gray). As a result, the union of these two is non-convex

Location-Dependent Abstraction Using DBMs. The (sound and complete) sym-
bolic transition relations induced by the two abstractionsconsidered so far, unfortu-
nately do not preserve convexity of valuation-sets. In order to allow for valuation-sets
to be representedefficientlyas zones, we consider a slightly finer abstraction. In fact,
we use a location-dependent version of the maximal constantabstraction on DBMs.

Given a timed automatonA = (L, ℓ0, I, E), let SA be the system of inequalities
associated withA and α = (maxℓ

x)x∈X,ℓ∈L be a solution to this system. ForZ a
zone, we defineZℓ

α asΛα|ℓ
(Z) whereα|ℓ is the tuple(maxℓ

x)x∈X (see Definition 4 for
Λ). The following non-trivial Lemma demonstrates that this zone-based abstraction is
indeed finer than the two previously considered:

Lemma 4. LetZ be a zone,ℓ ∈ L andα a solution toSA, thenZℓ
α ⊆ Z∼=α,ℓ.

The abstract transition system ’=⇒α’ is now induced in the obvious manner:

(ℓ, Z) =⇒ (ℓ′, Z ′)

(ℓ, Z) =⇒α (ℓ′, Λα|ℓ′
(Z ′))

if Λα|ℓ
(Z) = Z

Note that, this transition system is well-defined (and consistent) because wheneverZ is
a zone, then alsoZℓ

α is a zone. We may now state our main-theorem:

Theorem 1. Let A be a timed automaton andSA the system of linear inequalities
associated withA. If α is a solution ofSA, then ’=⇒α’ is soundand completew.r.t.
location-reachability.

Moreover, the symbolic reachability graph induced by ’=⇒α’ is obviously finite
and is useful as the basis for a terminating, forward reachability algorithm. It should
be noted that the use of location-dependent maximal constant abstractionenlargesthe
class of timed automata for which we may decide location-reachability compared with
the previous method. For example, whereas the automaton of Fig. 3 may be analysed
using the new location-dependent abstractions, the globalmaximal constant abstraction
from [10] does not apply:

Sg
B =







maxx ≥ 2
maxx ≤ maxx −1
maxx ≥ 3

Sl
B =







maxℓ
x ≥ 2

maxℓ′

x ≤ maxℓ
x −1

maxℓ′

x ≥ 3

ℓ ℓ′
x ≥ 2, a, x := x − 1 x ≤ 3,

b,
x := 0

Fig. 3.Decrementing Timed Automaton,B.
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HereSg
B is the inequality system for global maximal constants andSl

B is the system for
location-dependent maximal constants. Trivially,Sg

B has no solutions, andB may con-
sequently not be analysed using the methods of [10]. In contrastSl

B has the (minimal)
solutionα with maxℓ

x = 4 andmaxℓ′

x = 3. Hence location-reachability is decidable for
B using ’=⇒α’.

5 Solving Simple Diophantine Constraints

We know from [17, 7] that the problem of solving a system of inequalities likeSA is
decidable, but the study done in these papers is much more general ([7] deals with gen-
eral Presburger formulae) and the complexity is 3EXPTIME-complete. In this section,
we provide, both, a polynomial and a linear algorithm for solving specific Diophantine
inequality systems.

Minimal solutions. The interest of computing small solutions toSA appears clearly.
Small solutions give large abstractions, and thus a smallerstate-space to explore. The
following lemma asserts that there is a unique minimal solution to the simple inequality
systems we generate.5

Lemma 5. LetA be a timed automaton andSA the inequality system associated toA.
If SA has a solution, then it has a unique minimal solution.

Our aim is to provide efficient algorithms to find the minimal solution. We will
reduce the problem to computing the longest paths in a digraph.

Reduction to a graph problem. We consider the systemSA and we construct the
directed graphGA, having a vertex for each variablemaxℓ

x in addition to the special
vertex0, and with the set of edges defined as follows:

– There is an edgemaxℓ
x

c
−→ 0 in GA if maxℓ

x ≥ c is in SA.
– There is an edgemaxℓ

x

c
−→ maxℓ′

y in GA if maxℓ
x ≥ maxℓ′

y +c is in SA.

An edge labeled with−∞ is equivalent to having no edge between two vertices. The
relation between the graphGA andSA is stated by the following result:

Proposition 1. The systemSA has a solution iff the graphGA has no positive cycle.
Moreover, the minimal solution to the systemSA corresponds to the longest paths in
GA from each vertex “maxℓ

x” to 0.

The problem thus reduces to a graph problem: we compute the longest paths in a
graph without positive cycles, which is equivalent (by inversing the edges) to compute
shortest paths in graphs without negative cycles. We can thus use, for example, Floyd-
Warshall’s algorithm, which is polynomial (O(n3)) in the number of variables of the
system, which isn = |X | · |L| where|X | is the number of clocks of the automaton and
|L| the number of locations.

5 This is not the case for general linear Diophantine inequality systems, see [17, 7].
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A particular simpler case. We restrict to timed automata that use only updates of the
form x := c andx := y. The inequalities that we have to consider in this particular case
are only of the two following forms: eithermaxℓ

x ≥ maxℓ′

y or maxℓ
x ≥ c for a constant

c. The graph that corresponds to such a system has a form like the one described below.
Two vertices (different from0) are either not linked or the label of the edge is0. There
are moreover edges from non-0 vertices to0 that can be labeled by any positive integer.

In this (special) case, a simpler algorithm can be used:

– Compute the0-cycles (i.e., in this special case, the
strongly connected components of the graph)

– The new graph, where we replace each0-cycle by a sin-
gle vertex, is aDAG. Longest paths can be computed in
linear time (in the number of strongly connected compo-
nents,i.e. the number of variables of the system).

0

6

5 0

0-cycles

This algorithm has the nice property to be linear in the number of variables of the
system (keep in mind that the number of variables is|X | · |L|).

Active-Clock Reduction. A notion of active-clock reduction has been proposed in [15]
for classical timed automata and has demonstrated a significant reduction in numerous
case studies. This notion even makes sense for our more general model of timed au-
tomata, as defined in Section 2. LetA be a timed automaton. The active-clock reduction
is computed as a (minimal) fix point by:

Act(ℓ) =
⋃

(ℓ
g,a,u

−−−−→ℓ′) in A

used(g) ∪ used(u) ∪ (Act(ℓ′) \ base(u))

The following theorem states that active-clock reduction is a special case of our location-
dependent abstraction technique.

Theorem 2. Let x ∈ X , ℓ ∈ L, and(maxℓ
x)x∈X,ℓ∈L be the minimal solution ofSA.

Thenx ∈ Act(ℓ) iff maxℓ
x > −∞.

6 Dealing with Composition

Having so far developed a method for location-based abstraction for individual timed
automata, it is now necessary to study its extension to the general case ofnetworks
of timed automata (see Section 2) in order to be applicable intools such as UPPAAL.
A simple solution would be to construct (at least logically)a single automaton having
the same behaviour as the network and then apply our method tothis product automa-
ton. However, this approach would suffer from an exponential explosion in the size of
the inequality system (e.g. the number of variables) to be solved w.r.t. the number of
components of the network.

To avoid this explosion, we will developcompositionalmethods allowing (valid)
location-dependent maximal constants of the product automaton to be efficiently de-
rived from location-dependent maximal constants of the components of the network.

11



However, the fact that clocks may be shared (read and written) by several component
automata of a network, complicates the combination of maximal constant information
of components. To illustrate this reconsider the network ofFig. 1 from the introduction,
where the clocksx andz are shared betweenA1 andA2. Considering the automaton
A2 in isolation, the maximal constant(s) forz, cni

z , seems to be8 in bothn1 andn2.
However, the presence of the updatex := z + 3 in A2 together with the invariants
(x ≤ 14) in A1 requires that the value(s) ofcni

z must take the maximal constants for
x in A1 into account in order to be valid. How to make such transfer ina valid, yet
efficient manner will be dealt with in this section.

For the sake of clarity, we fix some notation. For each networkA, for each location
vectorℓ of this network and for each clockx, we denote bymaxA

ℓ,x the minimal solution
for the systemSA.

A First Simple Case. As a first simple case assume thatA = A1 ‖ · · · ‖ An

and that each automatonAi only uses updates of the formx := c, and no update
of the formx := y + c. In addition, clocks may (or may not) be local in the sense
that any clock is used (read and written) by at most one automaton. Now, consider the
obvious combination of location-dependent maximal constants of components obtained
by maximality,i.e. if ci is the maximal constant forx in ℓi (ofAi) thenmax{c1, . . . , cn}
will be the suggested maximal constant forx in ℓ (of A) or formally:

MaxA
ℓ,x = max

{

maxAi

ℓi,x
| i = 1 . . . n

}

. (⋆)

This combination yields a valid solution toSA as stated in the following:

Proposition 2. Let A be a network only using updates of the formx := c, then
MaxA

ℓ,x ≥ maxA
ℓ,x. If moreover clocks are local, thenMaxA

ℓ,x = maxA
ℓ,x

The General Case. In the general case the component automata may have updates of
the formx := y + c as well as sharing of clocks. In particular, the case where one com-
ponent,Ai, contains a general updatex := y+c of x and another component,Aj , a test
x ⊲⊳ d onx requires atransferof maximal constants forx (in certain locations) inAj to
maximal constants fory (in certain locations) inAi. Thus, the simple combination (∗)
will not be valid. As an example consider the network of Fig. 1and the corresponding
inequality systems,SA1

andSA2

6:

SA1
=















maxℓ1
x ≥5, maxℓ2

x maxℓ1
y ≥maxℓ2

y

maxℓ2
x ≥14, maxℓ3

x maxℓ2
y ≥maxℓ3

y

maxℓ3
x ≥14, maxℓ4

x maxℓ3
y ≥ 5

maxℓ4
x ≥maxℓ1

x maxℓ4
y ≥ 106, maxℓ1

y















, SA2
=

{

maxn1

z ≥8
maxn2

z ≥4, maxn1

z

}

Calculations givemaxA1

ℓ2,z = −∞ andmaxA2

n1,z = 8 and hence MaxA(ℓ2,n1),z
= 8

by (∗). However, this combination is invalid as it ignores the invariant(x ≤ 14) in A1,
which combined with the updatex := z + 3 in A2 will require maxA(ℓ2,n1),z

≥ 11.

6 Note, that asA2 has no guards onx, there are no constraints on maximal constants involving
x in SA2

. Similar holds forA1 andz.
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To obtain a valid inequality system, we take the transfer-updatex := z + 3 (say) into
account in the following way: for each locationℓi of A1 we add the constraintmaxn1

z ≥
maxℓi

x −3. Thus, to make the method compositional, we make no assumptions as to the
locationA1 might be in simultaneously withA2 being in locationn1. We add similar
constraints tomaxℓ2

y to take the transfer-updatez := y +1 into account. The two added
transfer equation systems are thus:T1→2 =

{

maxn1

z ≥ maxℓi
x −3 : 1 ≤ i ≤ 4

}

, and
T2→1 =

{

maxℓ2
y ≥maxℓi

z −1 : i=1, 2
}

.
Applying (∗) to the solutions found from the inequality system obtainedby combin-

ing SA1
, SA2

with T1→2 andT2→1 yields a valid solution toSA1‖A2
. In the remainder

we formalize the method, state its correctness and complexity.
In general, for two different component automataAi andAj (with i 6=j), the trans-

fer inequality systemTi→j is obtained by adding for each update of the formx := y+c

in Aj with source-locationℓ a constraintmax
Aj

ℓ,y ≥ maxAi
n,x −c for any locationn of

Ai. Now, by combining the component inequality systems with the transfer inequal-
ity systems intoM =

⋃
{

SAi
: 1 ≤ i ≤ n

}

∪
⋃

{

Ti→j : i 6= j
}

and defining:
MAX A

ℓ,x = max{maxMℓi,x
| i = 1 . . . n}, where(maxM

ℓi,x
) is the minimal solution to

M, the following proposition holds:

Proposition 3. LetA be a network of timed automata. ThenMAX A
ℓ,x ≥ maxA

ℓ,x.

Thus from the (minimal) solution toM we may obtain valid location-dependent
constants. It is important to note that the size of the systemof inequalitiesM grows
polynomial with the number of components of the network7 thus allowing for our so-
lution methods from the previous section to scale up. The computation of the maxi-
mal constants corresponding to particular location-vectors (and clocks) will be obtained
from the minimal solution toM in an on-the-fly fashion.

7 Experiments with UPPAAL

A first prototype of the location-dependent abstraction technique has been implemented
in UPPAAL. The fragment considered for this prototype can deal with networks of au-
tomata and resets to a constant (x := c). The algorithms are those described in section 5
and section 6. Our algorithm is expected to beat the standardapproaches for timed au-
tomata in which we have a tremendous difference on clock constraints from one location
to another one. In order to demonstrate this, let us considera naive example(Fig. 4).
In such an automaton, and considering a global approach of the maximum constants on
clocks, the constantBIG plays a crucial role in the analysis of the system. The bigger
the constantBIG is, the longer the analysis will last. Indeed, one can noticethe fact
that applying the location-dependent analysis on this automaton reduces the maximum
constants ofy to BIG in the initial locationp and to1 in the locationq. These results
have a huge impact on the analysis of the model. In Table 1, this naive example and
the resources of its analysis are displayed for several values of the constantBIG. The
Global Methodrefers to the classical approach, theActive-clock Reductionrefers to the

7 Assuming a fixed number of locations and clocks for each component the number of variables
grows linearly and the number or inequalities grows quadraticly.
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p q
y > BIG, x := 0, y := 0 x = 1,

y ≥ 1,
x := 0

Fig. 4. Naive Example.

algorithm which only considers the clocks which are active in the locations [15], and
finally, theLocal Constantsrefers to our method. The time performance of our method
is insensitive to the size of constantBIG.

Two Processesis the example from the introduction (see Fig. 1), but slightly modi-
fied: the updates of the formx := y + c have been rewritten intox := y and hard coded
into the automaton8. The constantBIG is the constraint on the clocky valued106. Once
again, our abstraction is coarser than the ones traditionally applied, and therefore per-
forms better on the verification.

Table 1.Experimental Results (Intel PentiumIV@1.8GHz).

Constant Global Active-clock Local
BIG Method Reduction Constants

Naive Example

103 0.05s/1MB 0.05s/1MB 0.00s/1MB
104 4.78s/3MB 4.83s/3MB 0.00s/1MB
105 484s/13MB 480s/13MB 0.00s/1MB
106 stopped stopped 0.00s/1MB

103 3.24s/3MB 3.26s/3MB 0.01s/1MB
Two Processes 104 5981s/9MB 5978s/9MB 0.37s/2MB

105 stopped stopped 72s/5MB

103 0.01s/1MB 0.01s/1MB 0.01s/1MB
Asymmetric 104 2.20s/3MB 2.20s/3MB 0.85s/2MB

Fischer 105 333s/19MB 333s/19MB 160s/13MB
106 33307s/122MB33238s/122MB16330s/65MB

Bang & Olufsen 25000 stopped 159s/243MB 123s/204MB

The next example, namelyAsymmetric Fischer, refers to a classical two process
Fischer example where the constants of one of the processes have been changed to the
constantBIG. Experiments show a gain of 50% in time. The final example, referred
to asBang & Olufsen, is an industrial case study [18]. The Bang & Olufsen Power
Down Protocol controls the transitions between stand-by mode and power-on mode
in the company’s products, where power consumption minimization is an important
feature. The UPPAAL model of this protocol heavily uses a clockc and introduces a
certain amount of guards with constants from 1 to 25000. The way the model is built
introduces a lot of locations where the maximum constant ofc can be reduced from
25000 to some lower constants. Without any modification of the model we have noticed
an improvement of 25% in the speed and 20% of the memory usage.

8 The technique used to transform timed automata withx := c andx := y into timed automata
with only resets is described in [11].
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Finally, it is crucial to point out that, as expected by the theory, our algorithm is
performing as well as the active-clock reduction techniquein all other examples that
we tried (including the total suite of UPPAAL benchmarks). Location-dependent ab-
straction out performs active-clock reduction only when itdeals with models in which
there is a big difference on the value of the maximum constants from state to state (as
demonstrated in this section), but has no effect on models which do not have this sort of
property. We also emphasize the fact that our experiments did not exhibit any significant
difference between the performance of the active-clock reduction and our method.

8 Conclusions and Further Work

In this paper, we have shown that the classical zone construction used to obtain a finite
abstraction of a timed automaton is sensitive to large differences in the constants to
which clocks are compared. We have contributed alocation-dependent zone abstrac-
tion, which uses static analysis to identify therelevant guards and invariantsin a given
location. We have shown that this abstraction generalises the well-known active-clock
reduction technique. In addition, we have extended the concept to the case of networks
of timed automata and to the case of more general updates of clocks. Experiments have
demonstrated, that our abstraction in some cases can resultin an exponential speedup.
On real-world cases, we either match or surpass the performance of active-clock re-
duction, depending on whether the system compares clocks todifferent constants or
not.

There are a number of open questions, that need further work.Our experiments do
not evaluate the quality of the heuristic described in Section 6 used for networks of
timed automata,i.e., whether computing the maximum constants based on the product
automaton would yield significantly smaller constants. Also, we have not tested with
systems containing non-trivial updates (x := y+c). This is partly due to lack of realistic
systems using these kind of updates.

In UPPAAL, clocks (and clock differences) may be compared to expressions over
bounded integer variables. Extending the active guard reduction technique to this case
involves finding the smallest upper bound of an integer expression in a given location.
Also, the idea of active-clock reduction could equally be applied to integer variables.
In the sequential case, this has been studied in the field of compiler theory and is also
related to slicing techniques (recently added to SPIN). Finally, we have not yet explored
the fact, that we can verify a broader class of timed automatacompared to the classic
approach. A case-study demonstrating the usefulness of this claim is needed.
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