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Abstract. By definition Timed Automata have an infinite state-spacas tfor
verification purposes, an exact finite abstraction is reglLivWe propose lacation-
based finite zone abstractipwhich computes an abstraction based onréhe-
vant guards for a particular state of the model (as opposedlltguards). We
show that the location-based zone abstraction is soundanglete with respect
to location reachability; that it generalisastive-clock reductioyin the sense that
an inactive clock has no relevant guards at all; thahiairgesthe class of timed
automata, that can be verified. We generalise the new atistrdo the case of
networksof timed automata, and experimentally demonstrate a gatngxpo-
nential speedup compared to the usual abstraction.

1 Introduction

Since their introduction by Alur and Dill [3], timed autonaahave become one of the
most well-studied and well-established models for raaktsystems. By their defini-
tion timed automata models describe infinite state-spddess, to enable algorithmic
verification, exact finite abstractions are required. Heve original region-graph con-
struction of Alur and Dill provides a “universal” such alesttion. However, whereas
indispensable as a key to decidability for several timedmata related decision prob-
lems, the enormous size of the region-graph constructidcema highly impractical
for tool-implementation. In fact, most real-time verifiat tools €.g. UPPAAL [20,
6], KRONOS[12] and CMC [19]) apply abstractions based on so-callecez@nd in a
highly model-dependent manner in order to be as coarse @rzklsmall and efficient)
as possible.

To insure finiteness, it is essential for the (region- as agelzone-based) abstrac-
tions to take into account the maximum constants to whicbkdare compared. In
particular, the abstractions identify states which aratidal except for the values of
clocks exceeding the (relevant) maximum constants. Olsiypthe smaller we choose
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*** Basic Research in Computer Scienegaf. bri cs. dk), funded by the Danish National Re-
search Foundation.



Fig. 1. Network of timed automatd; || A-.

these maximum constants, the coarse the abstraction willdar, the maximum con-
stants have been determined by a global examinatiail gluards in the model. In this
paper we propose a coardecation-basedbstraction, using location-dependent (and
smaller) maximum constants based on tblevantguards for a particular state of the
timed automaton.

Consider the timed automata network in Fig. 1. Here, glokai@nation identifies
10° as a maximum constant fgr However, the guarg > 10° is clearly irrelevant in
{5 and/3 as any path from these locations to the guard must pass theotgset of;.
Thus, it should be possible to choose valid maximum constantx, andmaxs, for
y in £ and/3 substantially smaller that0®. Obviously,max,, maxs > 5, due to the
relevant guarg > 5. Howeverj5 may not necessarily be a valid maximum constant for
y in £ and/3: the combination of the update:= y + 1 with the guard: < 8 in A,
suggests the relevance of the derived guard 8 — 1. Thusmaxs, maxs > 7. In fact
realizing that also the updaie:= = + 3 and the invariant < 14 are relevant irf; and
{3 yieldsmaxs, maxsz = 10 as smallest valid maximal constants fpin /5 and/s.

In this paper, we will offer efficient methods for identifizat of location-dependent
maximal constants based on a static analysis for deterganid combiningelevant
guards and updates for a given location. In particular, vesgthat the maximal con-
stants determined are valid in the sense that the resubltiegant guard abstraction is
exact with respect to location reachability. Furthermeoekeep the static analysis as
light as possible, we offer a computational method allowiatid location-dependent
maximal constants of a network to be derived from the compbaetomata. We fur-
ther experimentally demonstrate that the use of locatigmeddent maximal constants
in abstractions provides a potential exponential spekdup

The closest related work to our static analysis method flevaat guards and up-
dates is thective-clock reductiortechnique for timed automata presented in [15]. In
fact, active-clock reduction is a special case of our ralegmard abstraction, in the
sense that an inactive clock has no relevant guards at abh. velated is the work in [13]
on using precomputed influence information.

1 E.g.an exponential speedup is obtained for the reachabilithehetwork in Fig. 1.



2 The Model and its Semantics

The model used in this paper is that of networks of timed aatam_etX be a set
of non-negative real-valued variables callddcks and. Act a set of actions and co-
actions (denoted! anda?) and the non-synchronising action (denotgdThe set of
guards denoted byG(X), and the set of updates, denoted/byX ), are generated by
the grammars

g i=xzXc | g1Ag up = x:=c | z:=y+c | up; Aup, ,

wherez,y € X,c € N, € {<,<,=,>,>}, base(up; ) Nbase(up,) = ), andbase is

a function such thabase(z := ¢) = base(x := y + ¢) = {z} andbase(up; A upy) =
base(up;) U base(up,). For the static analysis to follow we also define the function
used such thatused(z < ¢) = {z}, used(z := y + ¢) = {y} andused(p1 A p2) =
used (1) U used(y2), whereyp; is either a guard or an update.

Definition 1. A timed automatorover (Act, X) is a tuple(L,(°, 1, E), where L is

a set of locations(® € L is an initial location, : L — G(X) assigns invariants to
locations, and¥ is a set of edges such thBtC LxG(X) x Act xU(X) x L. Anetwork
of timed automata, | - - - || A, over(Act, X) is defined as the parallel composition
of n timed automata ovefAct, X). Let A; = (L;, 02, I;, E;) for 1 < i < n. We write
LY i (0, g,a,u,0") € E;andI(€) = A\, «,<,, Li(£;), whereg is our standard
notation for a vectol = (¢1,...,4,).

The semantics of a network of timed automata is defined indexfra transition
system over states of the network. Intuitively, there areefkinds of transitions: delay
transitions, internal transitions, and synchronisati@efore formally stating the se-
mantics, we introduce a few definitions. A clock valuatiog RZ,, is a function which
assigns values to clocks.df€ R~ is a delay, thew + d denotes the clock valuation
such that for each clock, (o + d)(z) = o(z) + d. If up € U(X) is an update, then
up(o) denotes the valuation which mapso c if = := cis inup, mapsr to o(y) + c if
x :=y + cis inup, and agrees withr in all other cases. We write = ¢ if and only if
the clock valuatiorw satisfies the guarg (defined in the natural way).

Definition 2. The semantics of a network of timed automdtal| - - - || A,, is defined
by a transition systemS, sg, —), whereS = (L; X --- X L,) X Rgo is the set of
states,sg = (£°,0°) is the initial stateyz € X: 0%(z) = 0,and— C S x S is the
set of transitions defined by:

VO<d <d: o+d [=I(£)

L,0) L (6,0 + d)

LTty olEg  uplo) EI(LG/0])
(€,0) — (£[;/1:], up(0))

if deRsg

4. gj.,a?,upji i o ': gi N\ g5 o’ ': I(e') if i 7,
& = L6/, /4],
o' = (up; Aup;)()




In contrast to WPAAL and KRONOS we allow updates of the form := y + ¢. In
the next section, we restrict ourselves to individual tirmaetbmatai(e. consider only
T actions). Extensions to networks of timed automata will tvesidered in section 6.

3 Forward Analysis

A standard forward breadth-first or depth-first state-sgax@doration based directly on
the transition relation——’ defined in section 2 is unlikely to terminate, since theestat
space is uncountably infinite. The classical approach usgdave decidability of the
reachability problem for timed automata involves the cartton of a region graph [3].
Intuitively, regions are sets of clock valuations indigtiishable by arbitrary guards and
behaving identical under delay and update operations.datige, tools like WPAAL
and KRONoOsuse zones rather than regions to build a coarser repreisertéthe state-
space. Zones are sets of clock valuations definable by cciijus of constraints of the
formszx <t c andz — y < ¢, wherex andy are clocks and is an integer. Using zones
makes the state-space countable, but not finite. In ordeate finite, an abstraction
of the state-space is needed. In the following, we will 49® refer to zones andd’” to
arbitrary sets of valuations.

In this section we will recall the symbolic semantics of toreutomata, the DBM
representation of zones, and the DBM based abstractioniugeder to obtain a finite
state-space.

Symbolic Semantics. For universality, the definition of the symbolic semantisgs!
arbitrary sets of clock valuations, rather than zones.

Definition 3. The symbolic semantics of a timed automatos: (L, (°, I, E) is based
on the abstract transition syste(fi, so, =), whereS = LxP(RZ)?, so = ({0, {c°}),
and '=>'is defined by the following two rules: B

DELAY: (L, W) = (¢(,W'),
whereW' ={o+d|c e WAd>0AVO<d <d:o+d =I(()}

ACTION: (¢, W) = (¢', W")if there exists a transitiofl 2> /" in A,

such thatV’ = {up(c) |c € W Ao |= g Aup(o) = I(¢)}.

Example 1.The timed automaton in the following figure illustrates thihough the
symbolic semantics results in a countable state-spacedtinecessarily finite. When-
ever one time unit has passed, the loop will be takernyanitl be reset to zero. However
x keeps growing thus resulting in an infinite state-space.

(y<1)
2'p(A) denotes the power set df.




To obtain a finite graph, we suggest to apply some abstraa:tidh(Rgo) — P(R)Z(O),
such tha? C a(1¥). The abstract transition system=>," will then be given by the
following induction rules:

W)= (t',W")
(6, W) =>4 (¢, a(W))

A simple way to assure that the reachability graph induced=by,’ is finite is to
establish that there is only finitely many abstractions ¢f & valuations, that is, the
set{a(W) | a defined oni¥} is finite. In this case is said to be dinite abstraction
Moreover,—>, is said to besoundandcompletevhenever:

if W =a(W)

SouND: (£°,{c°}) =% (¢, W) implies3o € W : (£°,0%) —* (¢,0)
COMPLETE: (£°,0°) —* (£,0) implies3W : o0 € W A ({°,{c°}) =% (¢, W)

Completeness follows trivially from the definition of alesttion. Of course, it
andb are two abstractions such that for any set of valuatidhsu(W) C b(W), we
prefer to use abstraction because the graph induced by itaigriori smaller than
the one induced by. Our aim is thus to propose an abstraction which is finite and
which induces a sound abstract transition system. We atggreethat this abstraction
is effectivein the sense that it can be efficiently computed.

Zones. A First step in finding an effective abstraction is realizthgt W will always
be a zone for any?®, {c"}) =* (¢,W). Zones can be represented usbiference
Bound MatricegDBM). We will briefly recall the definition of DBMs, but refdo [16,
14,5, 8] for more details.

A DBM is a square matrix\/ = (m; ;, < j)o<ij<n SUch thatm,; € Z and
=i ;€ {<,<}orm,; ; = co and=; ;=<. M represents the zorfé/] which is defined
by [M] ={o |V0 <i,j <n:o(zx;) —o(x;) <i; mi;}, where{z; | 1 < i < n}
is the set of clocks, and, is a clock which is alway$, (i.e.Vo: o(x¢) = 0). DBMs
are not a canonical representation of zones, but a norma éan be computed by
considering the DBM as an adjacency matrix of a weightedctiicgraph and com-
puting all shortest paths. In particularif = (m; ;, < j)o<i,j<n IS @ DBM in normal
form, then it satisfies th&iangular inequality that is, for every0 < 4,5,k < n, we
have tha(m; ;, <; ;) < (mix, <ix) + (mx,;, <k,;) Where comparisons and additions
are defined in a natural way (see [8]). All operations needazbinpute =" can be
implemented by manipulating the DBM.

The 'Maximum Constants’ Abstraction. The abstraction currently in use in model-
checkers, is based on the idea that the automaton is onligigets changes on a clock
if its value is below a certain constant. That is, for eacltklinere is a maximum con-
stant and once the value of a clock has passed this conssamtaict value is no longer
relevant — only the fact that it is larger than the maximumstant matters. Transform-
ing a DBM to reflect this idea is often referred toeagrapolationor normalisation15].

Definition 4 (Extrapolation). Given a set of clock$z; | 1 < ¢ < n}, a maximum
constantt; for each clocks;, and a DBMM = (m; j, <i j)o<i,j<n, theextrapolation



of M is M' = (m] ;, <} ;)o<ij<n SUchthat:
(00, <) if m;; > ki,
(mfi,ja <! ) = (—kj, <) if m;; < —kj,
(ms,j,<.;) otherwise

Let A, denote the extrapolation operator corresponding to thdeugf constantdk =
(k1,...,kn). In@an abuse of notation, we ugk, as an abstraction function.

The actual choice of constanttsis based on the guards, invariants, and updates of
the system. For the simple subset of timed automata withoarids on clock differences
and with clock updates limited to reset to a constant, thesteanik; for clock z; is
simply the maximum constant in any guard or invariant thais ever compared to.
In the general case, findinfg requires solving a system of simple linear Diophantine
inequalities [10, 8], having one variable,, for each clockz. The inequalities are on
the formp, < p, + ¢ whenever there is an update:= y + ¢ in the automaton, or
p. > d whenever there is a guard< d in the automaton. The system of inequalities
has the nice property that whenever it has a solukipthen it is safe to usdy as an
abstraction. The graph induced by the transition relaties 4, ' is obviously finite and
has an effective implementation. Its soundness has beergno [9].

4 Location-Dependent Abstractions

The symbolic transition relation==-,,’ defined in the previous section is based on
a location-independent abstraction of zones. That is, fgiven symbolic staté/, )
the abstraction applied t8 is independent of, but merely uses global information of
the constants to which clocks are compared throughout ttereaion. However, for
a given location not all of these comparisons may be of relexaif all paths in the
automaton from a locatiof to a guardz > ¢ passes through an update gfthen
intuitively the guard is not relevant or activedn

To illustrate this, consider the timed automaton in Fig. réithe guarg > 106
is irrelevant infy as any path frond; to the guard necessarily must pass through the
reset ofy. In contrast the guarg > 5 is relevant in/s. It is easy to see that for any pair
(U2, v5,vy), (L2, V5, wy), Wherev,, w, > 5, the set of reachable locations is identical,
stipulating the irrelevance of the guagd> 10°. Now using =>,, ’, observing that

z<5 (z < 14)

y:=0
Fig. 2. Timed AutomatonA.



k, = 5 andk, = 109, iteration of the cycle betweefh and/; leads to the following
sequence of symbolic states for the timed automaton in Fig. 2

(lr,2=0Ay=0)
= (1,2 =y) =>4, (L2,5 <2y <14 Az =y)
=3, o,z €[0,14 Ay e[5,28 Ay—xe[514])

:>j1k(€2,0§x§14/\5§y/\5§y—x);

wheren < [10°/14] + 1. We observe that the symbolic states in this sequence are
strictly increasing, and hence termination of a forward kgtit exploration using

"= 4, occurs only extremely slowly. Obviously, we look for a matestract=-,,’
which will take into account the irrelevance of the gugrd> 10° in location¢s. In

the remainder of this section we suggest three such alistracall ignoring location-
irrelevant guards and sound and completet. location reachability, but differing in
efficiency of representation. Let us consider for the reghid section a given timed
automatond = (L,(°, I, E).

Location-based Bisimulation. In Fig. 2, states of the fornfYs, v, v,) with v, > 5
andv, < 14, do not only agree on location-reachability but Exeation-bisimilar We
definelocation-based bisimularity=, as the largest relationt.

- (4,0) = (¢',0") impliest = ¢/,
—if (¢1,01) = (b2,02) and (£, 01) — (£}, 0)),
then3oh, such thatly, o0) —— (¢, 0h) and(¢y, o)) = (44, ab),
—if (£1,01) = (€2, 00) and(£y, o) 2 (£, 0)),
thendo?, 3ds, such tha(ls, o) 2 (£, o%) and(¢}, o) = (£}, o4),
— vice-versgfor the two last conditions).

If W is a set of valuations, we denote By= , the set{o | 30’ € W s.t.(¢,0) =
(¢,0")} and we define the induced symbolic transition relatien= by the rule:

W) = (¢'\W)
(ﬂ’ W) = (flv WIE,Z’)

it W=,

Lemma 1. == is soundand completew.r.t. location-reachability.

Though inducing a sound and complete symbolic transitidetios, there is no
simple way to represent-closures. In particular, as shown in the following example
for a given locatior? and zoneZ, the setZ= , might not be a zone.

Example 2.Assume that we reach statevith the zoneZ = (0 < z,y < 1). The set
Z=yis{o | o(z) <3 oro(y) > 2}, which is not a zone (non-convex).



y>2,a, v:=0Ay:=0

Oo— =0

r<3 a, z:=0Ny:=0

.

Location-Dependent Maximal Constants. Even with a suitable representation of
the =-closed setsq.g.using lists of zones or structures as CDDs [4], DDDs [21], th
actual computation of the closure would be at least as diffaisolving the location-
reachability problem itself [1, 2]. What we are looking feran alternative abstraction
obtained by a more efficient analysis of the relevance ofdgidrhe method proposed
in the following determines for each cloakand each locatioh a maximum constant
max’, beyond which the actual value ofin ¢ is irrelevant. Le{max’ | z € X,/ € L}

be a set of variables and define the system of inequaligsas follows:

Definition 5 (Location-dependent max constants)For each transitiory ~2*% ¢/

of A, we have the following inequalities #:

max’ > ¢, if (z > ¢) is in the constraintg or 1(¢),
max’, > maxg —c,if (y:=xz+c)isinupandx < dorxz < disnoting,
max’ > max’,  if z & base(up).

Example 3.Consider the timed automatohof Fig. 2. ThenS 4 consists of the follow-
ing inequalities®

T T T
Lo U3 £y
Yy Yy

maxfcl >5, maxﬁ2 maxi2 >14, max’s maxﬁi" >14, maxt4 maxfc4 >max’
Y

maxf/l >max maxf;? >max maxf;?" >5 maxff >10%, max

Let o = (maxi)zGXlGL be a solution ofS4. The equivalences,, is defined by

(l,0) =, (¢, 0") &L = ¢ andvz o(z) = o'(x) oro(z), 0’ (x) > maxt.

Lemma 2. Wheneve(l, o) =, (¢,0’) then(¢,0) = (¢,0').

For W a set of valuations, 18¥/~_, = {¢' | 30 € W s.t.({,0) =, (¢,0')} and
let '=-~_’ be the induced abstracted symbolic transition relatioonithe previous
Lemma 2 it follows thatV~_ , C W=, for any set of valuation$l’. As clearlyiV C
W=, ¢, we have immediately:

Lemma 3. =>~_ is soundand completew.r.t. location-reachability.

Note that, ifo and 3 are two solutions, it is clear that'~, , € W~_ , whenever
a < 3.4 Thus, to maximize abstraction in the interest of early teation, we look for
a smallest solution of 4. For example, given the automatehof Fig. 2, the smallest
solution ofS 4, as described in Example 3,isax’' = 14 fori € {1,2,3,4}, max}; =
5fori € {1,2,3} andmax’ = 10°.

3 We writea > b, ¢ as a shorthand for the set of inequalities b, a > c.
4 Herea < S is defined componentwisee. o < 3iff VL € L, Vo € X : ol < L.



closures. Indeed, evenif is a zone, it is not guaranteed that
Z~_ , Will be. For example, consider the zote (hashed)
depicted in the figure on the right and tet = (2,1). Then
the set of valuation&~_ , is obtained by adding the right
part (gray). As a result, the union of these two is non-convex >

However, as foes, there is no efficient way to represent, - A W

Location-Dependent Abstraction Using DBMs. The (sound and complete) sym-
bolic transition relations induced by the two abstractionasidered so far, unfortu-
nately do not preserve convexity of valuation-sets. In ptdellow for valuation-sets
to be representeefficientlyas zones, we consider a slightly finer abstraction. In fact,
we use a location-dependent version of the maximal conatzsttaction on DBMs.
Given a timed automatod = (L,/°, I, E), let S4 be the system of inequalities
associated withd anda = (max!).cx e be a solution to this system. Fdf a
zone, we defing’’ as/q ,(Z) whereo), is the tuple(max’).c x (see Definition 4 for
A). The following non-trivial Lemma demonstrates that thime-based abstraction is
indeed finer than the two previously considered:

Lemma 4. LetZ be azonel € L anda a solution toS 4, thenZﬁ CZx, 0.
The abstract transition system=-,’ is now induced in the obvious manner:
,z)= (l',2')
(0, 2) =, (6’,/1W/(Z’))

Ao (Z)=2Z

Note that, this transition system is well-defined (and cstesit) because whenevgiis
a zone, then als@’, is a zone. We may now state our main-theorem:

Theorem 1. Let A be a timed automaton anfi4 the system of linear inequalities
associated withA. If « is a solution ofS 4, then =’ is soundand completew.r.t.
location-reachability.

Moreover, the symbolic reachability graph induced by=',,’ is obviously finite
and is useful as the basis for a terminating, forward redtityalgorithm. It should
be noted that the use of location-dependent maximal conatestractiorenlargesthe
class of timed automata for which we may decide locatiomirahility compared with
the previous method. For example, whereas the automatoig o8 ffnay be analysed
using the new location-dependent abstractions, the gtobaimal constant abstraction
from [10] does not apply:

max, > 2 maxﬁ >2
!
S =4 max, < max, —1 Sk =1{ max{ < max} -1
max, > 3 maXfE/ >3

(=l

r>2,a, v:=2—1 <3,
x =

Fig. 3. Decrementing Timed Automatoi.



HereS} is the inequality system for global maximal constants 8hds the system for
location-dependent maximal constants. Triviafl, has no solutions, anl may con-
sequently not be analysed using the methods of [10]. In astf}; has the (minimal)
solutiona with max’, = 4 andmax’ = 3. Hence location-reachability is decidable for
B using =, .

5 Solving Simple Diophantine Constraints

We know from [17, 7] that the problem of solving a system ofgualities likeS 4 is
decidable, but the study done in these papers is much moeza€fr] deals with gen-
eral Presburger formulae) and the complexity is SEXPTIMigplete. In this section,
we provide, both, a polynomial and a linear algorithm fovsay specific Diophantine
inequality systems.

Minimal solutions. The interest of computing small solutions&q appears clearly.
Small solutions give large abstractions, and thus a smstif¢e-space to explore. The
following lemma asserts that there is a unique minimal $mfuib the simple inequality
systems we generate.

Lemma 5. Let A be a timed automaton ansl, the inequality system associated4o
If S4 has a solution, then it has a unique minimal solution.

Our aim is to provide efficient algorithms to find the minimalwgion. We will
reduce the problem to computing the longest paths in a digrap

Reduction to a graph problem. We consider the systei$i4 and we construct the
directed graplg 4, having a vertex for each variabigax’ in addition to the special
vertex0, and with the set of edges defined as follows:

<5 0in G4 if max’ > cisinS4.
= maxil in Gy if maxﬁ > maxg +cisinS4.

— There is an edgmax
— There is an edgmax

ERNTRN

An edge labeled with-co is equivalent to having no edge between two vertices. The
relation between the graghy andS 4 is stated by the following result:

Proposition 1. The systens 4 has a solution iff the graply 4 has no positive cycle.
Moreover, the minimal solution to the syste&in corresponds to the longest paths in
G4 from each vertexthax’” to 0.

The problem thus reduces to a graph problem: we compute tigedd paths in a
graph without positive cycles, which is equivalent (by irsieg the edges) to compute
shortest paths in graphs without negative cycles. We casube, for example, Floyd-
Warshall's algorithm, which is polynomiatX(n?)) in the number of variables of the
system, which i& = | X| - |L| where| X is the number of clocks of the automaton and
|L| the number of locations.

5 This is not the case for general linear Diophantine inetyualistems, see [17, 7].
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A particular simpler case. We restrict to timed automata that use only updates of the
formz := candx := y. The inequalities that we have to consider in this partictdee

are only of the two following forms: eithenax’, > max’ ormax’, > c for a constant

c. The graph that corresponds to such a system has a form élaghdescribed below.
Two vertices (different fron®) are either not linked or the label of the edg@.ig here

are moreover edges from n@nvertices to0 that can be labeled by any positive integer.

In this (special) case, a simpler algorithm can be used:

— Compute the0-cycles (.e, in this special case, thg *,

strongly connected components of the graph)
— The new graph, where we replace e@ietycle by asin- 5 ‘
gle vertex, is @DAG. Longest paths can be computed in
linear time (in the number of strongly connected compo-
nents,.e.the number of variables of the system). O o-cycles

This algorithm has the nice property to be linear in the nunatbeariables of the
system (keep in mind that the number of variablgsxis- | L|).

Active-Clock Reduction. A notion of active-clock reduction has been proposedin [15]
for classical timed automata and has demonstrated a sntifieduction in numerous
case studies. This notion even makes sense for our moreajenedel of timed au-
tomata, as defined in Section 2. L&be a timed automaton. The active-clock reduction
is computed as a (minimal) fix point by:

Act(l) = U used(g) U used(u) U (Act(¢") \ base(u))

(250 in A

The following theorem states that active-clock reducttom$pecial case of our location-
dependent abstraction technique.

Theorem 2. Letz € X,/ € L, and(maxﬁ)xexygd be the minimal solution af 4.
Thenz € Act(¢) iff max? > —oo.

6 Dealing with Composition

Having so far developed a method for location-based aligirafor individual timed
automata, it is now necessary to study its extension to thergécase ohetworks
of timed automata (see Section 2) in order to be applicabledfs such as BPAAL.
A simple solution would be to construct (at least logicallydingle automaton having
the same behaviour as the network and then apply our methbdstproduct automa-
ton. However, this approach would suffer from an exponéakplosion in the size of
the inequality system (e.g. the number of variables) to theegow.r.t. the number of
components of the network.

To avoid this explosion, we will developompositionaimethods allowing (valid)
location-dependent maximal constants of the product aatomto be efficiently de-
rived from location-dependent maximal constants of the moments of the network.
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However, the fact that clocks may be shared (read and wyittgseveral component
automata of a network, complicates the combination of maksonstant information
of components. To illustrate this reconsider the networkigf 1 from the introduction,
where the clocks: andz are shared betweed; and.4;. Considering the automaton
A, in isolation, the maximal constant(s) fer ¢7¢, seems to b& in bothn; andna.
However, the presence of the update= z + 3 in A, together with the invariants
(x < 14) in A; requires that the value(s) of* must take the maximal constants for
x in Ay into account in order to be valid. How to make such transfea alid, yet
efficient manner will be dealt with in this section.

For the sake of clarity, we fix some notation. For each netwérkor each location
vector¢ of this network and for each cloek we denote bynaxz‘}z the minimal solution
for the systens 4.

A First Simple Case. As a first simple case assume thdt = A; || --- || A,
and that each automatos; only uses updates of the form := ¢, and no update
of the formz := y + ¢. In addition, clocks may (or may not) be local in the sense
that any clock is used (read and written) by at most one automalow, consider the
obvious combination of location-dependent maximal cartstaf components obtained
by maximality,i.e.if ¢; is the maximal constant farin ¢; (of A;) thenmax{c,...,cn}

will be the suggested maximal constant foin £ (of .A) or formally:

Maxfxzmax{maxéiz | i:1...n}. (%)

This combination yields a valid solution 84 as stated in the following:

Proposition 2. Let .A be a network only using updates of the form:= ¢, then
Max;, > maxz, . If moreover clocks are local, thevlaxy!, = maxz?,

The General Case. Inthe general case the component automata may have updflates o
the forma := y + ¢ as well as sharing of clocks. In particular, the case wheescom-
ponent,A;, contains a general update= y+ ¢ of x and another componend,;, a test

x 1 d onx requires aransferof maximal constants for (in certain locations) itd; to
maximal constants foy (in certain locations) in4,. Thus, the simple combination)(

will not be valid. As an example consider the network of Figand the corresponding
inequality systemsS 4, andS 4, °:

maXf;1 >5, maxf;? max?! > max?2

Sy — maxff >14, maxf;S max%f > max,? Sa — max;!>8
A maXfE3 >14, maxf;“ max,;3 > 5 1 OA max2?>4, max}?
max’4 >max’: max. > 105, max!!
Calculations givenaxélz = —oo andmax;? . = 8 and hence Magg2 na)e = 8

by (x). However, this combination is invalid as it ignores theanant(z < 14) in Aj,
which combined with the update := z + 3 in Ay will require ma>5‘}2 > 11.

ni),z =

5 Note, that as4, has no guards om, there are no constraints on maximal constants involving
z in S.4,. Similar holds forA; andz.
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To obtain a valid inequality system, we take the transfetater := z + 3 (say) into
account in the following way: for each locatiénof .4; we add the constraimbax?* >
max’’ —3. Thus, to make the method compositional, we make no assonguss to the
location.4; might be in simultaneously witil, being in locationn;. We add similar
constraints tcmaxg2 to take the transfer-update= y + 1 into account. The two added
transfer equation systems are th@s., = { max?* > max%-3 : 1 <i <4}, and
To1= { maxff Zmaxﬁi —1:i=1, 2}.

Applying (x) to the solutions found from the inequality system obtaibgdombin-
iNg Sa,, Sa, With 7,5 and7;_; yields a valid solution t& 4, || 4, - In the remainder
we formalize the method, state its correctness and complexi

In general, for two different component automatpand.A; (with i # j), the trans-
fer inequality systerf;_, ; is obtained by adding for each update of the farm= y +¢

in A; with source-locatiorf a constraintnaxj;}; > max;ﬁjx —c for anylocationn of
A;. Now, by combining the component inequality systems with titansfer inequal-
ity systems intoM = (J{S4, : 1 < i <n} UU{Ti~; : i # j} and defining:
MAX 7%, = max{max}!, | i = 1...n}, where(max}!,) is the minimal solution to
M, the following proposition holds: 7

Proposition 3. Let.A be a network of timed automata. The#AX ;‘_"z > malez.

Thus from the (minimal) solution to\ we may obtain valid location-dependent
constants. It is important to note that the size of the sysiéequalitiesM grows
polynomial with the number of components of the netwdtius allowing for our so-
lution methods from the previous section to scale up. Thepgation of the maxi-
mal constants corresponding to particular location-wsd@@nd clocks) will be obtained
from the minimal solution toV in an on-the-fly fashion.

7 Experiments with UPPAAL

A first prototype of the location-dependent abstractiohtégue has been implemented
in UPPAAL. The fragment considered for this prototype can deal witivagks of au-
tomata and resets to a constant£ c¢). The algorithms are those described in section 5
and section 6. Our algorithm is expected to beat the staraggpbaches for timed au-
tomata in which we have a tremendous difference on clockicaings from one location

to another one. In order to demonstrate this, let us consideive exampléFig. 4).

In such an automaton, and considering a global approacleah#ximum constants on
clocks, the constargiG plays a crucial role in the analysis of the system. The bigger
the constansiG is, the longer the analysis will last. Indeed, one can natieefact
that applying the location-dependent analysis on thisraaton reduces the maximum
constants ofy to BIG in the initial locationp and to1 in the locationg. These results
have a huge impact on the analysis of the model. In Table & nhive example and
the resources of its analysis are displayed for severakgabfi the constargiG. The
Global Methodrefers to the classical approach, thetive-clock Reductiorefers to the

" Assuming a fixed number of locations and clocks for each carapbthe number of variables
grows linearly and the number or inequalities grows quaclyat
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>BIG, z:=0,y:=0 z=1,
O OB/
z:=0

Fig. 4. Naive Example.

algorithm which only considers the clocks which are activéhie locations [15], and
finally, theLocal Constantsefers to our method. The time performance of our method
is insensitive to the size of constat.

Two Processeis the example from the introduction (see Fig. 1), but slightodi-
fied: the updates of the form:= y + ¢ have been rewritten inte := y and hard coded
into the automatdh The constansiG is the constraint on the clogkvalued10°. Once
again, our abstraction is coarser than the ones traditioapplied, and therefore per-
forms better on the verification.

Table 1. Experimental Results (Intel PentiumIV@1.8GHz).

Constan Global Active-clock Local
BIG Method Reduction Constants

10° 0.05s/1MB 0.05s/1MB | 0.00s/1MB
10* 4.78s/3MB 4.83s/3MB | 0.00s/1MB
10° 484s/13MB | 480s/13MB | 0.00s/1MB
10° stopped stopped 0.00s/1MB
10° 3.24s/3MB | 3.26s/3MB | 0.01s/1MB
Two Processes 10* 5981s/9MB | 5978s/9MB | 0.37s/2MB
10° stopped stopped 72s/5MB
103 0.01s/1MB 0.01s/1MB 0.01s/1MB
Asymmetric 10* 2.20s/3MB | 2.20s/3MB | 0.85s/2MB
Fischer 10° 333s/19MB | 333s/19MB | 160s/13MB
10° |[33307s/122MB33238s/122MB16330s/65MB

| Bang & Olufser] 25000 [|  stopped [ 159s/243MB| 123s/204MB]|

Naive Example

The next example, namekxsymmetric Fischermefers to a classical two process
Fischer example where the constants of one of the proceasedken changed to the
constanBIG. Experiments show a gain of 50% in time. The final examplesrrefi
to asBang & Olufsenis an industrial case study [18]. The Bang & Olufsen Power
Down Protocol controls the transitions between stand-bgenand power-on mode
in the company’s products, where power consumption miration is an important
feature. The BrPAAL model of this protocol heavily uses a clockand introduces a
certain amount of guards with constants from 1 to 25000. Tag tlve model is built
introduces a lot of locations where the maximum constant cdn be reduced from
25000 to some lower constants. Without any modification efttodel we have noticed
an improvement of 25% in the speed and 20% of the memory usage.

8 The technique used to transform timed automata witk: ¢ andz := y into timed automata
with only resets is described in [11].
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Finally, it is crucial to point out that, as expected by thedty, our algorithm is
performing as well as the active-clock reduction technibuall other examples that
we tried (including the total suite of kbPAAL benchmarks). Location-dependent ab-
straction out performs active-clock reduction only wheddgls with models in which
there is a big difference on the value of the maximum constfroi state to state (as
demonstrated in this section), but has no effect on modeishwdo not have this sort of
property. We also emphasize the fact that our experimedtsatiexhibit any significant
difference between the performance of the active-clocketdn and our method.

8 Conclusions and Further Work

In this paper, we have shown that the classical zone conigtnuesed to obtain a finite
abstraction of a timed automaton is sensitive to large diffees in the constants to
which clocks are compared. We have contributddcation-dependent zone abstrac-
tion, which uses static analysis to identify tledevant guards and invariania a given
location. We have shown that this abstraction generalisesvell-known active-clock
reduction technigue. In addition, we have extended theeyairto the case of networks
of timed automata and to the case of more general updatesakfsclExperiments have
demonstrated, that our abstraction in some cases can ireamltexponential speedup.
On real-world cases, we either match or surpass the perfarenaf active-clock re-
duction, depending on whether the system compares clocé#fément constants or
not.

There are a number of open questions, that need further Wankexperiments do
not evaluate the quality of the heuristic described in ®acé used for networks of
timed automatai, e., whether computing the maximum constants based on the grodu
automaton would yield significantly smaller constants.cilwe have not tested with
systems containing non-trivial updates:& y+c). This is partly due to lack of realistic
systems using these kind of updates.

In UPPAAL, clocks (and clock differences) may be compared to expyessiver
bounded integer variables. Extending the active guardatéatutechnique to this case
involves finding the smallest upper bound of an integer esgiom in a given location.
Also, the idea of active-clock reduction could equally belagal to integer variables.
In the sequential case, this has been studied in the fieldropider theory and is also
related to slicing techniques (recently added roN$. Finally, we have not yet explored
the fact, that we can verify a broader class of timed autoratapared to the classic
approach. A case-study demonstrating the usefulnessotlthim is needed.
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