
HAL Id: hal-00350478
https://hal.science/hal-00350478

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis of Optimal Strategies Using HyTech
Patricia Bouyer, Franck Cassez, Emmanuel Fleury, Kim Guldstrand Larsen

To cite this version:
Patricia Bouyer, Franck Cassez, Emmanuel Fleury, Kim Guldstrand Larsen. Synthesis of Optimal
Strategies Using HyTech. Workshop on Games in Design and Verification (GDV’04), 2004, Boston,
United States. pp.11-31, �10.1016/j.entcs.2004.07.006�. �hal-00350478�

https://hal.science/hal-00350478
https://hal.archives-ouvertes.fr

GDV 2004 Preliminary Version

Synthesis of Optimal Strategies Using
HyTech

Patricia Bouyer 1,2,3

LSV, UMR 8643, CNRS & ENS de Cachan, France

Franck Cassez 1,2,4

IRCCyN, UMR 6597, CNRS, France

Emmanuel Fleury 5

Computer Science Department, BRICS, Aalborg University, Denmark

Kim G. Larsen 6

Computer Science Department, BRICS, Aalborg University, Denmark

Abstract

Priced timed (game) automata extend timed (game) automata with costs on both
locations and transitions. The problem of synthesizing an optimal winning strategy
for a priced timed game under some hypotheses has been shown decidable in [6].
In this paper, we present an algorithm for computing the optimal cost and for
synthesizing an optimal strategy in case there exists one. We also describe the
implementation of this algorithm with the tool HyTech and present an example.

Key words: optimal control, timed systems, strategy synthesis

1 Introduction

In recent years the application of model-checking techniques to scheduling
problems has become an established line of research. Static scheduling prob-
lems with timing constraints may often be formulated as reachability problems

1 Work supported by the ACI Cortos, a program of the French government.
2 Visits to Aalborg supported by CISS, Aalborg University, Denmark.
3 Email: bouyer@lsv.ens-cachan.fr
4 Email: cassez@irccyn.ec-nantes.fr
5 Email: fleury@cs.auc.dk
6 Email: kgl@cs.auc.dk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

P. Bouyer et al.

on timed automata, viz. as the possibility of reaching a given goal state. Real-
time model checking tools such as Kronos and Uppaal have been applied on
a number of industrial and benchmark scheduling problems [1,7,9,12,14,17].

Often the scheduling strategy needs to take into account uncertainty with
respect to the behavior of an environmental context. In such situations the
scheduling problem becomes a dynamic (timed) game between the controller
and the environment, where the objective for the controller is to find a dynamic
strategy that will guarantee the game to end in a goal state [4,8,16].

A few years ago, the ability to consider quite general performance mea-
sures has been given. Priced extensions of timed automata have been intro-
duced [5,3] where a cost c is associated with each location ℓ giving the cost
of a unit of time spent in ℓ. Within this framework, it is possible to measure
performance of runs and to give optimality criteria for reaching a given set of
states.

In [6], we have combined the notions of games and prices and we have
proved that, under some hypotheses, the optimal cost in priced timed game
automata is computable and that optimal strategies can then be synthetized.

In this paper, we present an algorithm for extracting optimal strategies in
priced timed game automata. We also provide an implementation of the algo-
rithm using the tool HyTech [11]. The outline of the paper is as follows: in
section 2 we recall the definition of Priced Timed Game Automata and present
an example; in section 3 we unveil an optimal cost computation method; in
section 4 we detail the algorithm to synthesize the optimal strategies and we
give some conclusions in section 6.

The HyTech files given in Fig. 5 and Fig. 7 are available on the web page
http://www.lsv.ens-cachan.fr/aci-cortos/ptga/. The detailed proofs
of the theorems we refer to, as well as complementary definitions and expla-
nations can be found in [6].

2 Priced Timed Games

2.1 Preliminaries

Let X be a finite set of real-valued variables called clocks. We denote B(X)
the set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | ϕ∧ϕ where
k ∈ Z, x, y ∈ X and ∼∈ {<,≤, =, >,≥}. A valuation of the variables in X

is a mapping from X to R≥0 (thus an element of RX
≥0). For a valuation v and

a set R ⊆ X we denote v[R] the valuation that agrees with v on X \ R and
is zero on R. We denote v + δ for δ ∈ R≥0 the valuation s.t. for all x ∈ X,
(v + δ)(x) = v(x) + δ.

2

http://www.lsv.ens-cachan.fr/aci-cortos/ptga/

P. Bouyer et al.

2.2 The (R)PTGA Model

Definition 2.1 [RPTGA] A Priced Timed Game Automaton (PTGA) G is a
tuple (L, ℓ0, Act, X, E, inv, cost) where: L is a finite set of locations; ℓ0 ∈ L is
the initial location; Act = Actc ∪ Actu is the set of actions (partitioned into
controllable and uncontrollable actions); X is a finite set of real-valued clocks;
E ⊆ L × B(X) × Act × 2X × L is a finite set of transitions; inv : L −→ B(X)
associates to each location its invariant ; cost : L ∪ E −→ N associates to
each location a cost rate and to each discrete transition a cost value. We
assume that PTGA are deterministic w.r.t. controllable actions (renaming). A
reachability PTGA (RPTGA) is a PTGA with a distinguished set of locations
Goal ⊆ L.

2.3 Runs, Costs of Runs

Let G = (L, ℓ0, Act, X, E, inv, cost) be a RPTGA. A configuration of G is a

pair (ℓ, v) in L × RX
≥0. A run ρ = (ℓ0, v0)

δ0−−→ (ℓ′0, v
′
0)

e0−−→ (ℓ1, v1)
δ1−−→

(ℓ′1, v
′
1)

e1−−→ · · · (ℓn, vn)
δn−−→ (ℓ′n, v

′
n)

en−−→ (ℓn+1, vn+1) . . . in G is a finite or
infinite sequence of alternating time (δi ∈ R≥0) and discrete (ei ∈ Act) steps
such that for every i ≥ 0: (ℓi, vi) and (ℓ′i, v

′
i) are configurations of G; for each

ei ∈ Act there exists a transition (ℓ′i, g, ei, Y, ℓi+1) ∈ E such that v′
i |= g and

vi+1 = v′
i[Y]; for each δi ∈ R≥0 ℓi = ℓ′i and v′

i = vi + δi. The cost of a

discrete or time step t = (ℓ, v)
α

−−→ (ℓ′, v′) is given by Cost(t) = α.cost(ℓ) if
α ∈ R≥0 and Cost(t) = cost((ℓ, g, α, Y, ℓ)) if α ∈ Act. A run ρ of G is winning
if at least one of the states along ρ is in the set Goal. We note Runs(G)
(resp. WinRuns(G)) the set of (resp. winning) runs in G and Runs((ℓ, v), G)
(resp. WinRuns((ℓ, v), G)) the set of (resp. winning) runs in G starting in
configuration (ℓ, v). If ρ is a finite run with n = 2k steps we note last(ρ) =
(ℓk, vk) and the cost of the run ρ is defined by: Cost(ρ) =

∑

0≤i≤n−1 Cost(ti).

Example 2.2 Consider the RPTGA in Fig. 1. Plain arrows represent control-
lable actions (Actc = {c1, c2}) whereas dashed arrows represent uncontrollable
actions (Actu = {u}). Cost rates in locations ℓ0, ℓ2 and ℓ3 are 5, 10 and
1 respectively. In ℓ1 the environment may choose to move to either ℓ2 or ℓ3.
However, due to the invariant y = 0 this choice must be made instantaneously.

2.4 Strategies, Costs of Strategies

Definition 2.3 [Strategy] Let G be a (R)PTGA. A strategy f over G is a
partial function from Runs(G) to Actc ∪ {λ}.

Definition 2.4 [Outcome] Let G = (L, ℓ0, Act, X, E, inv, cost) be a (R)PTGA
and f a strategy over G. The outcome Outcome((ℓ, v), f) of f from configu-
ration (ℓ, v) in G is the subset of Runs((ℓ, v), G) defined inductively by:

3

P. Bouyer et al.

ℓ0

cost(ℓ0) = 5

ℓ1

[y = 0]

ℓ2

cost(ℓ2) = 10

ℓ3

cost(ℓ3) = 1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2; cost = 1

x ≥ 2; c2 ; cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

• (ℓ, v) ∈ Outcome((ℓ, v), f),

• if ρ ∈ Outcome((ℓ, v), f) then ρ′ = ρ
e

−→ (ℓ′, v′) ∈ Outcome((ℓ, v), f) if
ρ′ ∈ Runs((ℓ, v), G) and one of the following three conditions hold:

(i) e ∈ Actu,
(ii) e ∈ Actc and e = f(ρ),

(iii) e ∈ R≥0 and ∀0 ≤ e′ < e,∃(ℓ′′, v′′) ∈ (L × RX
≥0) s.t. last(ρ)

e′

−−→ (ℓ′′, v′′) ∧

f(ρ
e′

−−→ (ℓ′′, v′′)) = λ.

• an infinite run ρ is in ∈ Outcome((ℓ, v), f) if all the finite prefixes of ρ are
in Outcome((ℓ, v), f).

A strategy f over a RPTGA G is winning from (ℓ, v) whenever all max-
imal 1 runs in Outcome((ℓ, v), f) are winning. We denote WinStrat((ℓ, v), G)
the set of winning strategies from (ℓ, v) in G. Let f be a winning strategy
from configuration (ℓ, v). The cost of f from (ℓ, v) is defined by:

Cost((ℓ, v), f) = sup{Cost(ρ) | ρ ∈ Outcome((ℓ, v), f)}

2.5 Optimal Control Problems

Let (ℓ0,0) denote the initial configuration of a RPTGA G. The three main
problems we address in this paper are:

Optimal Cost Computation Problem: we want to compute the optimal cost
one can expect in a RPTGA G from (ℓ0,0), i.e. to compute

OptCost((ℓ0,0), G) = inf{Cost((ℓ0,0), f) | f ∈ WinStrat((ℓ0,0), G)}

Optimal Strategy Existence Problem: we want to determine whether the op-
timal cost can actually be reached i.e. if there is an optimal strategy
f ∈ WinStrat((ℓ0,0), G) such that:

Cost((ℓ0,0), f) = OptCost((ℓ0,0), G)

1 Roughly speaking a run is maximal if it can not be extended in the future by a controllable
action (see [6] page 6, section 2.2); this point is discussed in the sequel in section 3.2.

4

P. Bouyer et al.

Optimal Strategy Synthesis Problem: in case an optimal strategy exists we
want to compute a witness.

As the example below shows there are PTGA with no optimal winning strate-
gies. In this case there is a family of strategies fε such that

|Cost((ℓ0,0), fε) − OptCost((ℓ0,0), G)| < ε

Thus another problem is, given ε, to compute such an fε strategy. This latter
synthesis problem is not dealt with in this paper.

Example 2.5 [No optimal strategy] For the PTGA of Fig. 2 there is no op-
timal strategy. c is a controllable action. Nevertheless we can define a family
of strategies fε with 0 < ε ≤ 1 by: f(ℓ0, x < 1 − ε) = λ, f(ℓ0, x = 1 − ε) = c

and f(ℓ1, x ≤ 1) = c. The cost of such a strategy is 1 + ε. So we can get as
close as we want to 1 but there is no optimal winning strategy.

ℓ0

cost(ℓ0) = 1

ℓ1

cost(ℓ1) = 2

Goal
x < 1; c x = 1; c

[x < 1] [x ≤ 1]

Fig. 2. A PTGA with no reachable optimal cost.

Example 2.6 We consider again Fig. 1. We want to compute an optimal
strategy for the controller from the initial configuration. Obviously, once ℓ2 or
ℓ3 has been reached the optimal strategy for the controller is to move to Goal

asap (taking a c2 action). The crucial (and only remaining) question is how
long the controller should wait in ℓ0 before taking the transition to ℓ1 (doing
c1). Obviously, in order for the controller to win this duration must be no more
than two time units. However, what is the optimal choice for the duration in
the sense that the overall cost of reaching Goal is minimal? Denote by t the
chosen delay in ℓ0. Then 5t+ 10(2− t) + 1 is the minimal cost through ℓ2 and
5t + (2 − t) + 7 is the minimal cost through ℓ3. As the environment chooses
between these two paths the best choice for the controller is to delay t ≤ 2
such that max(21 − 5t, 9 + 4t) is minimum, which is t = 4

3
giving a minimal

cost of 141
3
. In Fig. 3 we illustrate the optimal strategy for all states reachable

from the initial state provided by our HyTech implementation that will be
described in section 3.4.

3 Optimal Cost Computation

In this section we show that computing the optimal cost for a RPTGA amounts
to solving a simple 2 control problem on a linear hybrid game automaton [19].

2 Without cost.

5

P. Bouyer et al.

D
el
ay

ℓ0 →ℓ1

y

0 x

ℓ0

4
3

4
3

2

2

y

0 x

ℓi, i ∈ {2, 3}

2

2

Delay

ℓi →Goal

Fig. 3. Optimal strategy for the RPTGA of Fig. 1. Optimal cost is 141
3 .

As a consequence well-known algorithms [19,8] for computing winning states of
reachability hybrid games enable us to compute the optimal cost of a RPTGA.
We then show how to use the HyTech tool to implement the computation of
the optimal cost for RPTGA.

3.1 From Priced Timed Games to Linear Hybrid Games

Assume we want to compute the optimal cost of the RPTGA A given in Fig. 1.
We translate this automaton into a linear hybrid game automaton (LHGA for
short) H (see Fig. 4) where the cost function is encoded into a variable Cost

of the LHGA. In H the variable Cost decreases with rate k in a location ℓ (i.e.
dCost

dt
= −k in ℓ) if Cost(ℓ) = k in A. As for discrete transitions the variable

Cost is updated by Cost′ = Cost−k in H if the corresponding transition’s cost
in A is k.

ℓ0

dCost
dt

= −5

ℓ1

[y = 0]

ℓ2

dCost
dt

= −10

ℓ3

dCost
dt

= −1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2

Cost
′ = Cost − 1

x ≥ 2; c2

Cost
′ = Cost − 7

Fig. 4. The Linear Hybrid Game Automaton H.

Let CompWin be a semi-algorithm (e.g. [19,8]) that computes the largest
set of winning states for a reachability hybrid game. Using CompWin we can
compute the largest set of winning states for H with the goal states given by
Goal∧Cost ≥ 0. The meaning of this new reachability game is that we want to
win without having spent all the resources (Cost) we started with. Assume the
corresponding (largest) set of winning states is denoted CompWin(H, Goal ∧
Cost ≥ 0). The meaning of the set W = CompWin(H, Goal∧Cost ≥ 0) is that
in order to win one has to start in the region given by W and if one starts
outside W the opponent has a strategy to win i.e. we lose. We can prove

6

P. Bouyer et al.

(see [6], Theorem 5 and Lemma 6) that the (largest) set of winning states
W is a union of zones of the form (ℓ, R ∧ Cost ≻ h) where ℓ is a location,
R ⊆ RX

≥0, h is a piece-wise affine function on R and ≻∈ {>,≥}. Hence we
have the answer to the optimal reachability game: we intersect the set of
initial states with the set of winning states W , and in case it is not empty,
the projection on the Cost axis yields a constraint on the cost like Cost ≻ k

with k ∈ Q≥0 and ≻∈ {>,≥}. By definition of the winning set of states in
reachability games, this is the largest set from which we can win, no cost lower
than or equal to k is winning and we can deduce that k is the optimal cost.
Also we can decide whether there is an optimal strategy or not: if ≻ is equal
to > there is no optimal strategy and if ≻ is ≥ there is one.

Thus computing CompWin(H, Goal ∧ Cost ≥ 0) is a semi-algorithm for
computing the optimal cost of the RPTGA A. Moreover we can decide (if
CompWin terminates) whether there exists an optimal strategy or not: in case
the initial winning cost set is of the form Cost > k there is no optimal strategy
but a family of strategies fε (for ε > 0) with cost lower than k + ε. When
this set if of the form Cost ≥ k (and assuming CompWin terminates) we can
compute an optimal strategy (this point is dealt with in the next section 4).

The formal definitions and proofs of this reduction are given in [6] (Defi-
nition 12, Lemma 5, Theorems 4 and 5, Corollaries 1 and 2).

3.2 The π Operator

The computation of the winning states (with CompWin) is based on the defini-
tion of a controllable predecessor operator [16,8]. Let G = (L, ℓ0, Act, X,E, inv,

cost) be a RPTGA and Q its set of configurations. For a set X ⊆ Q and
a ∈ Act we define Preda(X) = {q ∈ Q | q

a
−−→ q′, q′ ∈ X}. The control-

lable and uncontrollable discrete predecessors of X are defined by cPred(X) =
⋃

c∈Actc
Predc(X), respectively uPred(X) =

⋃

u∈Actu
Predu(X). We also need a

notion of safe timed predecessors of a set X w.r.t. a set Y . Intuitively a state
q is in Predt(X,Y) if from q we can reach q′ ∈ X by time elapsing and along
the path from q to q′ we avoid Y . Formally this is defined by:

Predt(X,Y) = {q ∈ Q | ∃δ ∈ R≥0 s.t. q
δ

−→ q′, q′ ∈ X ∧ Post[0,δ](q) ⊆ Y } (1)

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] | q
t

−→ q′}. We are then able to define
a controllable predecessor operator π as follows:

π(X) = Predt

(

X ∪ cPred(X), uPred(X)
)

(2)

This definition of π captures the choice that uncontrollable actions cannot be
used to win (this choice is made in [13] and in [6]). As a matter of fact there is
no way to win in the RPTGA of Fig. 1 with this definition of π: ℓ1 cannot be
a winning state if we start iterating the computation of π from Goal as π only
adds predecessors that can reach a winning state by a controllable transition.

7

P. Bouyer et al.

Another choice is possible: uncontrollable actions may be used to win if they
are forced to happen. This second choice is rather involved when one wants
to give a new definition of π in the general case. We adopt a position which
is half-way between the previous two extremes: if an uncontrollable action
is enabled from a state q where time cannot elapse and leads to a winning
state q′, and no uncontrollable transitions enabled at q can lead to a non-
winning state, we declare q as winning. Assume the set of configurations of G

where time cannot elapse is denoted STOP . Then a new definition of π where
uncontrollable actions can be used to win is given by:

π′(X) = Predt

(

X ∪ cPred(X) ∪ (uPred(X) ∩ STOP), uPred(X)
)

(3)

Note that this choice does not change the results presented in [6]. In the
example of Fig. 1, from location ℓ1 only uncontrollable transitions are enabled,
but they are bound to happen within a bounded amount of time (in this case
as soon as we reach ℓ1 because of the invariant y = 0). π′ will add configuration
(ℓ1, x ≥ 0 ∧ y = 0) to the set of winning states.

The semi-algorithm CompWin computes the least fixed point W of the
functional λX.{X0} ∪ π′(X) as the limit of an increasing sequence of sets of
states Wi (starting from set W0 = X0) where Wi+1 = π′(Wi)). If G is a
RPTGA, the result of the computation of CompWin on the associated LHGA
H starting from Goal ∧ Cost ≥ 0 is W = µX.{Goal ∧ Cost ≥ 0} ∪ π′(X). This
result is also denoted CompWin(H, Goal ∧ Cost ≥ 0) and gives the largest set
of winning states.

3.3 Termination Issues

An important issue about the previous semi-algorithm CompWin is whether it
terminates or not. We have identified a class of RPTGA for which CompWin

terminates on the associated hybrid game.

Let G be a RPTGA satisfying:

• G is bounded, i.e. all clocks in G are bounded 3 ;

• the cost function of G is strictly non-zeno, i.e. there exists some κ > 0 such
that the accumulated cost of every cycle in the region automaton associated
with G is at least κ. Note that this condition can be checked. For more
complete explanations, see [6].

Then the semi-algorithm CompWin(H, Goal ∧ Cost ≥ 0) terminates (H is the
hybrid game defined from G in the previous section). The formal statement
and proof of this claim is given by Theorem 6 in [6]. We thus get:

Theorem 3.1 Let G be a RPTGA satisfying the above-mentionned hypothe-
ses (boundedness and strict non-zenoness of the cost). Then the optimal cost
is computable for G.

3 This hypothesis is not a restriction, see [15].

8

P. Bouyer et al.

3.4 Implementation of CompWin in HyTech

HyTech [10,11] is a tool that implements “pre” and “post” operators for linear
hybrid automata. Moreover it is possible to write programs that use these
operators (and many others) on polyhedra in order to compute sets of states.
The specification in HyTech of our LHGA H of Fig. 4 is given in Fig. 5,
lines 7–20. We detail this specification in the sequel.

Controllable and Uncontrollable Predecessors. HyTech provides the pre

operator that computes at once the time predecessors and the discrete prede-
cessors of a set of states. As we need to distinguish between time predecessors,
discrete controllable predecessors and discrete uncontrollable predecessors, we
use the following trick: in the HyTech source code of the LHA H we add
two boolean variables u and c (Fig. 5, line 4) that are negated on each dis-
crete uncontrollable (resp. controllable) transitions (Fig. 5, lines 10–19). In
HyTech one can existentially quantify over a variable t by using the hide op-
erator. Then the controllable predecessors can be computed by existentially
quantifying over c and over a variable t that has rate 4 −1. We can express
the cPred (and uPred) operator with existential quantifiers and two variables
t and c as follows:

cPred(X) = {q | ∃c ∈ Actc s.t. q
c
−→ q′, q′ ∈ X}

= {q | ∃t s.t. ∃c s.t. t = 0 ∧ c = 0 ∧

(q, t, c) ∈ pre(X ∧ t = 0 ∧ c = 1)}

where pre is the predecessor operator of HyTech.

We impose that the value of t stays unchanged to ensure that we just
take discrete predecessors (Fig. 5, line 39). For uncontrollable predecessors we
replace c by u (Fig. 5, line 41). Note that the computation of STOP states
(Fig. 5, line 32) can also be done using our extra variables t, c, u.

Safe Time Predecessors. The other operator Predt(Z, Y) is a bit more com-
plicated. We just need to express it with existential quantification so that it
is easy to compute it with HyTech. Also we assume we have time determin-
istic automata as in this case Predt(Z, Y) is rather simple (if we do not have
time determinism a more complicated encoding must be done and we refer the
reader to [19] for a detailed explanation.) From equation (1) we get:

Predt(Z, Y) = {q | ∃t ≥ 0 s.t. q
t
−→ q′, q′ ∈ Z and

∀0 ≤ t1 ≤ t, q
t
−→ q′′ =⇒ q′′ 6∈ Y }

= {q | ∃t ≥ 0 s.t. q
t
−→ q′, q′ ∈ Z and

¬(∃0 ≤ t1 ≤ t, q
t
−→ q′′ ∧ q′′ ∈ Y)}

The latter formula can be encoded in HyTech using the hide operator (Fig. 5,
lines 47–55) and two auxiliary variables t and t1 that evolves at rate −1 (note

4 any rate different from 0 would also do but we need another variable t with rate −1 later
on and use this one.

9

P. Bouyer et al.

var

x,y: clock;

cost: analog; −− the cost variable
c,u: discrete; −− used to indicate controllable and uncontrollable transitions

5: t,t1: analog; −− used for existential quantification

automaton H

synclabs: ;

initially l0 & x=0 & y=0;

10: loc l0: while x>=0 & y>=0 wait {dcost=-5,dt=-1,dt1=-1}

when x>=0 & x<=2 do {u’=u,c’=1-c,y’=0} goto l1;

loc l1: while y=0 wait {dcost=0,dt=-1,dt1=-1}

when True do {u’=1-u,c’=c} goto l2;

when True do {u’=1-u,c’=c} goto l3;

15: loc l3: while x>=0 & y>=0 wait {dcost=-10,dt=-1,dt1=-1}

when x>=2 do {c’=1-c,u’=u,cost’=cost-1} goto Win;

loc l4: while x>=0 & y>=0 wait {dcost=-1,dt=-1,dt1=-1}

when x>=2 do {c’=1-c,u’=u,cost’=cost-7} goto Win;

loc Win: while True wait {dcost=0,dt=-1,dt1=-1}

20: end

var init_reg,winning,fix, −− sets of states
STOP, −− set of STOP states from which time cannot elapse
uPreX,uPrebarX,cPreX,X,Y,Z : region ;

25:

−− first define the initial and winning regions
init_reg := loc[H]=l0 & x=0 ;

winning := loc[H]=Win & cost>=0;

−− fix is the fixpoint we want to compute i.e. the set of winning states W

30: fix := winning;

−− stopped states
STOP := ~(hide t,c,u in t>0 & c=0 & u=0 & pre(True & t=0 & c=0 & u=0) endhide) ;

−− compute the fixpoint of π′

35: X := iterate X from winning using {

−− uncontrollable predecessors of X: uPred(X)
uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide;

−− controllable predecessors of X: cPred(X)
cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ;

40: −− uncontrollable predecessors leading to winning states: uPred(X)
uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide;

−− Z is the the first argument of π′ in the paper;
−− Z = X ∪ cPred(X) ∪ (uPred(X) ∩ STOP)
Z := (X | cPreX | (uPreX & STOP)) ;

45: −− time predecessors of Z from which we can reach Z

−− and avoid uPred(X) all along; X := Predt(Z, uPred(X))
X := hide t in

(hide c,u in t>=0 & c=0 & u=0 & pre(Z & t=0 & c=0 & u=0)

endhide) &

50: ~(hide t1 in

(hide c,u in t1>=0 & t1<=t & c=0 & u=0 &

pre(uPrebarX & t1=0 & c=0 & u=0)

endhide)

endhide)

55: endhide;

−− add the newly computed regions to the set of already
−− computed region
fix := fix | X ;

} ;

60: −− print the result
print omit all locations hide x,y in fix & init_reg endhide;

Fig. 5. Computation of the Optimal Cost.

10

P. Bouyer et al.

that those variables are not part of the model but only used in existentially
quantified formulas and they do not constrain the behavior of H.) Finally if
the computation of π′ terminates (Fig. 5, lines 35–59) the set fix contains all
the winning states. It then suffices to compute the projection on cost in the
initial state to obtain the optimal cost (Fig. 5, line 61).

Doing this we have solved the first two problems: computing the optimal
cost and deciding whether there exists an optimal strategy.

4 Optimal Strategies Computation

In this section we show how to compute an optimal strategy when one exists.
Then we give the HyTech implementation of this computation and discuss
some properties of those strategies.

4.1 Strategy Synthesis For RPTGA

First we recall some basic properties of strategies for (unpriced) Timed Game
Automata (TGA).

A strategy f is

• state-based whenever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) =
f(ρ′). State-based strategies are also called memoryless strategies in game
theory [18,8];

• polyhedral if for all a ∈ Actc ∪ {λ}, f−1(a) is a finite union of convex poly-
hedra for each location of the game;

• realizable, whenever the following holds: for all ρ ∈ Outcome(q, f) s.t. f

is defined on ρ and f(ρ) = λ, there exists some δ > 0 such that for all

0 ≤ t < δ, there exists q′ with ρ
t

−→ q′ ∈ Outcome(q, f) and f(ρ
t

−→ q′) = λ.

Strategies which are not realizable are not interesting because they generate
empty sets of outcomes. Nevertheless it is not clear from [16,4] how to extract
strategies for RPTGA and ensure their realizability as shown by the following
example.

ℓ0 Goal
x > 1; c

Fig. 6. A timed game automaton

Example 4.1 Consider the PTGA of Fig. 6 where c is a controllable action.
The game is to enforce state Goal. The most natural strategy f would be
to do a c when x > 1 and to wait until x reaches a value greater than 1.
Formally this yields f(ℓ0, x ≤ 1) = λ and f(ℓ0, x > 1) = c. This strategy is
not realizable. In the sequel, we build a strategy which is f(ℓ0, x < 2) = λ and
f(ℓ0, x ≥ 2) = c. Now assume the constraint on the transition is 1 < x ≤ 2. In

11

P. Bouyer et al.

this case we start with the following strategy (not realizable): f(ℓ0, x ≤ 1) = λ

and f(ℓ0, 1 < x ≤ 2) = c. To make it realizable we will take the first half
of 1 < x ≤ 2 and have a delay action on it i.e. f(ℓ0, x < 3

2
) = λ and

f(ℓ0,
3
2
≤ x ≤ 2) = c. In the following, we will restrict our attention to

realizable strategies and simply refer to them as strategies.

A secondary result is provided in [6] for Linear Hybrid Games (Theorem 2
page 7) that can be rephrased in the context of RPTGA as:

Theorem 4.2 (Adapted from Theorem 2 of [6]) Let G be a RPTGA. If
the semi-algorithm CompWin terminates for the hybrid game associated with G

(see section 3.1), then we can compute a winning strategy which is: polyhedral,
realizable and stated-based.

Let H be the LHGA associated to the RPTGA G = (L, ℓ0, Act, X,E, inv, cost).
A state of H is a triple (ℓ, v, c) where ℓ ∈ L, v ∈ RX

≥0 and c ≥ 0 (c is the value of
the variable Cost of H). Thus if we synthetize a realizable winning state-based
strategy f for H, we obtain a strategy that depends on the cost value. In case
there is a winning strategy for H (see section 3.1) we can synthetize realizable
state-based winning strategies for G (see [6], Corollary 2). This result is
already satisfying but we would like to build strategies that are independent
of the cost value i.e. in which there is no need for extra information to play
the strategy on the original RPTGA G (this means we want to build a state-
based strategy for the original RPTGA G.) To this extent we introduce the
notion of cost-independent strategies.

Let W = CompWin(H, Goal ∧ Cost ≥ 0) be the set of winning states of
H. A state-based strategy f for H is cost-independent if (ℓ, v, c) ∈ W and
(ℓ, v, c′) ∈ W implies f(ℓ, v, c) = f(ℓ, v, c′). Cost-independent strategies in H

will then be used for having state-based strategies in G. Theorem 7 of [6] gives
then sufficient conditions for the existence of a state-based, optimal, realizable
strategy in G and, when back to the automaton reads as follows:

Theorem 4.3 (Adapted from Theorem 7 of [6]) Let G be a RPTGA. H

is the associated LHGA. If CompWin terminates for H and the set of winning
states is W = CompWin(H, Goal ∧ Cost ≥ 0) is a union of sets of the form
(ℓ, R ∧ Cost ≥ h) where ℓ is a location, R ⊆ RX

≥0 and h is a piece-wise affine
function on R, then there exists a winning realizable state-based strategy f

defined over WG = ∃Cost.W s.t. for each q ∈ WG, f ∈ WinStrat(q,WG) and
Cost(q, f) = OptCost(q).

Note that under the previous conditions we build a strategy f which is
uniformly optimal i.e. optimal for all states of WG. A syntactical criterion
to enforce the condition of theorem 4.3 is that the constraints (guards) on
controllable actions are non-strict and constraints on uncontrollable actions
are strict. We now give an algorithm to extract such an optimal, state-based,
realizable and winning strategy for a RPTGA G.

The example of Fig. 1 satisfies the assumptions of Theorem 4.3 and thus

12

P. Bouyer et al.

we can compute an optimal strategy for this model. Moreover, the strategy
we obtain using HyTech is precisely the one we described in Fig. 3.

4.2 Synthesis of Optimal Strategies

The set of winning states of H is computed iteratively using the functional π′

defined by equation (3). In the sequel we need to compute the states that can
let a strict positive delay elapse to define the strategy for the delay action.
For a set X we denote NonStop(X) the set of states in X from which a strict
positive delay can elapse and all the intermediary states lie in X i.e.

NonStop(X) = {q ∈ X | ∃t > 0 | q + t ∈ X ∧ ∀0 ≤ t′ ≤ t, q + t′ ∈ X} (4)

Tagged Sets. To synthetize strategies we compute iteratively a set of extended
“tagged” states W+ during the course of the computation of W (this follows
from Theorem 2 and Lemma 6 of [6]). The tags will contain information about
how a new set of winning states Wi+1 = π′(Wi) has been obtained.

We start with W+
0 = ∅ and W0 = Goal ∧ Cost ≥ 0. Assuming Wi and W+

i

are the sets obtained after i iterations of π′ we define W+
i+1 as follows:

(i) let Y = Wi+1 \ Wi where Wi+1 = π′(Wi);

(ii) for each c ∈ Actc, we define the tagged set
(

Y ∩ cPredc(Wi)
)[c]

with the

intended meaning: “Y ∩ cPredc(Wi) has been added to the set of winning
states by a Predc and doing a c from this set leads to Wi”;

(iii) define another tagged set
(

NonStop(Y)
)[λ]

with the intended meaning:

“NonStop(Y) has been added to the set of winning states by the (strictly
positive) time predecessors operator and letting time elapse will lead to
either Wi or cPred(Wi) or uPred(Wi) ∩ STOP ”;

(iv) define W+
i+1 by :

W+
i+1 = W+

i ∪
(

NonStop(Y)
)[λ]

∪
⋃

c∈Actc

(

Y ∩ cPredc(Wi)
)[c]

Computation of an Optimal Strategy. If CompWin terminates in j iterations
we end up with W+ = W+

j . Note that by construction a state q of W may

belong to several tagged sets X
[λ]
0 , X

[c1]
1 , . . . , X

[cn]
n (where ci ∈ Actc for each

i ∈ [1, n]) of W+. If the assumptions of theorem 4.3 are satisfied all the Xi’s
are of the form X ′

i ∧ Cost ≥ hi where X ′
i ⊆ {ℓi} × RX

≥0 for some location ℓi

and hi : X ′
i → R≥0 is a piecewise affine function. Thus the infimum of hi over

X ′
i is reachable and equal to the minimum of hi.

Theorem 7 of [6] states that in this case an optimal state-based strategy
f ∗ for q a winning state of G (no cost) will be obtained by taking the local

13

P. Bouyer et al.

optimal choice: let m = mini∈[0,n] hi(q); then defining f ∗(q) = ci if hi(q) = m

gives an optimal strategy.

As it can be the case that hi(q) = hj(q) = m with i 6= j, we impose a
total order ⊏ on the set of events in Actc and define f ∗(q) = ci where i =
max{j | hj(q) = m}. To avoid realizability problems (see proof of Lemma 6
in [6]) on the boundary of a set Xi if h0(q) = m (which means that the optimal
cost can be achieved by time elapsing) and hi(q) = m for some i ∈ [1, n] we
define f ∗(q) = ci. This can be easily defined in our setting by extending ⊏ to
Actc ∪ {λ} and making λ the smallest element.

After these algorithmics explanations, we can summarize how we can syn-
thesize an optimal, cost-independent strategy. We denote W+

[c] the set defined
by:

W+
[c] =

⋃

S
[c]
i ∈W+

Si (5)

For each c ∈ Actc ∪ {λ}, W+
[c] is a set of the form Xc ∧ Cost ≥ hc where

hc is a piecewise affine function on Xc (Xc is a union of convex polyhedra).
Note that the constraint Cost ≥ hc is a polyhedron which constrains the Cost

variable and the clocks. In what follows, a pair (q, α) will represent a state
of H (α is the value of the Cost variable). For each winning state q of G, we
want to compute the minimal cost for winning and which action we should
do if we want to win with the optimal cost. Let us consider two actions
c1, c2 ∈ Actc ∪ {λ}. We denote [c1 ≤ c2] the set of winning states of G where
it is better to do action c1 than action c2 (hc1(q) ≤ hc2(q)). This set is defined
by:

[c1 ≤ c2] = {q ∈ Xc1 | ∃α1 | (q, α1) ∈ W+
[c1] and

∀α2 | (q, α2) ∈ W+
[c2], α1 ≤ α2}

(6)

=
{

q ∈ Xc1 | ∃α1 | (q, α1) ∈ W+
[c1]∧

¬
(

∃α2 | (q, α2) ∈ W+
[c2] and α2 < α1

)} (7)

Each set [c1 ≤ c2] is a polyhedral set. For each c ∈ Actc ∪ {λ} define

Opt(c) =
⋂

c′ 6=c

[c ≤ c′] (8)

Opt(c) is the set of states for which c is an action that gives the optimal cost.
W ∗ =

⋃

c∈Actc∪{λ}
Opt(c) is thus equal to the set of states on which we need

to define the optimal strategy. Given the total order ⊏ on Actc ∪ {λ} with
λ ⊏ c1 ⊏ · · · ⊏ cn, we can define an optimal strategy f ∗ as follows: for
i ∈ [0, n − 1], let Bi =

(

W ∗ \ (∪k>iBk)
)

∩ Opt(ci) and Bn = W ∗ ∩ Opt(cn);
define then f ∗(q) = ci if q ∈ Bi. f ∗ is an optimal strategy that is (winning),
state-based, realizable and polyhedral.

14

P. Bouyer et al.

4.3 Implementation in HyTech

Controllable Tagged Sets. We first show how to compute tagged sets of
states. Our HyTech encoding consists in adding a discrete variable a to the
HyTech model of Fig. 5 and use it in the guards of controllable transitions:
controllable action ck of Fig. 4 corresponds to the guard a = k in the HyTech

model. The HyTech model of Fig. 5 is enriched as follows: we add the guard
a = 1 to line 11, a = 2 to lines 16 and 18. In this way we achieve the tagging of
controllable predecessors as now the computation of cPred (line 39 of Fig. 7)
will compute a tagged region that will be a union of polyhedra with some
a = k constraints. Note that we also modify line 44 of Fig. 5 and replace it
by line 20 in Fig. 7 where a is hidden from the new cPreX as a is not needed
to compute the winning set of states.

New NonStop States. To compute NonStop(Y) we use again our extra vari-
ables t, c, u and add the tag a = 0 to the result set. Lines 35–36 of Fig. 7
achieves this.

W+ is stored in the region fix_strat in the HyTech code. To compute
W+

i+1 we update fix_strat as described by line 38 in Fig. 7.

Computation of the Optimal Strategy. To compare the costs for each action
and determine the optimal one we use the trick described in the previous
subsection. Each tagged set gives the function hci by the means of a constraint
between the Cost variable and the rest of the state variables. To compute hci

we need to split the state space according to each action ci: this is achieved
by lines 44–46 where the state space that corresponds to hci is stored in ri.

It remains to compute for each pair of actions (c1, c2) (ci can be λ), the set
[c1 ≤ c2] states. The encoding in HyTech of the formula given by equation (7)
is quite straightforward using the hide operator that corresponds to existential
quantification. The strategy is then computed as described at the end of the
previous subsection by lines 54–63.

5 Experiments

Using a HyTech-code as described in this paper, we have done some more
experiments. The most important example we have treated is a model of a
mobile phone with two antennas trying to connect to a base station with an
environment which can possibly jam some transmissions.

Description of the Mobile Phone Example. We consider a mobile phone
with two antennas emitting on different channels. Making the initial con-
nection with the base station takes 10 time units whatever antenna is in use.
Statistically, a jam of the transmission (e.g. collision with another phone) may
appear every 6 time units in the worst case. When a collision is observed, the
antenna tries to transmit with a higher level of energy for a while (at least 5

15

P. Bouyer et al.

var

−− same set of variables here as lines 22–24 in Fig. 5 plus some new vars:
a: discrete;

cost0,cost1,cost2: analog;

5: fix_strat,nonstop,Y,

r0,r1,r2,

B0,B1,B2,

inf_0_1,inf_0_2,inf_1_0,inf_1_2,inf_2_0,inf_2_1: region;

10: init_reg := loc[H]=l0 & x=0 ;

winning := loc[H]=Win & cost>=0;

fix := winning;

STOP := ~(hide t,c,u in t>0 & c=0 & u=0 & pre(True & t=0 & c=0 & u=0) endhide) ;

fix_strat := False; −− this is new and corresponds to W+
0 = ∅

15:

X := iterate X from winning using {

uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide;

cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ;

uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide;

20: Z := (X | (hide a in cPreX endhide) | (uPreX & ~uPrebarX & STOP)) ;

X := hide t in

(hide c,u in t>=0 & c=0 & u=0 & pre(Z & t=0 & c=0 & u=0)

endhide) &

~(hide t1 in

25: (hide c,u in t1>=0 & t1<=t & c=0 & u=0 &

pre(uPrebarX & t1=0 & c=0 & u=0)

endhide)

endhide)

endhide;

30:

Y := X & ~fix ; −− store the real new states in Y

fix := fix | X ;

−− computation of NonStop(Y)
35: nonstop := a=0 & Y &

hide t,c,u in t>0 & c=0 & u=0 & pre(Y & t=0 & u=0 & c=0) endhide;

−− computation of fix_strat
fix_strat := fix_strat | (Y & cPreX) | nonstop ;

} ;

40: −− print the result as before
print omit all locations hide x,y in fix & init_reg endhide;

−− rename the cost fonction; then ri corresponds to hci

r0 := hide a,cost in cost0=cost & fix_strat & a=0 endhide ;

45: r1 := hide a,cost in cost1=cost & fix_strat & a=1 endhide ;

r2 := hide a,cost in cost2=cost & fix_strat & a=2 endhide ;

−− compute the state space inf_i_j where hci (q) ≤ hcj (q)
inf_0_1 := hide cost0 in r0 & ~(hide cost1 in r1 & cost1<cost0 endhide) endhide ;

50: ...

inf_2_1 := hide cost2 in r2 & ~(hide cost1 in r1 & cost1<cost2 endhide) endhide ;

−− Output the result taking the best move according to the total order (Actc ∪ {λ}, ⊏)
prints "Optimal Winning Strategy" ;

55: prints "do control from l3 or l4 to Win (a=2) on";

B2 := inf_2_0 & inf_2_1 ;

print B2 ;

prints "do control from l0 to l1 (a=1) on";

B1 := inf_1_0 & inf_1_2 & ~B2 ;

60: print B1 ;

prints "do wait (a=0) on";

B0 := inf_0_1 & inf_0_2 & ~B1 & ~B2 ;

print B0;

Fig. 7. Synthesis of Optimal Strategies.

16

P. Bouyer et al.

time units for Antenna 1 and at least 2 time units for Antenna 2) and then can
switch back to the lower consumption mode. Unfortunately, switching back to
the low consumption mode requires more resources and forces to interrupt the
other transmission (Antenna 1 resets variable y of Antenna 2 and vice-versa).
The overall cost rate (consumption per time unit) for the mobile phone in a
product state s = (lowx, highy, Y) is the sum of the rates of Antenna 1 and
Antenna 2 (both are working) i.e. 1+20 = 21 and Cost(s) = 21 in our model.
Once the connection with the base station is established (either x ≥ 10 or
y ≥ 10) the message is delivered with an energy consumption depending on
the antenna (Cost = 7 for Antenna 1 and Cost = 1 for Antenna 2). The aim
is to connect the mobile phone with an energy consumption (cost) as low as
possible whatever happens in the network (jam).

Antenna 1

lowx

cost = 1
highx

cost = 10

Goalx

jamx?; x := 0

x ≥ 5; y := 0

x ≥ 10;
cost = 7

jamx?;
x := 0

Antenna 2

lowy

cost = 2
highy

cost = 20

Goaly

jamy?; y := 0

y ≥ 2; x := 0

y ≥ 10;
cost = 1

jamy?;
y := 0

Jammer

X Y

x > 6; jamy !

y > 6; jamx!

x > 6;
jamx!

y > 6;
jamy !

Fig. 8. Mobile Phone Example.

This system can be represented by a network of PTGAs (see Fig. 8 where
plain arrows represent controllable actions whereas dsahed arrows represent
uncontrollable actions) and the problem reduces to finding an optimal strategy
for reaching one of the goal states Goalx or Goaly. Note that our original model
is a single PTGA and not a network of PTGAs, but networks of PTGA can
be used as well because it does not add expressive power and it is simple to
define the composed PTGA: in a global location (being a tuple of locations of
simple PTGAs), the cost is simply the sum of the costs of all single locations
composing it. Idem for a composed transition resulting from a synchroniza-
tion: the cost of the synchronized transition is the sum of the costs of the
two initial transitions. Of course, one has to pay attention that no control-
lable action can synchronize with an uncontrollable action in order that we
can define properly the nature, controllable or not, of the synchronization. In
this example, see Fig. 8, jamx? (resp. jamy?) synchronizes with jamx! (resp.

17

P. Bouyer et al.

jamy!). The HyTech code of this example can be found in [6] and on the
web page http://www.lsv.ens-cachan.fr/aci-cortos/ptga/.

y

0 x

highx.highy.Y

5

5

10

10

y
=

−

5
3 x

+
6

y
=

x

y = 2

y

0 x

highx.highy.X

6

10

4

y
=

x
+

6

y

0 x

highx.lowy.Y

105

10

2

(10, 20)

(10, 12)y
=

x
+

10

y
=

x
+

2

y

0 x

highx.lowy.X

10

10

y

0 x

lowx.highy.Y

10

10

14

3

2

y

0 x

lowx.lowy.Y

y
=

x
+

10

y
=

x
+

2

y
=

x
−

5

y
=

x
−

10

10

10

lo
w

x
→

G
o
a
l
or

lo
w

y
→

G
o
a
l

D
el
ay

y

0 x

lowx.lowy.X

y
=

x
−

5

y
=

x
−

10

10

10

Delay

highx→lowx

highy →lowy

lowx→Goalx

lowy →Goaly

Fig. 9. Optimal Strategy for the Mobile Phone Example

Results of our Experiments. We got that the optimal cost (lowest energy
consumption) that can be ensured is 109. The optimal strategy is graphically
represented on Fig. 9. The strategy is non-trivial and the actions to take
depend on a complex partitioning of the clock space. The computation took
828s on a 12” PowerBook G4 running Mac OS X.

18

http://www.lsv.ens-cachan.fr/aci-cortos/ptga/

P. Bouyer et al.

6 Conclusion

In this paper we have described an algorithm to synthesize optimal strategies
for a sub-class of priced timed game automata. The algorithm is based on the
work described in [6] where we proved this problem was decidable (under some
hypotheses we recall in this paper). Morever, we also provide an implemen-
tation of our algorithm in HyTech and demonstrate it on small case-studies.
In a recent paper [2] Alur et al. addressed a related problem i.e. “compute the
optimal cost within k steps”. They give a complexity bound for this restricted
“bounded” problem and prove that the splitting incurred by the computation
of the optimal cost within k steps only yields an exponential number (in k and
the size of the automaton) of subregions. They do not consider the problem
of strategy synthesis.

Our future work consists in extending the class of systems for which the
algorithm we provided terminates. The synthesis of sub-optimal strategies
(when no optimal strategy exists) is currently being investigated. We would
also like to extend this work to more general winning conditions (like safety
conditions) and with other performance criteria (as for example the price per
unit of time along infinite schedules).

References

[1] Y. Abdeddaim. Modélisation et résolution de problèmes d’ordonnancement à
l’aide d’automates temporisés. PhD thesis, Institut National Polytechnique de
Grenoble, Grenoble, France, 2002.

[2] R. Alur, M, Bernadsky, and P. Madhusudan. Optimal reachability in weighted
timed games. In Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), Lecture Notes in Computer Science. Springer,
2004. To appear.

[3] R. Alur, S. La Torre, and G.J. Pappas. Optimal paths in weighted
timed automata. In Proc. 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of Lecture Notes in
Computer Science, pages 49–62. Springer, 2001.

[4] E. Asarin, O. Maler, A, Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control, pages
469–474. Elsevier Science, 1998.

[5] G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, Judi Romijn,
and Frits Vaandrager. Minimum-cost reachability for priced timed automata. In
Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2001.

19

P. Bouyer et al.

[6] P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced
timed game automata. Research Report BRICS RS-04-4, Denmark, Feb. 2004.
Available at http://www.brics.dk/RS/04/4/.

[7] E. Brinksma, A. Mader, and A. Fehnker. Verification and optimization of a PLC
control schedule. Journal of Software Tools for Technology Transfer (STTT),
4(1):21–33, 2002.

[8] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. In Proc. 12th International Conference on Concurrency
Theory (CONCUR’01), volume 2154 of Lecture Notes in Computer Science,
pages 536–550. Springer, 2001.

[9] A. Fehnker. Scheduling a steel plant with timed automata. In Proc. 6th
International Conference on Real-Time Computing Systems and Applications
(RTCSA’99), pages 280–286. IEEE Computer Society Press, 1999.

[10] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to hytech. In Proc.
1st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’95), volume 1019 of Lecture Notes in Computer
Science, pages 41–71. Springer, 1995.

[11] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model-checker for
hybrid systems. Journal on Software Tools for Technology Transfer (STTT),
1(1–2):110–122, 1997.

[12] T. Hune, K.G. Larsen, and P. Pettersson. Guided synthesis of control programs
using uppaal. In Proc. IEEE ICDS International Workshop on Distributes
Systems Verification and Validation, pages E15–E22. IEEE Computer Society
Press, 2000.

[13] S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and
control for acyclic weighted timed automata. In Proc. 2nd IFIP International
Conference on Theoretical Computer Science (TCS 2002), volume 223 of IFIP
Conference Proceedings, pages 485–497. Kluwer, 2002.

[14] K.G. Larsen. Resource-efficient scheduling for real time systems. In Proc. 3rd
International Conference on Embedded Software (EMSOFT’03), volume 2855
of Lecture Notes in Computer Science, pages 16–19. Springer, 2003. Invited
presentation.

[15] K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,
and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for
priced timed automata. In Proc. 13th International Conference on Computer
Aided Verification (CAV’01), volume 2102 of Lecture Notes in Computer
Science, pages 493–505. Springer, 2001.

[16] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In Proc. 12th Annual Symposium on Theoretical Aspects
of Computer Science (STACS’95), volume 900 of Lecture Notes in Computer
Science, pages 229–242. Springer, 1995.

20

P. Bouyer et al.

[17] P. Niebert and S. Yovine. Computing efficient operations schemes for chemical
plants in multi-batch mode. European Journal of Control, 7(4):440–453, 2001.

[18] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th
Annual Symposium on Theoretical Aspects of Computer Science (STACS’95),
volume 900, pages 1–13. Springer, 1995. Invited talk.

[19] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In
Proc. 36th IEEE Conference on Decision and Control, pages 4607–4612. IEEE
Computer Society Press, 1997.

21

	Introduction
	Priced Timed Games
	Preliminaries
	The (R)PTGA Model
	Runs, Costs of Runs
	Strategies, Costs of Strategies
	Optimal Control Problems

	Optimal Cost Computation
	From Priced Timed Games to Linear Hybrid Games
	The Operator
	Termination Issues
	Implementation of CompWin in HyTech

	Optimal Strategies Computation
	Strategy Synthesis For RPTGA
	Synthesis of Optimal Strategies
	Implementation in HyTech

	Experiments
	Conclusion
	References

