Patricia Bouyer 
email: bouyer@lsv.ens-cachan.fr
  
Franck Cassez 
email: cassez@irccyn.ec-nantes.fr
  
Emmanuel Fleury 
email: fleury@cs.auc.dk
  
Kim G Larsen 
  
  
  
  
  
GDV 2004 Preliminary Version

Keywords: optimal control, timed systems, strategy synthesis

. In this paper, we present an algorithm for computing the optimal cost and for synthesizing an optimal strategy in case there exists one. We also describe the implementation of this algorithm with the tool HyTech and present an example.

Introduction

In recent years the application of model-checking techniques to scheduling problems has become an established line of research. Static scheduling problems with timing constraints may often be formulated as reachability problems on timed automata, viz. as the possibility of reaching a given goal state. Realtime model checking tools such as Kronos and Uppaal have been applied on a number of industrial and benchmark scheduling problems [START_REF] Abdeddaim | Modélisation et résolution de problèmes d'ordonnancement à l'aide d'automates temporisés[END_REF][START_REF] Brinksma | Verification and optimization of a PLC control schedule[END_REF][START_REF] Fehnker | Scheduling a steel plant with timed automata[END_REF][START_REF] Hune | Guided synthesis of control programs using uppaal[END_REF][START_REF] Larsen | Resource-efficient scheduling for real time systems[END_REF][START_REF] Niebert | Computing efficient operations schemes for chemical plants in multi-batch mode[END_REF].

Often the scheduling strategy needs to take into account uncertainty with respect to the behavior of an environmental context. In such situations the scheduling problem becomes a dynamic (timed) game between the controller and the environment, where the objective for the controller is to find a dynamic strategy that will guarantee the game to end in a goal state [START_REF] Asarin | Controller synthesis for timed automata[END_REF][START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF][START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF].

A few years ago, the ability to consider quite general performance measures has been given. Priced extensions of timed automata have been introduced [START_REF] Behrmann | Minimum-cost reachability for priced timed automata[END_REF][START_REF] Alur | Optimal paths in weighted timed automata[END_REF] where a cost c is associated with each location ℓ giving the cost of a unit of time spent in ℓ. Within this framework, it is possible to measure performance of runs and to give optimality criteria for reaching a given set of states.

In [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], we have combined the notions of games and prices and we have proved that, under some hypotheses, the optimal cost in priced timed game automata is computable and that optimal strategies can then be synthetized.

In this paper, we present an algorithm for extracting optimal strategies in priced timed game automata. We also provide an implementation of the algorithm using the tool HyTech [START_REF] Henzinger | HyTech: A model-checker for hybrid systems[END_REF]. The outline of the paper is as follows: in section 2 we recall the definition of Priced Timed Game Automata and present an example; in section 3 we unveil an optimal cost computation method; in section 4 we detail the algorithm to synthesize the optimal strategies and we give some conclusions in section 6.

The HyTech files given in Fig. 5 and Fig. 7 are available on the web page http://www.lsv.ens-cachan.fr/aci-cortos/ptga/. The detailed proofs of the theorems we refer to, as well as complementary definitions and explanations can be found in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF].

2 Priced Timed Games

Preliminaries

Let X be a finite set of real-valued variables called clocks. We denote B(X) the set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | ϕ ∧ ϕ where k ∈ Z, x, y ∈ X and ∼∈ {<, ≤, =, >, ≥}. A valuation of the variables in X is a mapping from X to R ≥0 (thus an element of R X ≥0 ). For a valuation v and a set R ⊆ X we denote v[R] the valuation that agrees with v on X \ R and is zero on R. We denote v + δ for δ ∈ R ≥0 the valuation s.t. for all x ∈ X, (v + δ)(x) = v(x) + δ.

The (R)PTGA Model

Definition 2.1 [RPTGA] A Priced Timed Game Automaton (PTGA) G is a tuple (L, ℓ 0 , Act, X, E, inv, cost) where: L is a finite set of locations; ℓ 0 ∈ L is the initial location; Act = Act c ∪ Act u is the set of actions (partitioned into controllable and uncontrollable actions); X is a finite set of real-valued clocks; E ⊆ L × B(X) × Act × 2 X × L is a finite set of transitions; inv : L -→ B(X) associates to each location its invariant; cost : L ∪ E -→ N associates to each location a cost rate and to each discrete transition a cost value. We assume that PTGA are deterministic w.r.t. controllable actions (renaming). A reachability PTGA (RPTGA) is a PTGA with a distinguished set of locations Goal ⊆ L.

Runs, Costs of Runs

Let G = (L, ℓ 0 , Act, X, E, inv, cost) be a RPTGA. A configuration of G is a pair (ℓ, v) in L × R X ≥0 . A run ρ = (ℓ 0 , v 0 ) δ 0 --→ (ℓ ′ 0 , v ′ 0 ) e 0 --→ (ℓ 1 , v 1 ) δ 1 --→ (ℓ ′ 1 , v ′ 1 ) e 1 --→ • • • (ℓ n , v n ) δn --→ (ℓ ′ n , v ′ n ) en --→ (ℓ n+1 , v n+1 ) . . . in G is a finite or infinite sequence of alternating time (δ i ∈ R ≥0 ) and discrete (e i ∈ Act) steps such that for every i ≥ 0: (ℓ i , v i ) and (ℓ ′ i , v ′ i ) are configurations of G; for each e i ∈ Act there exists a transition (ℓ ′ i , g, e i , Y, ℓ i+1 ) ∈ E such that v ′ i |= g and v i+1 = v ′ i [Y ]; for each δ i ∈ R ≥0 ℓ i = ℓ ′ i and v ′ i = v i + δ i . The cost of a discrete or time step t = (ℓ, v) α --→ (ℓ ′ , v ′ ) is given by Cost(t) = α.cost(ℓ) if α ∈ R ≥0 and Cost(t) = cost((ℓ, g, α, Y, ℓ)) if α ∈ Act. A run ρ of G is winning if at least
one of the states along ρ is in the set Goal. We note Runs(G) (resp. WinRuns(G)) the set of (resp. winning) runs in G and Runs((ℓ, v), G) (resp. WinRuns((ℓ, v), G)) the set of (resp. winning) runs in G starting in configuration (ℓ, v). If ρ is a finite run with n = 2k steps we note last(ρ) = (ℓ k , v k ) and the cost of the run ρ is defined by: Cost(ρ) = 0≤i≤n-1 Cost(t i ).

Example 2.2 Consider the RPTGA in Fig. 1. Plain arrows represent controllable actions (Act c = {c 1 , c 2 }) whereas dashed arrows represent uncontrollable actions (Act u = {u}). Cost rates in locations ℓ 0 , ℓ 2 and ℓ 3 are 5, 10 and 1 respectively. In ℓ 1 the environment may choose to move to either ℓ 2 or ℓ 3 . However, due to the invariant y = 0 this choice must be made instantaneously.

Strategies, Costs of Strategies

Definition 2.3 [Strategy] Let G be a (R)PTGA. A strategy f over G is a partial function from Runs(G) to Act c ∪ {λ}. Definition 2.4 [Outcome] Let G = (L, ℓ 0 , Act, X, E, inv, cost) be a (R)PTGA and f a strategy over G. The outcome Outcome((ℓ, v), f ) of f from configu- ration (ℓ, v) in G is the subset of Runs((ℓ, v), G) defined inductively by: ℓ 0 cost(ℓ 0 ) = 5 ℓ 1 [y = 0] ℓ 2 cost(ℓ 2 ) = 10 ℓ 3 cost(ℓ 3 ) = 1 Goal x ≤ 2; c 1 ; y := 0 u u x ≥ 2; c 2 ; cost = 1 x ≥ 2; c 2 ; cost = 7 Fig. 1. A Reachability Priced Time Game Automaton A • (ℓ, v) ∈ Outcome((ℓ, v), f ), • if ρ ∈ Outcome((ℓ, v), f ) then ρ ′ = ρ e -→ (ℓ ′ , v ′ ) ∈ Outcome((ℓ, v), f ) if ρ ′ ∈ Runs((ℓ, v), G
) and one of the following three conditions hold: (i) e ∈ Act u , (ii) e ∈ Act c and e = f (ρ),

(iii) e ∈ R ≥0 and ∀0 ≤ e ′ < e, ∃(ℓ ′′ , v ′′ ) ∈ (L × R X ≥0 ) s.t. last(ρ) e ′ --→ (ℓ ′′ , v ′′ ) ∧ f (ρ e ′ --→ (ℓ ′′ , v ′′ )) = λ.
• an infinite run ρ is in ∈ Outcome((ℓ, v), f ) if all the finite prefixes of ρ are in Outcome((ℓ, v), f ).

A strategy f over a RPTGA G is winning from (ℓ, v) whenever all maximal 1 runs in Outcome((ℓ, v), f ) are winning. We denote WinStrat((ℓ, v), G) the set of winning strategies from (ℓ, v) in G. Let f be a winning strategy from configuration (ℓ, v). The cost of f from (ℓ, v) is defined by:

Cost((ℓ, v), f ) = sup{Cost(ρ) | ρ ∈ Outcome((ℓ, v), f )}

Optimal Control Problems

Let (ℓ 0 , 0) denote the initial configuration of a RPTGA G. The three main problems we address in this paper are:

Optimal Cost Computation Problem: we want to compute the optimal cost one can expect in a RPTGA G from (ℓ 0 , 0), i.e. to compute

OptCost((ℓ 0 , 0), G) = inf{Cost((ℓ 0 , 0), f ) | f ∈ WinStrat((ℓ 0 , 0), G)}
Optimal Strategy Existence Problem: we want to determine whether the optimal cost can actually be reached i.e. if there is an optimal strategy f ∈ WinStrat((ℓ 0 , 0), G) such that:

Cost((ℓ 0 , 0), f ) = OptCost((ℓ 0 , 0), G)
1 Roughly speaking a run is maximal if it can not be extended in the future by a controllable action (see [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] page 6, section 2.2); this point is discussed in the sequel in section 3.2.

Optimal Strategy Synthesis Problem: in case an optimal strategy exists we want to compute a witness.

As the example below shows there are PTGA with no optimal winning strategies. In this case there is a family of strategies f ε such that

|Cost((ℓ 0 , 0), f ε ) -OptCost((ℓ 0 , 0), G)| < ε
Thus another problem is, given ε, to compute such an f ε strategy. This latter synthesis problem is not dealt with in this paper.

Example 2.5 [No optimal strategy] For the PTGA of Fig. 2 there is no optimal strategy. c is a controllable action. Nevertheless we can define a family of strategies f ε with 0 < ε ≤ 1 by:

f (ℓ 0 , x < 1 -ε) = λ, f (ℓ 0 , x = 1 -ε) = c and f (ℓ 1 , x ≤ 1) = c.
The cost of such a strategy is 1 + ε. So we can get as close as we want to 1 but there is no optimal winning strategy.

ℓ 0 cost(ℓ 0 ) = 1 ℓ 1 cost(ℓ 1 ) = 2 Goal x < 1; c x = 1; c [x < 1] [x ≤ 1]
Fig. 2. A PTGA with no reachable optimal cost.

Example 2.6 We consider again Fig. 1. We want to compute an optimal strategy for the controller from the initial configuration. Obviously, once ℓ 2 or ℓ 3 has been reached the optimal strategy for the controller is to move to Goal asap (taking a c 2 action). The crucial (and only remaining) question is how long the controller should wait in ℓ 0 before taking the transition to ℓ 1 (doing c 1 ). Obviously, in order for the controller to win this duration must be no more than two time units. However, what is the optimal choice for the duration in the sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay in ℓ 0 . Then 5t + 10(2t) + 1 is the minimal cost through ℓ 2 and 5t + (2t) + 7 is the minimal cost through ℓ 3 . As the environment chooses between these two paths the best choice for the controller is to delay t ≤ 2 such that max(21 -5t, 9 + 4t) is minimum, which is t = 4 3 giving a minimal cost of 14 1 3 . In Fig. 3 we illustrate the optimal strategy for all states reachable from the initial state provided by our HyTech implementation that will be described in section 3.4.

Optimal Cost Computation

In this section we show that computing the optimal cost for a RPTGA amounts to solving a simple2 control problem on a linear hybrid game automaton [START_REF] Wong-Toi | The synthesis of controllers for linear hybrid automata[END_REF]. As a consequence well-known algorithms [START_REF] Wong-Toi | The synthesis of controllers for linear hybrid automata[END_REF][START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF] for computing winning states of reachability hybrid games enable us to compute the optimal cost of a RPTGA.

We then show how to use the HyTech tool to implement the computation of the optimal cost for RPTGA.

From Priced Timed Games to Linear Hybrid Games

Assume we want to compute the optimal cost of the RPTGA A given in Fig. 1.

We translate this automaton into a linear hybrid game automaton (LHGA for short) H (see Fig. 4) where the cost function is encoded into a variable Cost of the LHGA. In H the variable Cost decreases with rate k in a location ℓ (i.e. Let CompWin be a semi-algorithm (e.g. [START_REF] Wong-Toi | The synthesis of controllers for linear hybrid automata[END_REF][START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF]) that computes the largest set of winning states for a reachability hybrid game. Using CompWin we can compute the largest set of winning states for H with the goal states given by Goal∧Cost ≥ 0. The meaning of this new reachability game is that we want to win without having spent all the resources (Cost) we started with. Assume the corresponding (largest) set of winning states is denoted CompWin(H, Goal ∧ Cost ≥ 0). The meaning of the set W = CompWin(H, Goal ∧ Cost ≥ 0) is that in order to win one has to start in the region given by W and if one starts outside W the opponent has a strategy to win i.e. we lose. We can prove (see [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], Theorem 5 and Lemma 6) that the (largest) set of winning states W is a union of zones of the form (ℓ, R ∧ Cost ≻ h) where ℓ is a location, R ⊆ R X ≥0 , h is a piece-wise affine function on R and ≻∈ {>, ≥}. Hence we have the answer to the optimal reachability game: we intersect the set of initial states with the set of winning states W , and in case it is not empty, the projection on the Cost axis yields a constraint on the cost like Cost ≻ k with k ∈ Q ≥0 and ≻∈ {>, ≥}. By definition of the winning set of states in reachability games, this is the largest set from which we can win, no cost lower than or equal to k is winning and we can deduce that k is the optimal cost. Also we can decide whether there is an optimal strategy or not: if ≻ is equal to > there is no optimal strategy and if ≻ is ≥ there is one.

dCost dt = -k in ℓ) if Cost(ℓ) = k in A. As for discrete transitions the variable Cost is updated by Cost ′ = Cost -k in H if the corresponding transition's cost in A is k. ℓ 0 dCost dt = -5 ℓ 1 [y = 0] ℓ 2 dCost dt = -10 ℓ 3 dCost dt = -1 Goal x ≤ 2; c 1 ; y := 0 u u x ≥ 2; c 2 Cost ′ = Cost -1 x ≥ 2; c 2 Cost ′ = Cost -7
Thus computing CompWin(H, Goal ∧ Cost ≥ 0) is a semi-algorithm for computing the optimal cost of the RPTGA A. Moreover we can decide (if CompWin terminates) whether there exists an optimal strategy or not: in case the initial winning cost set is of the form Cost > k there is no optimal strategy but a family of strategies f ε (for ε > 0) with cost lower than k + ε. When this set if of the form Cost ≥ k (and assuming CompWin terminates) we can compute an optimal strategy (this point is dealt with in the next section 4).

The formal definitions and proofs of this reduction are given in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] (Definition 12, Lemma 5, Theorems 4 and 5, Corollaries 1 and 2).

The π Operator

The computation of the winning states (with CompWin) is based on the definition of a controllable predecessor operator [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF][START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF]. Let G = (L, ℓ 0 , Act, X, E, inv, cost) be a RPTGA and Q its set of configurations. For a set X ⊆ Q and a ∈ Act we define Pred a (X) = {q ∈ Q | q a --→ q ′ , q ′ ∈ X}. The controllable and uncontrollable discrete predecessors of X are defined by cPred(X) = c∈Actc Pred c (X), respectively uPred(X) = u∈Actu Pred u (X). We also need a notion of safe timed predecessors of a set X w.r.t. a set Y . Intuitively a state q is in Pred t (X, Y ) if from q we can reach q ′ ∈ X by time elapsing and along the path from q to q ′ we avoid Y . Formally this is defined by:

Pred t (X, Y ) = {q ∈ Q | ∃δ ∈ R ≥0 s.t. q δ -→ q ′ , q ′ ∈ X ∧ Post [0,δ] (q) ⊆ Y } (1)
where

Post [0,δ] (q) = {q ′ ∈ Q | ∃t ∈ [0, δ] | q t -→ q ′ }.
We are then able to define a controllable predecessor operator π as follows:

π(X) = Pred t X ∪ cPred(X), uPred(X) (2) 
This definition of π captures the choice that uncontrollable actions cannot be used to win (this choice is made in [START_REF] La Torre | Optimal-reachability and control for acyclic weighted timed automata[END_REF] and in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]). As a matter of fact there is no way to win in the RPTGA of Fig. 1 with this definition of π: ℓ 1 cannot be a winning state if we start iterating the computation of π from Goal as π only adds predecessors that can reach a winning state by a controllable transition.

Another choice is possible: uncontrollable actions may be used to win if they are forced to happen. This second choice is rather involved when one wants to give a new definition of π in the general case. We adopt a position which is half-way between the previous two extremes: if an uncontrollable action is enabled from a state q where time cannot elapse and leads to a winning state q ′ , and no uncontrollable transitions enabled at q can lead to a nonwinning state, we declare q as winning. Assume the set of configurations of G where time cannot elapse is denoted STOP . Then a new definition of π where uncontrollable actions can be used to win is given by:

π ′ (X) = Pred t X ∪ cPred(X) ∪ (uPred(X) ∩ STOP ), uPred(X) (3) 
Note that this choice does not change the results presented in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. In the example of Fig. 1, from location ℓ 1 only uncontrollable transitions are enabled, but they are bound to happen within a bounded amount of time (in this case as soon as we reach ℓ 1 because of the invariant y = 0). π ′ will add configuration (ℓ 1 , x ≥ 0 ∧ y = 0) to the set of winning states. The semi-algorithm CompWin computes the least fixed point W of the functional λX.{X 0 } ∪ π ′ (X) as the limit of an increasing sequence of sets of states W i (starting from set W 0 = X 0 ) where

W i+1 = π ′ (W i )). If G is a RPTGA, the result of the computation of CompWin on the associated LHGA H starting from Goal ∧ Cost ≥ 0 is W = µX.{Goal ∧ Cost ≥ 0} ∪ π ′ (X)
. This result is also denoted CompWin(H, Goal ∧ Cost ≥ 0) and gives the largest set of winning states.

Termination Issues

An important issue about the previous semi-algorithm CompWin is whether it terminates or not. We have identified a class of RPTGA for which CompWin terminates on the associated hybrid game.

Let G be a RPTGA satisfying:

• G is bounded, i.e. all clocks in G are bounded3 ;

• the cost function of G is strictly non-zeno, i.e. there exists some κ > 0 such that the accumulated cost of every cycle in the region automaton associated with G is at least κ. Note that this condition can be checked. For more complete explanations, see [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF].

Then the semi-algorithm CompWin(H, Goal ∧ Cost ≥ 0) terminates (H is the hybrid game defined from G in the previous section). The formal statement and proof of this claim is given by Theorem 6 in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]. We thus get:

Theorem 3.1 Let G be a RPTGA satisfying the above-mentionned hypotheses (boundedness and strict non-zenoness of the cost). Then the optimal cost is computable for G.

Implementation of CompWin in HyTech

HyTech [START_REF] Henzinger | A user guide to hytech[END_REF][START_REF] Henzinger | HyTech: A model-checker for hybrid systems[END_REF] is a tool that implements "pre" and "post" operators for linear hybrid automata. Moreover it is possible to write programs that use these operators (and many others) on polyhedra in order to compute sets of states.

The specification in HyTech of our LHGA H of Fig. 4 is given in Fig. 5, lines 7-20. We detail this specification in the sequel.

Controllable and Uncontrollable Predecessors. HyTech provides the pre operator that computes at once the time predecessors and the discrete predecessors of a set of states. As we need to distinguish between time predecessors, discrete controllable predecessors and discrete uncontrollable predecessors, we use the following trick: in the HyTech source code of the LHA H we add two boolean variables u and c (Fig. 5, line 4) that are negated on each discrete uncontrollable (resp. controllable) transitions (Fig. 5, lines 10-19). In HyTech one can existentially quantify over a variable t by using the hide operator. Then the controllable predecessors can be computed by existentially quantifying over c and over a variable t that has rate4 -1. We can express the cPred (and uPred) operator with existential quantifiers and two variables t and c as follows:

cPred(X) = {q | ∃c ∈ Act c s.t. q c -→ q ′ , q ′ ∈ X} = {q | ∃t s.t. ∃c s.t. t = 0 ∧ c = 0 ∧ (q, t, c) ∈ pre(X ∧ t = 0 ∧ c = 1
)} where pre is the predecessor operator of HyTech.

We impose that the value of t stays unchanged to ensure that we just take discrete predecessors (Fig. 5, line 39). For uncontrollable predecessors we replace c by u (Fig. 5, line 41). Note that the computation of STOP states (Fig. 5, line 32) can also be done using our extra variables t, c, u.

Safe Time Predecessors. The other operator Pred t (Z, Y ) is a bit more complicated. We just need to express it with existential quantification so that it is easy to compute it with HyTech. Also we assume we have time deterministic automata as in this case Pred t (Z, Y ) is rather simple (if we do not have time determinism a more complicated encoding must be done and we refer the reader to [START_REF] Wong-Toi | The synthesis of controllers for linear hybrid automata[END_REF] for a detailed explanation.) From equation (1) we get:

Pred t (Z, Y ) = {q | ∃t ≥ 0 s.t. q t -→ q ′ , q ′ ∈ Z and ∀0 ≤ t 1 ≤ t, q t -→ q ′′ =⇒ q ′′ ∈ Y } = {q | ∃t ≥ 0 s.t. q t -→ q ′ , q ′ ∈ Z and ¬(∃0 ≤ t 1 ≤ t, q t -→ q ′′ ∧ q ′′ ∈ Y )}
The latter formula can be encoded in HyTech using the hide operator (Fig. 5, lines 47-55) and two auxiliary variables t and t 1 that evolves at rate -1 (note -time predecessors of Z from which we can reach Z -and avoid uPred(X) all along; X := Predt(Z, uPred(X))

X := hide t in (hide c,u in t>=0 & c=0 & u=0 & pre(Z & t=0 & c=0 & u=0) endhide) & 50: ~(hide t1 in (hide c,u in t1>=0 & t1<=t & c=0 & u=0 & pre(uPrebarX & t1=0 & c=0 & u=0) endhide) endhide) 55:
endhide; -add the newly computed regions to the set of already -computed region fix := fix | X ; } ; 60:

-print the result print omit all locations hide x,y in fix & init_reg endhide; that those variables are not part of the model but only used in existentially quantified formulas and they do not constrain the behavior of H.) Finally if the computation of π ′ terminates (Fig. 5, lines 35-59) the set fix contains all the winning states. It then suffices to compute the projection on cost in the initial state to obtain the optimal cost (Fig. 5, line 61).

Doing this we have solved the first two problems: computing the optimal cost and deciding whether there exists an optimal strategy.

Optimal Strategies Computation

In this section we show how to compute an optimal strategy when one exists. Then we give the HyTech implementation of this computation and discuss some properties of those strategies.

Strategy Synthesis For RPTGA

First we recall some basic properties of strategies for (unpriced) Timed Game Automata (TGA).

A strategy f is

• state-based whenever ∀ρ, ρ ′ ∈ Runs(G), last(ρ) = last(ρ ′ ) implies that f (ρ) = f (ρ ′ ).
State-based strategies are also called memoryless strategies in game theory [START_REF] Thomas | On the synthesis of strategies in infinite games[END_REF][START_REF] De Alfaro | Symbolic algorithms for infinite-state games[END_REF];

• polyhedral if for all a ∈ Act c ∪ {λ}, f -1 (a) is a finite union of convex polyhedra for each location of the game;

• realizable, whenever the following holds: for all ρ ∈ Outcome(q, f ) s.t. f is defined on ρ and f (ρ) = λ, there exists some δ > 0 such that for all 0 ≤ t < δ, there exists q ′ with ρ t -→ q ′ ∈ Outcome(q, f ) and f (ρ

t -→ q ′ ) = λ.
Strategies which are not realizable are not interesting because they generate empty sets of outcomes. Nevertheless it is not clear from [START_REF] Maler | On the synthesis of discrete controllers for timed systems[END_REF][START_REF] Asarin | Controller synthesis for timed automata[END_REF] how to extract strategies for RPTGA and ensure their realizability as shown by the following example. 6 where c is a controllable action. The game is to enforce state Goal. The most natural strategy f would be to do a c when x > 1 and to wait until x reaches a value greater than 1. Formally this yields f (ℓ 0 , x ≤ 1) = λ and f (ℓ 0 , x > 1) = c. This strategy is not realizable. In the sequel, we build a strategy which is f (ℓ 0 , x < 2) = λ and f (ℓ 0 , x ≥ 2) = c. Now assume the constraint on the transition is 1 < x ≤ 2. In this case we start with the following strategy (not realizable): f (ℓ 0 , x ≤ 1) = λ and f (ℓ 0 , 1 < x ≤ 2) = c. To make it realizable we will take the first half of 1 < x ≤ 2 and have a delay action on it i.e. f (ℓ 0 , x < 3 2 ) = λ and f (ℓ 0 , 3 2 ≤ x ≤ 2) = c. In the following, we will restrict our attention to realizable strategies and simply refer to them as strategies.

ℓ 0 Goal x > 1; c
A secondary result is provided in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] for Linear Hybrid Games (Theorem 2 page 7) that can be rephrased in the context of RPTGA as: Theorem 4.2 (Adapted from Theorem 2 of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]) Let G be a RPTGA. If the semi-algorithm CompWin terminates for the hybrid game associated with G (see section 3.1), then we can compute a winning strategy which is: polyhedral, realizable and stated-based.

Let H be the LHGA associated to the RPTGA G = (L, ℓ 0 , Act, X, E, inv, cost). A state of H is a triple (ℓ, v, c) where ℓ ∈ L, v ∈ R X ≥0 and c ≥ 0 (c is the value of the variable Cost of H). Thus if we synthetize a realizable winning state-based strategy f for H, we obtain a strategy that depends on the cost value. In case there is a winning strategy for H (see section 3.1) we can synthetize realizable state-based winning strategies for G (see [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF], Corollary 2). This result is already satisfying but we would like to build strategies that are independent of the cost value i.e. in which there is no need for extra information to play the strategy on the original RPTGA G (this means we want to build a statebased strategy for the original RPTGA G.) To this extent we introduce the notion of cost-independent strategies.

Let W = CompWin(H, Goal ∧ Cost ≥ 0) be the set of winning states of

H. A state-based strategy f for H is cost-independent if (ℓ, v, c) ∈ W and (ℓ, v, c ′ ) ∈ W implies f (ℓ, v, c) = f (ℓ, v, c ′ ).
Cost-independent strategies in H will then be used for having state-based strategies in G. Theorem 7 of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] gives then sufficient conditions for the existence of a state-based, optimal, realizable strategy in G and, when back to the automaton reads as follows:

Theorem 4.3 (Adapted from Theorem 7 of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]) Let G be a RPTGA. H is the associated LHGA. If CompWin terminates for H and the set of winning states is W = CompWin(H, Goal ∧ Cost ≥ 0) is a union of sets of the form (ℓ, R ∧ Cost ≥ h) where ℓ is a location, R ⊆ R X ≥0 and h is a piece-wise affine function on R, then there exists a winning realizable state-based strategy f defined over

W G = ∃Cost.W s.t. for each q ∈ W G , f ∈ WinStrat(q, W G ) and Cost(q, f ) = OptCost(q).
Note that under the previous conditions we build a strategy f which is uniformly optimal i.e. optimal for all states of W G . A syntactical criterion to enforce the condition of theorem 4.3 is that the constraints (guards) on controllable actions are non-strict and constraints on uncontrollable actions are strict. We now give an algorithm to extract such an optimal, state-based, realizable and winning strategy for a RPTGA G.

The example of Fig. 1 satisfies the assumptions of Theorem 4.3 and thus we can compute an optimal strategy for this model. Moreover, the strategy we obtain using HyTech is precisely the one we described in Fig. 3.

Synthesis of Optimal Strategies

The set of winning states of H is computed iteratively using the functional π ′ defined by equation ( 3). In the sequel we need to compute the states that can let a strict positive delay elapse to define the strategy for the delay action.

For a set X we denote NonStop(X) the set of states in X from which a strict positive delay can elapse and all the intermediary states lie in X i.e.

NonStop(X) = {q ∈ X | ∃t > 0 | q + t ∈ X ∧ ∀0 ≤ t ′ ≤ t, q + t ′ ∈ X} (4) 
Tagged Sets. To synthetize strategies we compute iteratively a set of extended "tagged" states W + during the course of the computation of W (this follows from Theorem 2 and Lemma 6 of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]). The tags will contain information about how a new set of winning states W i+1 = π ′ (W i ) has been obtained. We start with W + 0 = ∅ and W 0 = Goal ∧ Cost ≥ 0. Assuming W i and W + i are the sets obtained after i iterations of π ′ we define W + i+1 as follows:

(i) let Y = W i+1 \ W i where W i+1 = π ′ (W i ); (ii) for each c ∈ Act c , we define the tagged set Y ∩ cPred c (W i ) [c]
with the intended meaning: "Y ∩ cPred c (W i ) has been added to the set of winning states by a Pred c and doing a c from this set leads to W i ";

(iii) define another tagged set NonStop(Y ) [λ] with the intended meaning: "NonStop(Y ) has been added to the set of winning states by the (strictly positive) time predecessors operator and letting time elapse will lead to either W i or cPred(W i ) or uPred(W i ) ∩ STOP ";

(iv) define W + i+1 by :

W + i+1 = W + i ∪ NonStop(Y ) [λ] ∪ c∈Actc Y ∩ cPred c (W i ) [c]
Computation of an Optimal Strategy. If CompWin terminates in j iterations we end up with W + = W + j . Note that by construction a state q of W may belong to several tagged sets

X [λ] 0 , X [c 1 ] 1 , . . . , X [cn] n (where c i ∈ Act c for each i ∈ [1, n]) of W + . If the assumptions of theorem 4.3 are satisfied all the X i 's are of the form X ′ i ∧ Cost ≥ h i where X ′ i ⊆ {ℓ i } × R X ≥0
for some location ℓ i and h i : X ′ i → R ≥0 is a piecewise affine function. Thus the infimum of h i over X ′ i is reachable and equal to the minimum of h i . Theorem 7 of [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] states that in this case an optimal state-based strategy f * for q a winning state of G (no cost) will be obtained by taking the local optimal choice: let m = min i∈[0,n] h i (q); then defining f * (q) = c i if h i (q) = m gives an optimal strategy.

As it can be the case that h i (q) = h j (q) = m with i = j, we impose a total order ⊏ on the set of events in Act c and define f * (q) = c i where i = max{j | h j (q) = m}. To avoid realizability problems (see proof of Lemma 6 in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF]) on the boundary of a set X i if h 0 (q) = m (which means that the optimal cost can be achieved by time elapsing) and h i (q) = m for some i ∈ [1, n] we define f * (q) = c i . This can be easily defined in our setting by extending ⊏ to Act c ∪ {λ} and making λ the smallest element.

After these algorithmics explanations, we can summarize how we can synthesize an optimal, cost-independent strategy. We denote W + [c] the set defined by:

W + [c] = S [c] i ∈W + S i (5) 
For each c ∈ Act c ∪ {λ}, W + [c] is a set of the form X c ∧ Cost ≥ h c where h c is a piecewise affine function on X c (X c is a union of convex polyhedra). Note that the constraint Cost ≥ h c is a polyhedron which constrains the Cost variable and the clocks. In what follows, a pair (q, α) will represent a state of H (α is the value of the Cost variable). For each winning state q of G, we want to compute the minimal cost for winning and which action we should do if we want to win with the optimal cost. Let us consider two actions c 1 , c 2 ∈ Act c ∪ {λ}. We denote [c 1 ≤ c 2 ] the set of winning states of G where it is better to do action c 1 than action c 2 (h c 1 (q) ≤ h c 2 (q)). This set is defined by:

[c 1 ≤ c 2 ] = {q ∈ X c 1 | ∃α 1 | (q, α 1 ) ∈ W + [c 1 ] and ∀α 2 | (q, α 2 ) ∈ W + [c 2 ] , α 1 ≤ α 2 } (6) = q ∈ X c 1 | ∃α 1 | (q, α 1 ) ∈ W + [c 1 ] ∧ ¬ ∃α 2 | (q, α 2 ) ∈ W + [c 2 ] and α 2 < α 1 (7) Each set [c 1 ≤ c 2 ] is a polyhedral set. For each c ∈ Act c ∪ {λ} define Opt(c) = c ′ =c [c ≤ c ′ ] (8) 
Opt(c) is the set of states for which c is an action that gives the optimal cost. W * = c∈Actc∪{λ} Opt(c) is thus equal to the set of states on which we need to define the optimal strategy. Given the total order ⊏ on Act c ∪ {λ} with λ ⊏ c 1 ⊏ • • • ⊏ c n , we can define an optimal strategy f * as follows: for

i ∈ [0, n -1], let B i = W * \ (∪ k>i B k ) ∩ Opt(c i ) and B n = W * ∩ Opt(c n ); define then f * (q) = c i if q ∈ B i .
f * is an optimal strategy that is (winning), state-based, realizable and polyhedral.

Implementation in HyTech

Controllable Tagged Sets. We first show how to compute tagged sets of states. Our HyTech encoding consists in adding a discrete variable a to the HyTech model of Fig. 5 and use it in the guards of controllable transitions: controllable action c k of Fig. 4 corresponds to the guard a = k in the HyTech model. The HyTech model of Fig. 5 is enriched as follows: we add the guard a = 1 to line 11, a = 2 to lines 16 and 18. In this way we achieve the tagging of controllable predecessors as now the computation of cPred (line 39 of Fig. 7) will compute a tagged region that will be a union of polyhedra with some a = k constraints. Note that we also modify line 44 of Fig. 5 and replace it by line 20 in Fig. 7 where a is hidden from the new cPreX as a is not needed to compute the winning set of states.

New NonStop States. To compute NonStop(Y ) we use again our extra variables t, c, u and add the tag a = 0 to the result set. Lines 35-36 of Fig. 7 achieves this.

W + is stored in the region fix_strat in the HyTech code. To compute W + i+1 we update fix_strat as described by line 38 in Fig. 7. Computation of the Optimal Strategy. To compare the costs for each action and determine the optimal one we use the trick described in the previous subsection. Each tagged set gives the function h c i by the means of a constraint between the Cost variable and the rest of the state variables. To compute h c i we need to split the state space according to each action c i : this is achieved by lines 44-46 where the state space that corresponds to h c i is stored in ri.

It remains to compute for each pair of actions (c 1 , c 2 ) (c i can be λ), the set [c 1 ≤ c 2 ] states. The encoding in HyTech of the formula given by equation ( 7) is quite straightforward using the hide operator that corresponds to existential quantification. The strategy is then computed as described at the end of the previous subsection by lines 54-63.

Experiments

Using a HyTech-code as described in this paper, we have done some more experiments. The most important example we have treated is a model of a mobile phone with two antennas trying to connect to a base station with an environment which can possibly jam some transmissions.

Description of the Mobile Phone Example. We consider a mobile phone with two antennas emitting on different channels. Making the initial connection with the base station takes 10 time units whatever antenna is in use. Statistically, a jam of the transmission (e.g. collision with another phone) may appear every 6 time units in the worst case. When a collision is observed, the antenna tries to transmit with a higher level of energy for a while (at least 5 time units for Antenna 1 and at least 2 time units for Antenna 2) and then can switch back to the lower consumption mode. Unfortunately, switching back to the low consumption mode requires more resources and forces to interrupt the other transmission (Antenna 1 resets variable y of Antenna 2 and vice-versa). The overall cost rate (consumption per time unit) for the mobile phone in a product state s = (low x , high y , Y) is the sum of the rates of Antenna 1 and Antenna 2 (both are working) i.e. 1 + 20 = 21 and Cost(s) = 21 in our model. Once the connection with the base station is established (either x ≥ 10 or y ≥ 10) the message is delivered with an energy consumption depending on the antenna (Cost = 7 for Antenna 1 and Cost = 1 for Antenna 2). The aim is to connect the mobile phone with an energy consumption (cost) as low as possible whatever happens in the network (jam). This system can be represented by a network of PTGAs (see Fig. 8 where plain arrows represent controllable actions whereas dsahed arrows represent uncontrollable actions) and the problem reduces to finding an optimal strategy for reaching one of the goal states Goal x or Goal y . Note that our original model is a single PTGA and not a network of PTGAs, but networks of PTGA can be used as well because it does not add expressive power and it is simple to define the composed PTGA: in a global location (being a tuple of locations of simple PTGAs), the cost is simply the sum of the costs of all single locations composing it. Idem for a composed transition resulting from a synchronization: the cost of the synchronized transition is the sum of the costs of the two initial transitions. Of course, one has to pay attention that no controllable action can synchronize with an uncontrollable action in order that we can define properly the nature, controllable or not, of the synchronization. In this example, see Fig. 8, jam x ? (resp. jam y ?) synchronizes with jam x ! (resp. jam y !). The HyTech code of this example can be found in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] and on the web page http://www.lsv.ens-cachan.fr/aci-cortos/ptga/. Results of our Experiments. We got that the optimal cost (lowest energy consumption) that can be ensured is 109. The optimal strategy is graphically represented on Fig. 9. The strategy is non-trivial and the actions to take depend on a complex partitioning of the clock space. The computation took 828s on a 12" PowerBook G4 running Mac OS X.

In this paper we have described an algorithm to synthesize optimal strategies for a sub-class of priced timed game automata. The algorithm is based on the work described in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] where we proved this problem was decidable (under some hypotheses we recall in this paper). Morever, we also provide an implementation of our algorithm in HyTech and demonstrate it on small case-studies. In a recent paper [START_REF] Alur | Optimal reachability in weighted timed games[END_REF] Alur et al. addressed a related problem i.e. "compute the optimal cost within k steps". They give a complexity bound for this restricted "bounded" problem and prove that the splitting incurred by the computation of the optimal cost within k steps only yields an exponential number (in k and the size of the automaton) of subregions. They do not consider the problem of strategy synthesis.

Our future work consists in extending the class of systems for which the algorithm we provided terminates. The synthesis of sub-optimal strategies (when no optimal strategy exists) is currently being investigated. We would also like to extend this work to more general winning conditions (like safety conditions) and with other performance criteria (as for example the price per unit of time along infinite schedules).

Fig. 3 .

 3 Fig.3. Optimal strategy for the RPTGA of Fig.1. Optimal cost is 141 3 .

Fig. 4 .

 4 Fig. 4. The Linear Hybrid Game Automaton H.

10 : 15 :

 1015 loc l0: while x>=0 & y>=0 wait {dcost=-5,dt=-1,dt1=-1} when x>=0 & x<=2 do {u'=u,c'=1-c,y'=0} goto l1; loc l1: while y=0 wait {dcost=0,dt=-1,dt1=-1} when True do {u'=1-u,c'=c} goto l2; when True do {u'=1-u,c'=c} goto l3; loc l3: while x>=0 & y>=0 wait {dcost=-10,dt=-1,dt1=-1} when x>=2 do {c'=1-c,u'=u,cost'=cost-1} goto Win; loc l4: while x>=0 & y>=0 wait {dcost=-1,dt=-1,dt1=-1} when x>=2 do {c'=1-c,u'=u,cost'=cost-7} goto Win; loc Win: while True wait {dcost=0,dt=-1,dt1=-1} 20: end var init_reg,winning,fix, -sets of states STOP, -set of STOP states from which time cannot elapse uPreX,uPrebarX,cPreX,X,Y,Z : region ; 25: -first define the initial and winning regions init_reg := loc[H]=l0 & x=0 ; winning := loc[H]=Win & cost>=0; -fix is the fixpoint we want to compute i.e. the set of winning states W 30: fix := winning; -stopped states STOP := ~(hide t,c,u in t>0 & c=0 & u=0 & pre(True & t=0 & c=0 & u=0) endhide) ; -compute the fixpoint of π ′ 35: X := iterate X from winning using { -uncontrollable predecessors of X: uPred(X) uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide; -controllable predecessors of X: cPred(X) cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ; 40: -uncontrollable predecessors leading to winning states: uPred(X) uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide; --Z is the the first argument of π ′ in the paper; --Z = X ∪ cPred(X) ∪ (uPred(X) ∩ STOP ) Z := (X | cPreX | (uPreX & STOP)) ; 45:

Fig. 5 .

 5 Fig. 5. Computation of the Optimal Cost.

Fig. 6 .

 6 Fig. 6. A timed game automaton Example 4.1 Consider the PTGA of Fig.6where c is a controllable action. The game is to enforce state Goal. The most natural strategy f would be to do a c when x > 1 and to wait until x reaches a value greater than 1. Formally this yields f (ℓ 0 , x ≤ 1) = λ and f (ℓ 0 , x > 1) = c. This strategy is not realizable. In the sequel, we build a strategy which is f (ℓ 0 , x < 2) = λ and f (ℓ 0 , x ≥ 2) = c. Now assume the constraint on the transition is 1 < x ≤ 2. In

GoalxFig. 8 .

 8 Fig. 8. Mobile Phone Example.

Delay high x →low x high y →low y low x →Goal x low y →Goal yFig. 9 .

 9 Fig. 9. Optimal Strategy for the Mobile Phone Example

Without cost.

P. Bouyer et al.

This hypothesis is not a restriction, see[START_REF] Larsen | As cheap as possible: Efficient cost-optimal reachability for priced timed automata[END_REF].

any rate different from 0 would also do but we need another variable t with rate -1 later on and use this one.

 [START_REF] Abdeddaim | Modélisation et résolution de problèmes d'ordonnancement à l'aide d'automates temporisés[END_REF]Work supported by the ACI Cortos, a program of the French government.

var

-same set of variables here as lines 22-24 in Fig. 5 plus some new vars: a: discrete; cost0,cost1,cost2: analog;

5:

fix_strat,nonstop,Y, r0,r1,r2, B0,B1,B2, inf_0_1,inf_0_2,inf_1_0,inf_1_2,inf_2_0,inf_2_1: region; X := iterate X from winning using { uPrebarX : -compute the state space inf_i_j where h c i (q) ≤ h c j (q) inf_0_1 := hide cost0 in r0 & ~(hide cost1 in r1 & cost1<cost0 endhide) endhide ;