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Determining local transientness of audio signals

Stéphane Molla and Bruno Torrésani

Abstract

We describe a new method for estimating the degree of “transientness” and “tonality” of a class of compound

signals involving simultaneously transient and harmonic features. The key assumption is that both transient and

tonal layers admit sparse expansions, respectively in wavelet and local cosine bases. The estimation is performed

using particular form of entropy (or theoretical dimension) functions. We provide theoretical estimates on the

behavior of the proposed estimators, as well as numerical simulations. Audio signal coding provides a natural field

of application.

Index Terms

audiophonic signal, transient, tonal, wavelet basis, local cosine basis, sparsity.

EDICS: 1.TFSR, 2.AUEA

I. INTRODUCTION

Many generic signal classes feature significantly different “components”, such as transients, (locally)

sinusoidal or harmonic “partials”, or stochastic-like components in sounds, or edges, textures, etc. in

images. Detecting the presence of such components is one of the classical signal processing problems

(see for example [1] and [2] and references therein for reviews.) Another interesting problem is to estimate

whether a given portion of a signal is for example more transient than harmonic or periodic, or in other

words to estimate “transientness” or “tonality” indices: quantitative measures of the local proportion of

transient and tonal features in a signal. Such indices find immediate applications in several contexts,

including the hybrid signal coders [3], [4], [2] which use different methods for encoding transient or

tonal regions (and were the main motivation of this work), more general purpose hybrid models [5], or

similar recent ideas in image coding [6], [7]. While there exist fairly standard tools for transient detection
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or harmonic signal detection, the problem of quantitative measure of proportion does not seem to have

received much attention.

We propose here simple criteria, based on transform coding ideas, for estimating such indices. The main

idea is to use orthonormal bases in signal spaces which are significantly different from each other in the

following sense: a given component has a sparse expansion in a given basis, while the others have dense

expansions. Information theoretic criteria (we elaborate on the case of a variant of Shannon’s entropy)

therefore yield estimates for the indices.

We focus here on the case of transient and locally sinusoidal (or harmonic) layers in audio signals,

using wavelet and local cosine bases. However, the approach we develop may be adapted to different

signal layers (chirps for example), and to higher dimensions. We provide theoretical estimates for the

behavior of transientness and tonality indices, and illustrate our results by numerical simulations and tests

on real sounds.

II. THEORETICAL ANALYSIS

We focus on the particular application to audio signals, and limit ourselves to transient and tonal

features. Our starting point is the assumption that transient signals admit a sparse expansion in a wavelet

basis (provided the wavelets have small enough time support), and that tonals admit a sparse expansion

in local cosine basis (with smooth enough window function.) We are naturally led to consider a generic

redundant “dictionary” made out of two such orthonormal bases, denoted by ψ λ and wδ respectively (we

refer to [8], [9] for detailed tutorials), and signal expansions of the form

x =
∑

λ∈Λ

αλψλ +
∑

δ∈∆

βδwδ + r = xtr + xton + r , (1)

where Λ and ∆ are (small, and this will be the main sparsity assumption) subsets of the index sets,

termed significance maps. The nonzero coefficients αλ are assumed to be independent N (0, σλ) random

variables, and the nonzero coefficients βδ are assumed to be independent N (0, σ̃δ) random variables. r is

a residual signal, which is not sparse with respect to the two considered bases (we shall talk of spread

residual), and is to be neglected or described differently.

Given a signal assumed for simplicity to be of the form (1), with unknown values of |∆| and |Λ| (the

cardinalities of ∆ and Λ respectively), we are interested in finding estimates for the latter. More precisely,
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we seek estimates for the “transientness” and “tonality” indices

Itr =
|Λ|

|∆| + |Λ|
, Iton =

|∆|

|∆| + |Λ|
. (2)

We propose a procedure close to the notions of theoretical dimension or α-entropies, advocated by

Wickerhauser (see [10] for a review.) Our approach is based upon the following heuristics. Consider

a signal x, and expand it into an orthonormal basis. Estimating the “size” of x in this basis may clearly

be done by counting the number of nonzero coefficients (the `0 norm of the sequence of coefficients), or

the number of coefficients above some threshold. It has been shown [10] that alternative approaches are

possible, including `p norms (with p < 2) or entropy, yielding comparable results. Considering a hybrid

signal as in (1) neither its wavelet expansion nor its local cosine expansion will be sparse. However,

since by assumption only very few coefficients αλ and βδ are nonzero, most wavelet coefficients 〈x, ψλ〉

actually originate from the tonal part xton, and most local cosine coefficients 〈x, wδ〉 originate from the

transient part xtr. Therefore, calculating these `p norms or entropy from the wavelet coefficients 〈x, ψλ〉 is

expected to provide (approximately) estimates on the number of nonzero (or significant) βδ coefficients,

and vice versa. We elaborate below on the specific case of the logarithmic dimensions, for which such a

behavior may be proved. For the sake of simplicity, we shall work in this section in a finite dimensional

context.

Definition 1: Given an orthonormal basis B = {en, n = 1, . . . N} of a given N -dimensional signal

space E ∼= R
N , define the logarithmic dimension of x ∈ E in the basis B by

DB(x) =
1

N

N
∑

n=1

log2

(

|〈x, en〉|
2
)

. (3)

It follows from a simple calculation that in the framework of the signal models under consideration,

Lemma 1: Given an orthonormal basis B = {en, n = 1, . . .N}, assuming that the coefficients 〈x, en〉

are N (0, σn) random variables, one has

E {DB(x)} = C +
1

N

N
∑

n=1

log2(σ
2
n) , (4)

where C = 1+γ/ ln(2) ≈ 1.832746177 is a universal constant (γ ≈ .5772156649 being Euler’s constant.)

Returning to the model (1), and assuming that the coefficients αλ, λ ∈ Λ and βδ, δ ∈ ∆ are respectively

N (0, σλ) and N (0, σ̃δ) independent random variables, the coefficients aλ = 〈x, ψλ〉, bδ = 〈x, wδ〉, are

zero-mean normal random variables, whose variance depends on whether λ ∈ Λ (or δ ∈ ∆) or not. For
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example,

var{aλ} =







σ2
λ +

∑

δ∈∆ σ̃
2
δ |〈ψλ, wδ〉|2 if λ ∈ Λ

∑

δ∈∆ σ̃
2
δ |〈ψλ, wδ〉|2 if λ 6∈ Λ

(5)

and we obtain, for the Ψ = {ψλ} basis

E {DΨ(x)}=C+
1

N
log2

[

∏

λ∈Λ

(

σ2
λ +
∑

δ∈∆

σ̃2
δ |〈ψλ, wδ〉|

2

)

×
∏

λ′ 6∈Λ

(

∑

δ∈∆

σ̃2
δ |〈ψλ′ , wδ〉|

2

)

]

,

(6)

and a similar expression for the logarithmic dimension DW (x) with respect to the W = {wδ} basis.

In the simpler case where σλ = σ, ∀λ ∈ Λ and σ̃δ = σ̃, ∀δ ∈ ∆, we introduce the Parseval weights

pλ(∆) =
∑

δ∈∆

|〈wδ, ψλ〉|
2 , p̃δ(Λ) =

∑

λ∈Λ

|〈wδ, ψλ〉|
2 . (7)

The following property is an immediate consequence of Parseval’s formula (i.e. for all f ,
∑

λ |〈f, ψλ〉|2 =

‖f‖2.)

Lemma 2: The Parseval weights satisfy

0 ≤ pλ(∆) ≤ 1 , 0 ≤ p̃δ(Λ) ≤ 1 .

Introducing the relative redundancies of the bases Ψ and W with respect to the significance maps

ε(∆) = sup
λ∈Λ

pλ(∆) , ε̃(Λ) = sup
δ∈∆

pδ(Λ) , (8)

we obtain simple estimates for the logarithmic dimension.

Theorem 1: With the above notations, assuming that the coefficients {αλ, λ ∈ Λ} and {βδ, δ ∈ ∆}

are independent identically distributed N (0, σ) and N (0, σ̃) normal variables respectively, and assuming

r = 0, the following bounds hold

E {DΨ(x)} ≥ C +
|Λ|

N
log2(σ

2)

+ log2

(

∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N

)

(9)

E {DΨ(x)} ≤ C +
|Λ|

N
log2(σ

2 + ε(∆)σ̃2)

+ log2

(

∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N

)

,
(10)

with C = 1 + γ/ ln(2) ≈ 1.832746177. Exchanging the roles of ∆ and Λ, a similar bound holds for the

other logarithmic dimension DW (x).
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Proof: The proposition follows directly from the fact that in such a situation, equation (6) reduces to

E {DΨ(x)} = C+ log2

(

∏

λ∈Λ

(

σ2 + σ̃2pλ(∆)
)1/N

×
∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N

)

,

(11)

from Lemma 2 and the definition of ε(∆). ♠

This result may be understood and utilized as follows. First notice that the bounds in Equations (9)

and (10) differ by |Λ| log2(1+ ε(∆)σ̃2/σ2)/N . Let us assume for a while that this term may be neglected

(more on that below.) Then the behavior of E {DΨ(x)} is essentially controlled by log2

(

∏

λ′ 6∈Λ(σ̃2pλ′(∆))
1/N
)

.

The behavior of this term is not easy to understand, but a first idea may be obtained by replacing pλ′(∆) by

its “ensemble average” 1
N

∑N
λ=1 pλ(∆) = 1

N

∑

δ∈∆ ‖wδ‖
2 = |∆|

N
, which yields the approximate expression:

E {DΨ(x)} ≈ C +
|Λ|

N
log2(σ

2)

+

(

1 −
|Λ|

N

)

log2

(

σ̃2 |∆|

N

)

.
(12)

Therefore, if the “Ψ-component” of the signal is sparse enough, i.e. if |Λ|/N is sufficiently small (compared

with 1), E {DΨ(x)} may be expected to behave as log2

(

σ̃2 |∆|
N

)

. Set

N̂Ψ(x) = 2DΨ(x) . (13)

Replacing DΨ(x) with its expectation, we see that N̂Ψ(x) ≈ 2C σ̃2 |∆|
N

, which yields an estimate (up to the

multiplicative constant 2C σ̃2/N ) for the “size” of the tonal component of the signal. Similarly, defining

N̂W (x) = 2DW (x) (14)

we obtain a similar estimate (up to the multiplicative constant 2Cσ2/N ) for the “size” of the Ψ component

of the signal. Both N̂Ψ(x) and N̂W (x) are computable from the signals wavelet and local cosine expansions,

and we finally consider their relative proportions, or “rates”

Îton =
N̂Ψ

N̂Ψ + N̂W

, Îtr =
N̂W

N̂Ψ + N̂W

, (15)

which provide the desired estimates for the indices in Eq. (2).

A few comments are in order here.

i. The difference between the lower and upper bounds depends on the sparsity |Λ|/N of the Ψ-

component and the relative redundancy parameters ε(∆). The latter actually describe the intrinsic
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differences between the two considered bases. When the bases are significantly different, the relative

redundancy may be expected to be small (notice that in any case, it is smaller than 1.)

ii. The relative redundancy parameters ε and ε̃ differ from the one which is generally considered in

the literature, namely the coherence M [W ∪ Ψ] = supb∈W,b′∈Ψ |〈b, b′〉| of the dictionary W ∪ Ψ

(see e.g. [11], [12], [13].) The latter is intrinsic to the dictionary, while the Parseval weights and

corresponding ε and ε̃ provide a finer information, as they also account for the signal models, via

their dependence in the significance maps Λ and ∆.

iii. Precise estimates for ε and ε̃ are difficult to obtain (numerical simulations yield values around 1/4.)

More precise models for the significance maps ∆ and Λ could provide better understanding. In

particular, structured models such as those described in [14] (implementing time persistence in ∆

and scale persistence in Λ) are expected to yield smaller values for the relative redundancies than

models featuring uniformly distributed significance maps.

Another interesting point is the sensitivity of such tools with respect to departures from the model, or

noise. We show that results similar to the above ones still hold true in the presence of white noise, i.e.

assuming that the residual r in (1) is a zero-mean Gaussian white noise. In such a situation, denoting by

s2 the variance of the noise r, equation (6) becomes

E {DΨ(x)}=C+
1

N
log2

[

∏

λ∈Λ

(

σ2
λ+
∑

δ∈∆

σ̃2
δ |〈ψλ, wδ〉|

2+s2

)

×
∏

λ′ 6∈Λ

(

∑

δ∈∆

σ̃2
δ |〈ψλ′, wδ〉|

2 + s2

)

]

,

and a similar expression for the logarithmic dimension DW (x) with respect to the W = {wδ} basis.

Hence, the approximate expression (12) becomes

E {DΨ(x)} ≈ C +
|Λ|

N
log2(σ

2 + s2)

+

(

1 −
|Λ|

N

)

log2

(

σ̃2 |∆|

N
+ s2

)

.

The discussion above (suitably adaptated) still holds as long as the signal energy σ̃2|∆| exceeds the noise

energy s2N .

These estimates yield the following algorithm for estimating transientness and tonality indices for sparse

hybrid signals x as given in (1).

1) Compute logarithmic dimensions DΨ(x) and DW (x)
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Fig. 1. Transientness and tonality estimates for the model (averaged over 10 realizations.) Top: L = 25, and M ∈ {1, . . . 150}; increasing

curves: Iton and Îton; decreasing curves: Itr and Îtr. Bottom: M = 25, and L ∈ {1, . . . 150}; increasing curves: Itr and Îtr; decreasing

curves: Iton and Îton.

2) Compute N̂Ψ(x) and N̂W (x) as in (13) and (14).

3) Compute the estimated rates as in (15).

III. NUMERICAL RESULTS

We generated several realizations of the signal model (with r = 0 first), with variable numbers L of

wavelet atoms and fixed number M of local cosines and vice versa, and computed the estimated rates Îton

and Îtr, to be compared with the ground truth (2), i.e. Iton = M/(M+L) and Itr = L/(M+L) = 1−Iton.

As may be seen from Figure 1 (which corresponds to averages over 10 realizations of the model), the

estimated curves reproduce quite well the correct ones. Some discrepancies may be observed at the right

hand side of the curves, where the sparsity assumptions are not valid any more, and the correction terms

in (12) come into play. Observe that the curves cross precisely at the correct location M = L. The influence

of the noise may be seen in Figure 2: a white noise, whose energy equals 30% of the signal’s energy, has

been added. The effect is what can be anticipated from (II), namely the presence of an additional noise

term moves the experimental curves away from the theoretical ones.

Besides the numerical simulations above, the transientness and tonality indices have been tested on real

audio signals, yielding very sensible results.1 A first example, based upon a simple ’castanet’ signal (6 s

long, sampled at 44,100 kHz) is shown in Figure 3. A value for the transientness index and the tonality

index was computed for all time frames (23 ms long.) Since Iton = 1− Itr, only the transientness index is

1Additional material, including sound files, may be found at the web site http://www.cmi.univ-

mrs.fr/˜torresan/papers/balance.
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Fig. 2. Influence of white noise: Transientness and tonality estimates for the model (averaged over 10 realizations) with additional white

noise. Same legends as before.
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Fig. 3. Transientness index for the test ’castanet’ signal. Signal (top) and transientness index (bottom.)

displayed for the sake of clarity. This signal is quite simple, as it essentially exhibits attacks followed by

harmonic tones, and is thus a “perfect” test for the proposed approach. As may be seen from the bottom

plot of Figure 3, all attacks are correctly captured, and the corresponding index is quite high. In between

attacks, the transientness index is very low, which is also natural since the signal is essentially harmonic,

thus sparsely represented by local cosine basis.

The second sound example displayed here is a more complex audio signal, extracted from a jazz

recording (about 6 s. long, sampled at 44,100 kHz) which features “mixed” tonals and transients. The

numerical results are displayed in Figure 4. Notice again that the “obvious” attacks of the signal have been

captured by the method. A closer examination of the signal (using a “spectrogram type” representation,

not shown here) shows that in the middle part of the signal (more precisely, between seconds 3 and 5), the

harmonic content is stronger, which explains the lower average value of Itr there. This illustrates the fact

that Itr really provides an estimate of the proportion of transients relative to tonals, rather than an absolute
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Fig. 4. Transientness index for the test “jazz” signal. Signal (top) and transientness index (bottom.)

indicator of the presence of transient, such as the ones used in transient detection [4] for example.2

More numerical results, in the framework of the hybrid audio coding scheme developed in [3], will be

given in a forthcoming publication [14].

IV. CONCLUSIONS

Sparsity of wavelet and local cosine signal representations may be exploited in order to estimate the

relative amount of tonal and transient components present in the signal. This approach proves to be

extremely effective in the context of hybrid audio signal coding [3], [15], and possesses a wider range of

applications, including image coding [6].

The theoretical analysis we have presented is based on strong a priori assumptions on the signal

(essentially, a hybrid model such as (1), with sparse significance maps Λ and ∆.) While this sparsity

assumption is completely necessary, the equality of variances may be relaxed; in that situation, the indices

provide estimates on the proportion of energies σ2|Λ| and σ̃2|∆| of the two layers, rather than their size

|Λ| and |∆|. This is the case for the numerical results on real signals, for which the variances of the two

layers are not known.

Finally, let us simply mention that the approach may be extended to more than two layers, provided

that the considered orthonormal bases are sufficiently different (in terms of their “Parseval weights”, see

above) to allow the separation. Again, this may prove useful in the context of image coding, where new

types of waveforms (e.g. curvelets) may be introduced.

2http://www.cmi.univ-mrs.fr/˜torresan/papers/balance.
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