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AN HYBRID AUDIO SCHEME USING HIDDEN MARKOV

MODELS OF WAVEFORMS

S. MOLLA AND B. TORRESANI

Abstract. This paper reports on recent results related to audiophonic signals
encoding using time-scale and time-frequency transform. More precisely, non-
linear, structured approximations for tonal and transient components using
local cosine and wavelet bases will be described, yielding expansions of audio
signals in the form tonal + transient + residual. We describe a general for-
mulation involving hidden Markov models, together with corresponding rate

estimates. Estimators for the balance transient/tonal are also discussed.

1. Introduction: structured hybrid models

Recent signal processing studies have shown the importance of sparse represen-
tations for various tasks, including signal and image compression (obviously), de-
noising, signal identification/detection,... Such sparse representations are generally
achieved using suitable orthonormal bases of the considered signal space. How-
ever, recent developments also indicate that redundant systems, such as frames, or
more general “waveform dictionaries” may yield substantial gains in this context,
provided that they are sufficiently adapted to the signal/image to be described.

From a different point of view, it has also been shown by several authors that in a
signal or image compression context, significant improvements may be achieved by
introducing structured approximation schemes, namely schemes in which structured
sets of coefficients are considered rather than isolated ones.

The goal of this paper is to describe a new approach that implements both
ideas, via a hybrid model involving sparse, structured, random wavelet/MDCT
expansions, where the sets of considered coefficients (the significance maps) are
described via suitable (hidden) Markov models.

This work is mainly motivated by audio coding applications, to which we come
back after describing the models and corresponding estimation algorithms. How-
ever, similar ideas may clearly be developed in different contexts, including im-
age [20] and image sequence coding, where both ingredients (hybrid and structured
models) have already been exploited.

1.1. Generalities, sparse expansions in redundant systems. Very often, sig-
nals turn out to be made of several components, of significantly different nature.
This is the case for “natural images”, which may contain edge information, regular
textures, and “non-stationary” textures (which carry 3D information.) This is also
the case for audio signals, which among other features, contain transient and tonal
components [7], on which we shall focus more deeply. It is known that such differ-
ent features may be represented efficiently in specific orthonormal bases. Following
the philosophy of transform coding, this suggests to consider redundant systems
made out by concatenation of several families of bases. Such systems have been
considered for example in [9, 12, 14], where the problem of selecting the “sparsest”
expansion through linear programing has been considered.

Focusing on the particular application to audio signals, and limiting ourselves to
transient and tonal features, we are naturally led to consider a generic redundant
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dictionary made out of two orthonormal bases, denoted by ψλ and wδ respectively
(typically a wavelet and an MDCT basis), and signal expansions of the form

(1) x =
∑

λ∈Λ

αλψλ +
∑

δ∈∆

βδwδ + r ,

where Λ and ∆ are (small, and this will be the main sparsity assumption) subsets of
the index sets, termed significance maps. The nonzero coefficients αλ are indepen-
dent N (0, σ2

λ) random variables, and the nonzero coefficients βδ are independent
N (0, σ̃2

δ ) random variables: r is a residual signal, which is not sparse with respect
to the two considered bases (we shall talk of spread residual), and is to be neglected
or described differently.

The approach developed in [9, 12, 14] may be criticized in several respects when
it comes to practical implementation in a coding perspective. On one hand, it is
not clear that the corresponding linear programing algorithms are compatible with
practical constraints, in terms of CPU and memory requirements1. Also, models
exploiting solely sparsity arguments cannot capture one of the main features of
some signal classes, namely the persistence property: significant coefficients have a
tendency to form “clusters”, or “structured sets”. For example, in an audio coding
context, the significance maps take the form of ridges (i.e. “time-persistent” sets,
see e.g. [2, 8] in a different context) for the MDCT map ∆, and binary trees for the
wavelet map Λ. This remark has been exploited in various instances, for example in
the context of the sinusoidal models for speech [19], of for image coding [4, 5, 24, 25]

Several models may be considered for the Λ and ∆ sets (termed significance
maps), with variable levels of complexity. If only sparsity is used, they may be
chosen uniformly distributed (in a finite dimensional context.) We shall rather
work in a more complex context, and use (hidden) Markov chains to describe the
MDCT ridges in ∆ (in the spirit of the sinusoidal models of speech), and (hidden)
binary Markov trees for the wavelet map Λ, following [5]. This not only yields
a better modeling of the features of the signal, but also provides corresponding
estimation algorithms.

To be more specific, a tonal signal is modeled as

xton =
∑

δ∈∆

βδwδ ,

the functions wδ being local cosine functions. The (significant) coefficients βδ ,
δ ∈ ∆ are N (0, σ̃2

δ ) independent random variables. The index δ is in fact a pair of
time-frequency indices δ = (k, ν), and the significance map ∆ is characterized by
a “fixed frequency” Markov chain (see e.g. [16] for a simple account), hence by a

set of initial frequencies ν1, . . . νN and transitions matrices P̃1, . . . P̃N (one for each
frequency bin) the transition matrices

Globally, the tonal model is characterized by the set of matrices P̃n, and the
variances σ2

δ of the two states, which are assumed to be time invariant, and on
which additional constraints may be imposed. The tonal model is described in
some details in section 2.

A similar model, using Hidden Markov trees of wavelet coefficients [5] may be
develop to describe the transient layer in the signal:

xtr =
∑

λ∈Λ

αλψλ ,

ψ being a wavelet with good time localization. The rationale is now to model the
scale persistence of large wavelet coefficients of the transients, exploiting the intrin-
sic dyadic tree structure of wavelet coefficients (see Figure 5 below.) Again, the

1for example, for audio signals typically sampled at 44.1 kHz.
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significant wavelet coefficients {αλ, λ ∈ Λ} of the signal are modeled as indepen-
dent N (0, σ2

λ) random variables. The index λ is in fact a pair of scale-time indices
δ = (j, k), and the significance map Λ is characterized by a “fixed time” Markov
chain, hence by corresponding “scale to scale” transition matrices Pj (with addi-
tional constraints which ensure that significant coefficients inherit a natural tree
structure, see below.)

The transient model is therefore characterized by the variances of wavelet coef-
ficients in Λ and Λc, and the persistence probabilities, for which estimators may be
constructed. The transient states estimation itself is also performed via classical
methods. These aspects are described in section 3.

1.2. Recursive estimation. Several approaches are possible to estimate the sig-
nificance maps and corresponding coefficients in models such as (1), ranging from
the above mentioned linear programing schemes (see for example [3]) to greedy
algorithms, including for instance Matching pursuit [13, 18]. The procedure we
use is in some sense intermediate between these two extremes, in the spirit of the
techniques used in [1]. We consider a dictionary made of two (orthonormal) bases;
a first layer is estimated, using the first basis, and a second layer is estimated from
the residual, using the second basis. The main difficulty of such an approach lies
on the fact that the number of significant elements from the first basis has to be
known in advance (or at least estimated.) In other terms, the cardinalities |Λ| and
|∆| of the significance maps have to be known. This is important, since an under-
estimation or overestimation of |∆| (assuming that the ∆-layer is estimated first)
will “propagate” to the estimation of the second layer (the Λ-layer.)

In the framework of the the Gaussian random sparse models studied below,
it is possible to derive a priori estimates for the cardinalities |Λ| and |∆|, using
information measures in the spirit of those proposed in [29] and studied in [26].
Consider the geometric means of estimated ψλ and wδ coefficients

(2) N̂ψ =

(

N
∏

n=1

|〈x, ψn〉|
2

)1/N

and N̂w =

(

N
∏

n=1

|〈x,wn〉|
2

)1/N

.

Then, assuming spartity, the indices

(3) Iw =
N̂ψ

N̂ψ + N̂w
; Iψ =

N̂w

N̂ψ + N̂w
,

turn out to provide estimates for the proportion of significant w and ψ coefficients.
The rationale is the fact that under sparsity assumptions (i.e. if ∆ and Λ are small
enough), most coefficients 〈x, ψn〉 (resp. 〈x,wn〉) will come from the tonal (resp.
transient) layer of the signal, and therefore give information about it. This aspect
is discussed in more details in section 4.

1.3. Audio coding applications. As mentioner earlier, our main motivation is
audio coding. We briefly sketch here the assets of the model we are developing in
such a context.

Coding involve (lossy) quantization of the selected coefficients {〈x,wδ〉, δ ∈ ∆}
and {〈x, ψλ〉, λ ∈ Λ}. These are Gaussian random variables, which means that
corresponding rate and distorsion estimates may be obtained.

The significance maps have to be encoded as well. However, the Markov models
make it possible to compute explicitely the probabilities of ridges lengths (for ∆)
and trees lengths, which allows one to obtain directly the corresponding optimal
lossless code. Again, rate estimates may be derived explicitely.
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It is also worth pointing out some important issues (in a coding perspective),
which we shall not address here. The first one is the encoding of the residual signal

xres = x− xton − xtr .

It was suggested in [7] that the residual may be encoded using standard LPC
techniques. However, it seems that in most situations, encoding the residual is not
necessary, the transient and tonal layers providing a satisfactory description of the
signal.

A second point is related to the implementation of perceptive arguments (e.g.
masking): the goal is not really to obtain a lossy description of the signal with a
small distortion: the distortion is rather expected to be inaudible, which has little
to do with its `2 norm. In the proposed scheme, this aspect will be addressed at
the level of coefficient quantization (as in most perceptive coders.) However let
us point out that the “structural decomposition” involving well defined tonal and
transient layers shall make it possible to implement separately frequency masking
on the tonal layer, and time masking on the transient layer, which is a completely
original approach. This work (in progress) will be partly reported in [6].

2. Structured Markov model for tonal

We start with a description of the first layer of the model. We make use of
the local cosine bases constructed by Coifman and Meyer. Let us briefly recall
here the construction, in the case we shall be interested in here. Let ` ∈ R

+ and
η ∈ R

+, η < `/2. Let w be a smooth function (called the basic window) satisfying
the following properties:

supp(w) ⊂ [0 − η, `+ η](4)

w(−τ) = w(τ) for all |τ | ≤ η(5)

w(`− τ) = w(`+ τ) for all |τ | ≤ η(6)
∑

k

w(t − k`)2 = 1 , ∀t .(7)

and set

(8) wkn(t) =

√

2

`
w(t − k`) cos

(

π(n+ 1/2)

`
(t− k`)

)

, n ∈ Z
+, k ∈ Z .

Then it may be proved that the collection of such functions, when n spans Z
+ and

k spans Z, forms an orthonormal basis of L2(R). Versions adapted to spaces of
functions with bounded support, as well as discrete versions, may also be obtained
easily. We refer to [29] for a detailed account of such constructions. The classical
choice for such functions amounts to take an arc of sine wave as function w. We shall
limit ourselves to the so-called “maximally smooth” windows, by setting η = `/2.

In the framework of the recursive estimation scheme we are about to describe,
the simplest (and natural) idea would be to start by expanding the signal with
respect to a local cosine basis, and pick the largest coefficients (in absolute value,
after appropriate weighting if needed) to form a best N -term approximation [7].
However, as may be seen in the middle image of Figure 1, such a strategy would au-
tomatically “capture” local cosine coefficients which definitely belong to transients
(i.e. seem to form localized, “vertical” structures.) In order to avoid capturing such
undesired coefficients, it is also natural to use the “structure” of MDCT coefficients
of tonals, i.e. the fact that they have a tendancy to form “horizontal ridges”. This
is the purpose of the tonal model described below. In the glockenspiel example
of Figure 1, such a strategy produces a tonal layer whose MDCT is exhibited in
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Figure 1. Estimating a tonal layer; top: glockenspiel signal; mid-
dle: logarithm of absolute value of MDCT coefficients of the sig-
nal; bottom: logarithm of absolute value of MDCT coefficients of
a tonal layer, estimated using “horizontal” structures in MDCT
coefficients.

the bottom image, from which it is easily seen that only “horizontally structured”
coefficients have been retained.

2.1. Model and consequences. In the framework of the recursive approach, the
signal is modeled as a structured harmonic mixture of Gaussians, i.e. expanded
into an MDCT basis, with given cutoff frequency N

(9) x =
N−1
∑

n=0

∑

k

Yknwkn ,

where the coefficients of the expansion are (real, continuous) random variables Ykn
whose distribution is governed by a family of “fixed frequency” Hidden Markov
chains (HMC) Xkn, k = 1, . . . . According to the usual practice, we shall denote by
Y1:k,n (resp. X1:k,n) the random vector (Y1n, . . . Ykn) (resp. (X1n, . . . Xkn)), and use
a similar notation for the corresponding values (y1n, . . . ykn) (resp. (x1n, . . . xkn).)
ρY1:k,n

and ρYk
will denote the joint density of Y1:k,n and the density of Ykn respec-

tively, and the density of Ykn conditioned by Xkn, assumed to be independent of
k, will be denoted by

ψn(y|x) = ρYkn
(y|Xkn = x) , x = T,N .

To be more precise, the model is characterized as follows:

i. For all n, X·n is a Markov chain with state space

X = {T,R}

(“tonal” and “residual”, or non-tonal) and transition matrix P̃n, of the form

P̃n =

(

π̃n 1 − π̃n
1 − π̃′

n π̃′
n

)
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the numbers π̃n, π̃
′
n being the persistence probabilities of the tonal and resid-

ual states: for all n

π̃n = P {Xkn = T |Xk−1n = T} ,(10)

π̃′
n = P {Xkn = R|Xk−1n = R} .(11)

The initial frequencies of T and R states will be denoted by νn and 1− νn
respectively. For the sake of simplicity, we shall generally assume that the
initial frequencies coincide with the equilibrium frequencies of the chain:

ν(e)
n =

1 − π̃′
n

2 − π̃n − π̃′
n

,

ii. The (emitted) coefficients Ykn are continuous random variables, with den-
sities denoted by ρY1:k n

(y1:k n),
iii. The distribution of the (emitted) coefficients Ykn depends only on the corre-

sponding hidden state Xkn; for each n, the coefficients Ykn are independent
conditional to the hidden states, and their distribution do not depend on
the time index k (but does depend on the frequency index n.) We therefore
denote

ρY1:kn
(y1:kn|X1:kn = x1:kn) =

k
∏

i=1

ψn(yin|xin) ,

iv. In order to model audio signal, we shall limit ourselves to centered gaussian
models for the densities ψk. The latter are therefore completely determined
by their variances: a large variance σ2

T for the T type coefficients, and a
small variance σ2

R for the R type coefficients.

Therefore, the model is completely characterized by the parameter set

θ̃ = {π̃n, π̃
′
n; νn; σ̃T,n, σ̃R,n; n = 0, . . .N − 1} .

Given these parameters, one may compute explicitely the likelihood of any configu-
ration of coefficients. Using “routine” HMC techniques, it is also possible to obtain
explicit formulas for the likelihood of any hidden states configuration, conditional
to the coefficients. We refer to [23] for a detailed account of these aspects.

Remark 1. Notice that in this version of the model, the transition matrix P̃ is
assumed to be frequency independent. More general models involving frequency
dependent P̃ matrices (or further generalizations) may be constructed, without
much modifications of the overall approach.

Given a signal model as above, we may define the tonal layer of such a signal.

Definition 1. Let x be signal modeled as a hidden Markov chain MDCT as above,
and let

(12) ∆ = {(k, n)|Xkn = T} .

∆ is called the tonal significance map of x. Then the tonal and non tonal layers
are given by

xton =
∑

δ∈∆

βδwδ ,(13)

xnton = x− xton(14)

This definition makes it possible to obtain simple estimates for quantities of
interest, such as the energy of a tonal signal, or the number of MDCT coefficients
needed to encode it. For example, considering a time frame of K consecutive
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windows (starting from k = 0 for simplicity2), and a frequency domain {0, . . .N−1},
we set

∆(K,N) = ∆ ∩ ({0, . . .K − 1} × {0, . . .N − 1}) ,

and we denote by

Ñ (K)
n = |∆(K,{n})|(15)

τ (K)
n = E

{

Ñ
(K)
n

K

}

(16)

the random variables describing respectively the number and the expected pro-
portion of T type coefficients in the frequency bin n, within a time frame of K
consecutive windows.

Proposition 1. With the notations of Definition 1, the average proportion of T
type coefficients within the time frame {0, . . .K− 1} in the frequency bin n is given
by
(17)

τ (K)
n =

1

K(2 − π̃n − π̃′
n)

[

νn((̃πn+π̃′
n−1)K)+(1−π̃′

n)

(

K −
1− (̃πn+π̃′

n−1)K

2−π̃n−π̃′
n

)]

Proof: From classical properties of HMC, we have that
(

P {Xk n = T}
P {Xk n = R}

)

=
(

P̃ t
)k
(

νn
1 − νn

)

,

the superscript “t” denoting matrix transposition. After some algebra, we obtain
the following expressions:

P {Xk n = T} =
((1 − π̃n)νn − (1 − π̃′

n)(1 − νn)) (π̃n + π̃′
n − 1)

k
+ (1 − π̃′

n)

2 − π̃n − π̃′
n

= νn (π̃n + π̃′
n − 1)

k
+

1 − π̃′
n

2 − π̃n − π̃′
n

(

1 − (π̃n + π̃′
n − 1)k

)

.

Similarly, we obtain for P {Xk n = R} = 1 − P {Xk n = T}

P {Xk n = R} = (1 − νn) (π̃n + π̃′
n − 1)

k
+

1 − π̃n
2 − π̃n − π̃′

n

(

1 − (π̃n + π̃′
n − 1)k

)

.

Finally, the result is obtained by replacing P {Xk n = T} with its expression in

E

{

Ñ (K)
n

}

=
K−1
∑

k=0

P {Xk n = T} ,

which yields the desired expression. �

Notice that in the limit of large time frames, one obtains the simpler estimate

lim
K→∞

τ (K)
n =

1 − π̃′
n

2 − π̃n − π̃′
n

= ν(e)
n ,

which of course does not depend any more on K.
The energy of the tonal layer is also completely characterized by the parameters

of the model, and has a simple behavior.

2In fact, this choice of origin matters only if the initial frequency ν of the chain is not assumed to
equal the equilibrium frequency ν(e), which will not be the case in the situations we consider.
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Proposition 2. With the same notations as before, conditional to the parameters
of the model, we have

E







1

K

∑

δ∈∆(K,N)

|Yδ |
2







=
1

K

N−1
∑

n=0

1

2 − π̃n − π̃′
n

[

(

1 − (π̃n + π̃′
n − 1)K

)

νnσ̃
2
T,n

+ (1 − π̃′
n)

(

K −
1 − (π̃n + π̃′

n − 1)K

2 − π̃n − π̃′
n

)

σ̃2
T,n

]

(18)

Proof: the result follows from the fact that conditional to the hidden states, the
considered random variables at fixed frequency are i.i.d. N (0, σ2

T,n) random vari-

ables. It is then enough to plug the expression of τ
(K)
n obtained above in the L2

norm of the tonal layer. �

Again, the latter expression simplifies in the limit K → ∞, or if the initial
frequencies of the chains Xn are assumed to equal the equilibrium frequencies. In
that situation, we obtain

(19) lim
K→∞

E







1

K

∑

δ∈∆(K,N)

|Yδ|
2







=

N−1
∑

n=0

1 − π̃′
n

2 − π̃n − π̃′
n

σ̃2
T,n =

N−1
∑

n=0

ν(e)
n σ̃2

T,n .

Remark 2. Thanks to the simplicity of the Gaussian model, similar estimates may
be obtained for other `p-type norms.

A fundamental aspect of transform coding schemes based on non-linear approx-
imations such as the one we are describing here is the fact that the significance
maps ∆ have to be encoded together with the corresponding coefficients. Since the
significance map takes the form of a series of segments of T s and segments of Rs
with various lengths, it is natural to use classical techniques of run length coding
(see for example [15], Chapter 10, for a detailed account) to encode them. The
corresponding bit rate depends crucially on the entropy of the distribution of T
and R segments. For the sake of simplicity, let us introduce the entropy of a binary
source with probabilities (p, 1 − p):

(20) h(p) = −p log2(p) − (1 − p) log2(1 − p) .

Proposition 3. Assume that the initial frequencies of the chains X·n equal their
equilibrium frequencies. For each frequency bin n, the entropy of the distribution of
lengths Ln of T and R segments reads

(21) H(Ln) =
1 − π̃′

n

2 − π̃n − π̃′
n

h(π̃n) +
1 − π̃n

2 − π̃n − π̃′
n

h(π̃′
n) .

Proof: Denote by LT and LR the lengths of T and R segments. From the Markov
model X it follows that LT and LR are exponentially distributed:

P {LT = `} = π̃`−1
n (1 − π̃n) , P {LR = `} = π̃′`−1

n (1 − π̃′
n) , ` = 1, 2, . . .

A simple calculation shows that the Shannon entropy of the random variable LT is
given by

−
∞
∑

`=1

P {LT = `} log2 (P {LT = `}) = −π̃n log2(π̃n)−(1−π̃n) log2(1−π̃n) = h(π̃n) ,

and a similar expression for the Shannon entropy of LR. Now, because of the
assumption on the initial frequencies of the chains X·n, and dropping the indices
for the sake of simplicity, we have that

P {X = T} =
1 − π̃′

2 − π̃ − π̃′
,
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and the equality

H(L) = P {X = T}H(LT ) + P {X = R}H(LR)

yields the desired result. �

Finally, let us briefly discuss questions regarding the quantization of coefficients.
The simplicity of the model (Gaussian coefficients, and Markov chain significance
map) makes it possible to obtain elementary rate-distortion estimates. Indeed, the
optimal rate-distortion function for Gaussians random variables is well known: for
a N (0, σ2) random variable,

(22) D(R) = σ2 2−2R .

Let us assume that the T type coefficients at frequency n are quantized using Rn
bits per coefficient. Using the optimal rate-distortion function (22), the overall
distortion per time frame is given by

D =

N−1
∑

n=0

Ñ
(K)
n

K
σ̃2
T,n 2−2Rn .

If we are given a global budget of R bits per sample, the optimal bit rate distribution
over frequency bins is obtained by minimizing E {D} with respect to Rn, under the
“global bit budget” constraint

E

{

N−1
∑

n=0

Ñ
(K)
n

K
Rn

}

= NR ,

the expectation being taken with respect to the significance map ∆. Assuming for

the sake of simplicity that the Markov chain is at equilibrium (i.e. νn = ν
(e)
n for all

n), this yields the following simple expression

(23) Rn =
N

N
R +

1

2
log2(σ̃

2
T,n) −

1

2N

N−1
∑

m=0

ν(e)
m log2(σ̃

2
m) ,

where we have denoted by

N =

N−1
∑

n=0

ν(e)
n

the average number of T type coefficients per time frame. As usual in this type of
calculation, the so-obtained optimal value of Rn is generally not an integer number,
and an additional rounding operation is needed in practice. The distortion obtained
with the rounded bit rates is therefore larger than the bound obtained with the
values above. Summarizing this calculation, and plugging these optimal bit rates
into the expression of the distortion, we obtain

Proposition 4. With the above notations, the following rate-distortion bound holds:
for a given overall bit budget of R bits per T type coefficient,

(24) E {D} ≥ N

(

N−1
∏

n=0

σ̃
2ν(e)

n
n

)1/N

2−2NR/N .

2.2. Parameter and state estimation: algorithmic aspects. Hidden Markov
models have been very successful because there exist naturally associated efficient
algorithms for both parameter estimation and hidden state estimation, respectively
the EM and Viterbi algorithms. However, while these are natural answers to the
estimation problems in general situations, they are not so natural anymore in a
coding setting, as we explain below.
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From a general point of view, an imput signal is first expanded with respect to
an MDCT basis, corresponding to a fixed time segmentation (segments of approxi-
mately 20 msec.) The, within larger time frames, the parameters are (re)estimated,
as well as the hidden states. Parameters are refreshed on a regular basis.

2.2.1. Parameter estimation. Given the parameter set θ̃ of the model, the forward-
backward equations allow one to obtain estimates for the probabilities of hidden
states conditional to the observations:

pkn(T ) = P

{

Xk n = T |θ̃, Y1:K,n = y1:K,n

}

,(25)

pkn(R) = P

{

Xk n = R|θ̃, Y1:K,n = y1:K,n

}

(26)

and the likelihood of the parameters

L(θ̃) = P

{

Y1:K,n = y1:K,n|θ̃
}

,

from which new estimates for the parameter set θ̃ may be derived.

Remark 3. From a practical point of view, such parameter re-estimation happens
to be quite costly. Therefore, the parameters are generally re-estimated on a larger
time scale, taking several consecutive windows into account.

Remark 4. For practical purpose, it is generally more suitable to restrict the
parameter set θ̃ to a smaller subset. The following two assumptions proved to be
quite adapted to the case of audio signals:

i. The variances may be assumed to be multiple of a single reference value,
implementing some “natural” decay of MDCT coefficients with respect to
frequency. For example, we generally used expressions of the form

σ̃s,n =
σ̃s

n0 + n
, s = T,R

n0 ∈ R
+ being some reference frequency bin, and σs a reference standard

deviation for state s. Without such an assumption, frequency bins are com-
pletely independent of each other, and the estimation algorithm generally
yields T type coefficients in all bins, which is not realistic,

ii. For each frequency bin, the initial frequencies νn of the considered Markov

chain are generally assumed to equal the equilibrium frequencies ν
(e)
n .

2.2.2. State estimation. Viterbi’s algorithm is generally considered the natural an-
swer to the state estimation problem. It is a dynamic programing algorithm, which
yields Maximum a posteriori (MAP) estimates

x̂1:K n = arg maxP

{

X1:K n = x1:K n|y1:Kn, θ̃
}

,

for each frequency bin n. However, the number of so-obtained coefficients in a given
state (T or R) cannot be controlled a priori when such an algorithm is used, which
turns out to be a severe limitation in a signal coding perspective. In addition,
Viterbi’s algorithm requires that accurate estimates of the model’s parameters are
available, which will not necessarily be the case if the parameter estimates are
refreshed on a coarse time scale (see above.)

Therefore, we also consider, as an alternative to Viterbi’s algorithm, an a poste-
riori probabilities thresholding method, which is computationally far simpler, and
allows a fine rate control. More precisely, given a prescribed rate Nton,

i. Sort the MDCT coefficients ykn = 〈x,wkn〉 in order of decreasing a poste-
riori probability pkn(T ) in (25),

ii. Keep the Nton first sorted coefficients.
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Figure 2. Estimating a tonal layer from simulated signal; from
top to bottom: simulated significance map, estimated significance
map (estimation via the Viterbi algorithm), estimated tonal signal,
estimated residual signal.

In this way, for an average bit rate R and a prescribed “tonal” bit budget, a
number Nton of MDCT coefficients to be retained may be estimated, and the Nton

coefficients with largest a posteriori probability are selected.

2.3. Numerical simulations. As a first test of the model and the estimation algo-
rithms, we generated realizations of the structured harmonic mixture of Gaussians
model described above, and used the corresponding estimation algorithms. We sim-
ulated a signal according to the “tonal + residual” Markov model as above, with
about 3.1% T -type coefficients. We show in Figure 2 the result of the estimation of
the tonal layer using EM parameter estimation, and state estimation via the Viterbi
algorithm. As may be seen, the significance map is fairly well estimated, except
in regions where the signal has little energy, which was to be expected. In these
regions, the algorithm detects spurious (vertical) tonal structures, which results in
an increase of the percentage of T type coefficients (about 4.1% instead of 3.2% for
that example.) However, since this effect appears only in regions where the signal
has small energy, this does not affect tremendously the estimated signal, which is
very close to the simulated one (not shown here.)

For the sake of comparison, we display in figures 3 and 4 some examples of tonal
layer estimation using the thresholding algorithm instead of the Viterbi algorithm,
for various values of the threshold. The simulation presented in figure 3 corresponds
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Figure 3. Estimating a tonal layer from simulated signal; from
top to bottom: simulated significance map, estimated significance
map (estimated via the posterior probability thresholding algo-
rithm, using 1% coefficients); estimated tonal signal, estimated
residual signal.

to 1% retained coefficients, while the simulation presented in figure 4 corresponds
to 3% retained coefficients. As expected, the significance map in figure 3 appears
much terser than the “true” one, while the one in figure 4 is much closer (percentage
of retained coefficients significantly larger than the true one yield spurious tonal
structures.) This results in tonal components which were not correctly captured,
and appear in the residual signal of Figure 3. This is not the case any more when
the threshold is set to a more “realistic” value, as may be seen in the tonal and
residual layers of Figure 4. In that case, the residual only features a small spurious
component. Notice that even though significantly less coefficients are retained, the
overall shape of the estimated signal is quite good.

Remark 5. Clearly, the posterior probability thresholding method only provides
an approximation of the “true” tonal layer (which is provided by the Viterbi al-
gorithm), whose precision depends on the choice of the threshold, i.e. the bit rate
allocated to the tonal layer. Controlling the relation between the bit rate and the
precision of the approximation would lead to a rate distortion theory for the “func-
tional” part of the tonal coder. Such a theory seems extremely difficult to develop,
and so far we could only study it by numerical simulations (not shown here.)

3. Structured Markov model for transient

3.1. Hidden wavelet Markov tree model. We now turn to the description of
the transient model, which was partly presented in [22]. The latter exploits the
fact that wavelet bases are “well adapted” for describing transients, in the sense
that these generally yield scale-persistent chains of significant wavelet coefficients.
We start from a multiresolution analysis (see for example [17, 28]) and the corre-
sponding wavelet ψ ∈ L2(R), scaling function φ ∈ L2(R) and wavelet basis, defined
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Figure 4. Estimating a tonal layer from simulated signal; from
top to bottom: simulated significance map, estimated significance
map (estimated via the posterior probability thresholding algo-
rithm, using 3% coefficients); estimated tonal signal, estimated
residual signal.

by

ψjk(t) = 2−j/2 ψ
(

2−jt− k
)

, j, k ∈ Z .

Given x ∈ L2(R), its wavelet coefficients djk = 〈x, ψjk〉 are naturally labelled by a
dyadic tree, as in Fig. 5, in which it clearly appears that a given wavelet coefficient
djk may be given a pair of children dj+1 2k and dj+1 2k+1. For the sake of simplicity,
we shall sometimes collect the two indices j, k into the scale-time index λ = (j, k).

For the sake of simplicity, we consider a fixed time interval, and a signal model
involving finitely many scales, of the form

(27) x = SJ0φJ0 +

J
∑

j=1

2J−j−1
∑

k=0

Djkψjk ,

involving

N(J) = 2J − 1

random wavelet coefficients3, whose distribution is a gaussian mixture governed by
a hidden random variable.

More precisely, distribution of the wavelet coefficients Djk depends on a hidden
state Xjk ∈ {T,R} (T stands for “transient”, and R for “residual”.) At each
scale j, the T -type coefficients are modelled by a centered normal distribution with
(large) variance σ2

T,j . The R-type coefficients are modelled by a centered normal

distribution with (small) variance σ2
R,j .

3The scaling function coefficients SJ0 are generally irrelevant for audio signals, and do not deserve
much modelling effort.
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Figure 5. Wavelet coefficients tree.

The distribution of hidden states is given by a “coarse to fine” Markov chain,
characterized by a 2×2 transition matrix, and the distribution of the coarsest scale
state. In order to retain only connected trees, we impose a taboo transition: the
transition R → T is forbidden. Therefore, the transition matrix assumes the form

Pj =

(

πj 1 − πj
0 1

)

where πj denotes the scale persistence probability, namely the probability of tran-
sition T → T at scale j:

πj = P {Xj−1,` = T |Xj,k = T} , ` = 2k, 2k + 1 .

The hidden Markov process is completely determined by the set of matrices Pj
and the “initial” probability distribution, namely the probabilities ν = (νT , νR) of
states at the maximum considered scale j = J . The complete model is therefore
characterized by the numbers πj , ν, and the emission probability densities:

ρS(d) = ρ(d|X = S) , S = T,R .

In the sequel, we shall always assume that the persistence probabilities are scale
independent:

πi = π , ∀i .

According to our choice (centered Gaussian distributions), the latter are completely
characterized by their variances σ2

T,j and σ2
R,j . All together, the model is completely

specified by the parameter set

(28) θ = {ν, π, σT,j , σR,j , j = 1 . . . J} ,

which leads to the definition of transient significance map (termed transient feature
in [22])

Definition 2. Let the parameter set in (28) be fixed, and let x denote a signal
given by a hidden Markov tree model as in (27) above. Consider the random set

(29) Λ =
{

(j, k), j = 1, . . . j, k = 0, . . . 2j − 1|Xjk = T
}

.

Λ is called the transient significance map of x. The corresponding transient layer
of x is defined as

(30) xtr =
∑

(j,k)∈Λ

Djkψjk .

From this definition, one may easily derive estimates on various coding rates.
The key point is the following immediate remark. Let Nj denote the number of
T -type coefficients at scale j, and let

N =
J
∑

j=1

Nj
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the total number of T -type coefficients at scale j. The following result is fairly
classical in branching processes theory (see for example [10, 16].)

Proposition 5. Let x denote a signal given by a hidden Markov tree model as
in (27) above. Then the number N of T type coefficients is given by a Galton-
Watson process. In particular, one has

(31) E {Nj} = ν(2π)J−j , N := E {N} = ν
(2π)J − 1

2π − 1

(with the obvious modification for the case π = 1/2.)

Therefore, it is obvious to obtain estimates for the energy of a transient layer:

Corollary 1. The average energy of the transient layer of a signal x reads

(32) E







∑

j,k;Xjk=T

|Djk |
2







= ν

j=J
∑

j=1

σ2
j (2π)J−j .

Another simple consequence is the following a priori estimate for the cost of
significance map encoding. It is known that it is possible to encode a binary tree
at a cost which is linear in the number of nodes. We use the following strategy for
encoding the tree Λ (even though it is not optimal, it has the advantage of being
simple. Improvements may be obtained by using entropy coding techniques, taking
advantage of the probability distribution of trees, which is known as soon as the
persistence probability π is known.) We associate with each node of Λ a pair of
bits, set to 0 or 1 depending on whether the left and right children of the node
belong to Λ or not. Therefore, RSM is not larger than twice the number of nodes
of Λ, i.e. the number of T -type coefficients. Therefore, we immediately deduce

Corollary 2. Given the set of parameters θ, and the corresponding Hidden Markov
wavelet tree model, let RSM denote the number of bits necessary to encode the
significance map of a transient wavelet coefficients tree, as above. Then we have

E {RSM} ≤







2ν ×
1 − (2π)J

1− 2π
if π 6= 0.5,

2νJ if π = 0.5.

The simplicity of the transient model (i.e. Galton-Watson significance map, and
Gaussian T coefficients) makes it possible to derive simple rate-distortion estimates,
along lines similar to the ones we followed for the tonal layer. Assume that the T
type coefficients at scale j are quantized using Rj bits. Assuming (22), the overall
distortion is given by

D =

J
∑

j=1

Njσ
2
j 2

−2Rj .

Suppose we are given a global budget of R bits per sample. Minimizing E {D} with
respect to Rj , under the “global bit budget” constraint

E







J
∑

j=1

NjRj







= N(J)R

yields the following simple expression

(33) Rj =
N(J)

N
R+

1

2
log2(σ

2
j ) −

1

2

2π − 1

(2π)J − 1

J
∑

j=1

(2π)J−j log2(σ
2
j ) .

Therefore, plugging this expression into the optimal rate-distortion function (22),
we obtain the following rate-distortion estimate



16 S. Molla and B. Torrésani submitted to ACHA, November 13, 2003

Proposition 6. With the same notations as before, we have the following estimate:
for a given overall bit budget of R bits per T type coefficient, the distortion is such
that

(34) E {D} ≥ N





J
∏

j=1

σ
2Nj

j





1/N

2−2N(J)R/N ,

where we have set

Nj = ν (2π)J−j , N = ν
(2π)J − 1

2π − 1
.

3.2. Parameters and state estimation. As in the case of the tonal layer, the
parameter estimation and the hidden state estimation may be realized through
standard EM and Viterbi type algorithms. These algorithms are mainly based
upon adapted versions of the above mentioned forward-backward algorithm: the
so-called “upward-downward” algorithm, proposed by Crouse and collaborators
in [5]. Actually, we rather used a variant, the downward-upward algorithm, due to
Durand and Gonçalves [11], which provides a better control of numerical accuracy
of the computations. As a result, the algorithm provides estimates for quantities
such as the hidden states probabilities

P
{

Xjk = s
∣

∣D1:2J−1 = d1:2J−11, θ
}

and the likelihood

L = ρD
1:2J−1

(

d1:2J−1

∣

∣X1:2J−1, θ
)

.

3.2.1. Parameters estimation. The parameter estimation goes along lines similar
to the ones outlined in Section 2.2.1 (see also [22] for additional details.) Again,
since the parameter estimation procedure, involving upward-downward algorithm,
is quite costly, it is done simultaneously on several consecutive time windows (i.e.
several consecutive trees), and parameters are “refreshed” on larger time scales.

3.2.2. Hidden states estimation. Again, the situation is very similar to the situa-
tion encountered when dealing with the tonal layer. The “Viterbi-type” algorithm
described in [11] theoretically provides an estimate for “the” transient significance
map, and therefore the transient layer. However, it does not allow one to control the
number of selected coefficients (the rate), and is therefore not appropriate in a con-
text of variable bit rate coder. Hence, we rather turn to the (also computationally
simpler) alternative, using thresholding of a posteriori probabilities.

The upward-downward algorithm provides estimates for the probabilities

pjk(T ) = P
{

Xjk = T
∣

∣D1:2J−1 = d1:2J−1, θ
}

.

Therefore, the corresponding tree nodes may be sorted according to the latter (in
decreasing order.) For a given transient bit budget, a maximal number of nodes to
be retained Ntr may be estimated, and the nodes with largest “transientness” prob-
ability pjk(T ) are selected, and the corresponding transient layer is reconstructed.

3.3. Numerical simulations. As for the case of the tonal layer, it is easy to
perform numerical simulations of the model to evaluate the performances of the
estimation algorithms. We display in Figure 6 the results of such simulations, using
EM algorithm for parameter estimation, and the Viterbi algorithm for hidden states
estimation. As may be seen from the plots, the significance tree and the transient
layer are quite well estimated.

Again, using the posterior probability thresholding method instead of the Viterbi
method yields approximate transient layer, and the discussion of Remark 5 still hold
true.
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Figure 6. Estimating a transient layer from simulated signal;
from top to bottom: simulated signal, simulated transient layer,
simulated significance tree, estimated transient layer (estimation
via the Viterbi algorithm), estimated significance tree, estimated
residual signal.

4. The “tonal vs transient” balance

We have described in Sections 2 and 3 two models for tonal and transient layers in
audio signals, and corresponding estimation algorithms. One of the main aspects
of the latter is that the hidden states estimation is based on thresholding of a
posteriori probabilities rather than on a global Viterbi-type estimation, which allows
to accomodate any bit rate prescribed in advance.

However, as stressed in the Introduction, and described in more detail in the
subsequent section, we develop a coding approach based upon recursive estimations
of tonal and transient layers. We describe below an approach for pre-estimating the
relative sizes of the tonal and transient layers, in order to balance the bit budget
between the two layers prior to estimation. The reader interested in more details
is invited to refer to [21].

4.1. Pre-estimating the “sizes” of the tonal and transient layers. Consider
a signal assumed for simplicity to be of the form (1), with unknown values of |∆|
and |Λ|, we seek estimates for the “transientness” and “tonality” indices

(35) Iton =
|∆|

|∆| + |Λ|
; Itr =

|Λ|

|∆| + |Λ|
,



18 S. Molla and B. Torrésani submitted to ACHA, November 13, 2003

or alternatively, the proportion of the signal’s energy contained in the tonal and
transient layers. For simplicity, we limit ourselves to the finite dimensional situa-
tion, and propose a procedure very much in the spirit of the information theoretic
approaches advocated by M.V. Wickerhauser and collaborators [26, 29].

Definition 3. Let B = {en, n ∈ S} be an orthonormal basis of a given N -
dimensional signal space E. The logarithmic dimension of x ∈ E in the basis B
is defined by

(36) DB(x) =
1

N

∑

n∈S

log2

(

|〈x, en〉|
2
)

We aim to show that such quantity may provide the desired estimates, under suit-
able assumptions on the signal (sparsity) and the considered bases (incoherence.)
Elementary calculations show that in the framework of the signal models (1), one
has the following

Lemma 1. Given an orthonormal basis B = {en, n ∈ S}, assuming that the coef-
ficients 〈x, en〉 of x ∈ E are N (0, σ2

n) random variables, one has

(37) E {DB(x)} = C +
1

N

∑

n∈S

log2(σ
2
n)

where C = 1 + γ/ ln(2) (γ ≈ .5772156649 being Euler’s constant.)

Consider now the model (1), and assume that the coefficients αλ, λ ∈ Λ and
βδ, δ ∈ ∆ are respectively N (0, σ2

λ) and N (0, σ̃2
δ ) independent random variables.

Then the coefficients
aλ = 〈x, ψλ〉 ; bδ = 〈x,wδ〉 ,

are centered normal random variables, whose variances depends on whether λ ∈ Λ
(or δ ∈ ∆) or not. For example, in the case of the aλ coefficients,

(38) var{aλ} =

{

σ2
λ +

∑

δ∈∆ σ̃
2
δ |〈x,wδ〉|

2 if λ ∈ Λ
∑

δ∈∆ σ̃
2
δ |〈x,wδ〉|

2 if λ 6∈ Λ ,

which yields
(39)

E {DΨ(x)} = C+
1

N
log2





∏

λ∈Λ

(

σ2
λ +
∑

δ∈∆

σ̃2
δ |〈ψλ, wδ〉|

2

)

∏

λ′ 6∈Λ

(

∑

δ∈∆

σ̃2
δ |〈ψλ′ , wδ〉|

2

)



 ,

and a similar expression for the logarithmic dimension DW (x) with respect to the
W = {wδ} basis.

For the sake of simplicity, we now assume that σλ = σ, ∀λ ∈ Λ and σ̃δ = σ̃,
∀δ ∈ ∆. Introduce the Parseval weights

(40) pλ(∆) =
∑

δ∈∆

|〈wδ , ψλ〉|
2 , p̃δ(Λ) =

∑

λ∈Λ

|〈wδ , ψλ〉|
2 .

The Parseval weights provide information regarding the “dissimilarity” of the two
considered bases. The following property is a direct consequence of Parseval’s
formula:

Lemma 2. With the above notations, the Parseval weights satisfy

0 ≤ pλ(∆) ≤ 1 , 0 ≤ p̃δ(Λ) ≤ 1 .

Introduce the relative redundancies of the bases Ψ and W with respect to the
significance maps

(41) ε(∆) = max
λ∈Λ

pλ(∆) , ε̃(Λ) = max
δ∈∆

pδ(Λ) .
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These quantities carry information similar to the one carried by the Babel function
used in [27] for example. One then obtains simple estimates for the logarithmic
dimension [21].

Proposition 7. With the above notations, assuming that the significant coeffi-
cients αλ, λ ∈ Λ and βδ, δ ∈ ∆ are i.i.d. N (0, σ2) and N (0, σ̃2) normal variables
respectively, one has the following bound

E {DΨ(x)} ≥ C +
|Λ|

N
log2(σ

2) + log2





∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N



(42)

E {DΨ(x)} ≤ C +
|Λ|

N
log2(σ

2 + ε(∆)σ̃2) + log2





∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N



 .(43)

Exchanging the roles of ∆ and Λ, a similar bound is obtained for DW (x).

At this point, several comments have to be made.

a. The bounds in Equations (42) and (43) differ by |Λ| log2(1+ε(∆)σ̃2/σ2)/N .
Let us temporarily assume that this term may be neglected (see comment b.
below for more details.) The behavior of E {DΨ(x)} is therefore essentially
controlled by

log2





∏

λ′ 6∈Λ

(

σ̃2pλ′(∆)
)1/N





Such an expression is not easily understood, but a first idea may be obtained
by replacing pλ′(∆) by its “ensemble average”

1

N

N
∑

λ=1

pλ(∆) =
1

N

N
∑

λ=1

∑

δ∈∆

|〈wδ , ψλ〉|
2 =

1

N

∑

δ∈∆

‖wδ‖
2 =

|∆|

N
,

which yields the approximate expression:

(44) E {DΨ(x)} ≈ C +
|Λ|

N
log2(σ

2) +

(

1 −
|Λ|

N

)

log2

(

σ̃2 |∆|

N

)

.

Therefore, if the “Ψ-component” of the signal is sparse enough, i.e. if
|Λ|/N is sufficiently small (compared with 1), E {DΨ(x)} may be expected

to behave as log2

(

σ̃2 |∆|
N

)

, which suggests to use

(45) N̂ψ(x) = 2DΨ(x)

as an estimate (up to a multiplicative constant) for the “size” of the W
component of the signal. Notice that this expression coincides with (2),

b. The difference between the lower and upper bounds depends on two param-
eters: the sparsity |Λ|/N of the Ψ-component, and the relative redundancy
parameters ε(∆). The latter actually describe the intrinsic differences be-
tween the two considered bases. When the bases are significantly different,
the relative redundancy may be expected to be small (notice that in any
case, it is smaller than 1),

c. The relative redundancy parameters ε and ε̃ which pop up in our model
differs from the one which is generally considered in the literature, namely
the coherence of the dictionary W ∪ Ψ (see e.g. [9, 12, 14])

µ[W ∪ Ψ] = sup
b,b′∈W∪Ψ

b6=b′

|〈b, b′〉| ,
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Figure 7. Simulations of tonality and transientness indices, as
functions of |∆| or |Λ| (time frames of 1024 samples): theoretical
curves and simulation (averaged over 10 realizations); top plot:
|Λ| = 40, varying |∆|, Itr (decreasing curve) and Iton (increasing
curve); top plot: |∆| = 40, varying |Λ|, Iton (decreasing curve) and
Itr (increasing curve.)

and the Babel function (see [27, 14].) The latter are intrinsic to the dictio-
nary, while the Parseval weights and corresponding ε and ε̃ provide a finer
information, as they also account for the signal models, via their depen-
dence in the significance maps Λ and ∆,

d. Precise estimates for ε and ε̃ are fairly difficult to obtain4. What would
actually be needed is a tractable model for the significance maps ∆ and Λ,
in the spirit of the structured models described in the two previous sections
(for which we couldn’t obtain simple estimates.) Returning to the wavelet
and MDCT case, it is quite natural to expect that models implementing
time persistence in ∆ and scale persistence in Λ would yield smaller values
for the relative redundancies than models featuring uniformly distributed
significance maps.

A more detailed analysis of this method (including a discussion of noise robustness
issues) is presented in [21].

4.2. Numerical simulations. The above discussion suggest to use the logarithmic
dimensions in order to get estimates for the relative sizes of the tonal and transient
layers in audio signals. We shall use the following estimated proportions

(46) Îton =
N̂ψ

N̂ψ + N̂w
; Îtr =

N̂w

N̂ψ + N̂w
,

In order to validate this approach, we computed these quantities on simulated
signals of the form (1), as functions of |∆| (resp. |Λ|) for fixed values of |Λ| (resp.

|∆|.) The result of such simulations is displayed in Figure 7, which show Îton
and Îtr as functions of |∆|, together with the theoretical curves defined in (35),

4Our numerical results using wavelet and MDCT bases suggest that these numbers are generally
of the order of 1/4: any waveform from a given basis always finds a waveform from the other basis
which “looks like it”.
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Figure 8. Tonal vs Transient balance for a real audio signal (a
musical signal.) Left: long signal (about 23 seconds long): top plot:
original signal; bottom plot: transientness index. Right: shorter
(1.5 seconds long) segment, same legend.

averaged over 20 realizations. As may be seen, the results are fairly satisfactory,
which indicates that such indicator may be used for estimating the percentage of
bit rate to be allowed to the different components, prior to the hybrid coding itself.

An example on real audio signal is displayed in Figure 8, which represents the
transientness index (from which the tonality index is easily deduced) for a segment
(about 23 seconds) of audio signal (the mamavatu signal5, which will be used again
as illustration in the next section.) A shorter segment of 1.5 seconds (located in
the middle of the large segment) is analyzed similarly in the right hand plots of
Figure 8 As may be seen, the transientness index (lower curves) exhibits significant
local maxima in the neighborhood of the various “attacks” of the signal (see the
left hand plots of Figure 8.) Notice also on the right hand plots of Figure 8 that
the transientness index exhibits an overall decay in the rightmost part of the plot.
This is mainly due to the fact that a significant tonal component shows up in that
part of the signal (see Figure 10 in the next section), which reduces the proportion
of transients (we recall that the transientness index really measures the proportion,
and not the quantity of transient signal present.)

Remark 6. It is worth noticing that the indices Îton and Îtr perform satisfactorily
as long as the two expansions in (1) are sparse enough. Otherwise, deviations from
the “ideal” behavior have to be expected, as may be seen in the right hand side of
the plots in Figure 7.

Remark 7. Also, Îton and Îtr provide estimates for the sizes of significance maps
only when the variances σ2 and σ̃2 are of comparable magnitude. When this is
not the case, it is easily seen that they rather provide estimates on the relative
energies of the two layers, for example Îtr = |Λ|σ2/(|Λ|σ2 + |∆|σ̃2). The behavior

5available at the web site
http://www.cmi.univ-mrs.fr/̃torresan/.....
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of the indices in noisy situations (i.e. with small, additive white noise) may be
studied as well, and yields similar conclusions, as long as the noise’s energy is small
enough [21].

5. Conclusions and perspectives: audio coding

The ideas developed above are currently being implemented within a prototype
hybrid audio coder, extending the ideas already described in [7]. While the idea of
hybrid coding of audio signals is not new, our approach is the first one than imple-
ments hybrid transform coding without prior (time) segmentation of the signal. A
detailed account of the coding system will be given in a forthcoming publication.
However, we find it interesting to sketch the main features here, as they provide a
thorough applications of the probabilistic models we just described.
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Figure 9. Block diagram of the hybrid audio coding scheme

The block diagram of the encoder is displayed in Figure 9. The first step of
the algorithm is a pre-estimation of the relative sizes of the tonal and transient
layers, according to the discussion of section 4. Hence, any given bit budget may
be allocated a priori to the different layers of the signal.

The second step is the estimation of the (structured) tonal layer, according to
section 2. The parameters of the hidden Markov models are estimated and updated
on large time frames, and the hidden states are estimated by thresholding of a
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posteriori probability. This yields estimated tonal and non-tonal layers

xton =
∑

δ∈∆

〈x,wδ〉wδ ; xnton = x− xton .

The tonal layer is then quantized and encoded using standard techniques (either
uniform quantization, or Lloyd-Max quantization, for gaussian sources, followed
by entropy coding), while the non tonal layer is transmitted to the transient layer
estimator. Since the parameters of the model (i.e. the persistence probabilities)
provide explicitly the probabilities of lengths of “tonal structures”, the correspond-
ing Huffmann code is readily obtained, and used for encoding the significance map.

The third step is the estimation of the transient layer from the non-tonal compo-
nent. Again, transform coding is computed within time frames of about 23 millisec-
onds. The parameters of the hidden Markov model are estimated, and updated on
larger time frames. Hidden states (i.e. the significance map) are estimated within
each (small) time frame by thresholding of a posteriori state probability. Once the
transient layer xtr has been estimated, it is substracted from the signal to yield
the residual; in parallel, the coefficients are quantized and entropy coded. The tree
structure of the transient significance map make it possible to derive an efficient
way of encoding it (see [22].)

xtr =
∑

λ∈Λ

〈xnton, ψλ〉ψλ ; xres = xnton − xtr .

The residual is finally modeled as a (locally) stationary random process, and cur-
rently encoded as such using fairly classical LPC procedures (even though this
might not be the optimal solution for very low bit rate, this subject is currently
under study.)

Notice that while the encoding procedure is quite complex (involving fairly so-
phisticated estimation algorithms), the decoding is extremely simple. The tonal
and transient layers are reconstructed on the basis of their significance maps and
corresponding encoded coefficients. The residual is re-generated using LPC tech-
nique.

An example of hybrid (or multilayered) signal expansion obtained using the
technique described in this paper is shown in Figure 10 (see Figure 8 for the
corresponding transientness index.) In that example 6% of coefficients were re-
tained (no coefficient quantization was done, so this essentially represents only the
“functional” part of the compression.)

More details on the current implementation of the codec will be published else-
where [6] together with a more complete analysis of quantization issues, and more
detailed numerical results. The main results of the current article are the new hy-
brid model we proposed, and the a priori rate estimations which may be deduced
from it, thanks to the relative simplicity of the model (First order Markov chains,
and Gaussian distributions.) Further developments involve designing coefficient
quantization procedures specifically adapted to the tonal and transient layers, as
well as the implementation of adapted masking methods (frequency masking and
time masking.)
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Figure 10. Compressed hybrid expansion of a piece of musics
(mamavatu, about 6 seconds long.) From top to bottom, and from
left to right: original signal, tonal layer, nontonal signal, transient
layer, residual layer, and reconstruction from the three layers.

Acknowledgements. This work was supported in part by the European
Union’s Human Potential Programme, under contract HPRN-CT-2002-00285 (HAS-
SIP.) We also acknowledge support from the AMADEUS Austrian-French exchange
programme, which allowed us to visit the NuHAG group in Vienna, where we had
stimulating exchanges of ideas. We also wish to thank L. Daudet, F. Jaillet, Ph.
Guillemain and R. Kronland-Martinet for many stimulating discussions.



An Hybrid Audio Scheme using Hidden Markov Models of Waveforms. submitted to ACHA, 25

References

[1] J. Berger, R. Coifman, and M. Goldberg. Removing noise from music using local trigonometric
bases and wavelet packets. J. Audio Eng. Soc., 42(10):808–818, 1994.

[2] R. Carmona, W.L. Hwang, and B. Torrésani. Practical Time-Frequency Analysis: continuous
wavelet and Gabor transforms, with an implementation in S, volume 9 of Wavelet Analysis
and its Applications. Academic Press, San Diego, 1998.

[3] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1998.

[4] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore. Tree approximation and optimal
encoding. Appl. Comput. Harmon. Anal., 11(2):192–226, 2001.

[5] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based signal processing using
hidden Markov models. IEEE Transactions on Signal Processing, 46:886–902, april 1998.
Special Issue on Filter Banks.

[6] L. Daudet, S. Molla, and B. Torrésani. An Hybrid Structural Audio Coder. Technical report,
Laboratoire d’Analtyse, Topologie et Probabilités, Université de Provence, Marseille (France),
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cation to wavelet trees. Technical Report 4248, Institut National de Recherches en Automa-
tique et Informatique, September 2001.

[12] M. Elad and A.M. Bruckstein. A generalized uncertainty principle and sparse representations.
IEEE Trans. Inf. Th., 48(9):2558–2567, 2001.
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