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MANIFOLD APPROXIMATION OF SET-VALUED FUNCTIONS

ALEXANDRE GOLDSZTEJN

1. Notations

Sequences are denoted by x(k) — although C∞ functions are involved in the
sequel, their derivative are not explicitly used so this notation for sequences will
not interfere with the usual one for derivatives. A function f : R

0 −→ P(Rm) is a
subset of R

m. Notations and theorems related to manifolds are taken from Hirsch[1].
Points belonging to manifolds will be denoted with tildes. The closed n-dimensional
disk is denoted by Dn and the n-dimensional sphere by Sn, so ∂Dn = Sn−1.

2. Definition of ma-continuity for set-valued maps

Informally, a set-valued map is ma-continuous if it can be approximated by
smooth manifolds. Up to now, the definition of ma-continuity is restricted to func-
tions defined inside boxes.

Definition 2.1. Consider a set-valued function F : x ⊆ R
n −→ P(Rm). If n > 0,

F is ma-continuous if and only if there exists

• a closed disk d ⊆ R
n such that x ⊆ intd;

• M (k) a sequence of C∞ compact n-manifolds such that ∂M (k) = Sn−1;
• g(k) : M (k) −→ R

n+m a sequence of C∞ maps such that g(k)|∂M(k) is a C∞

diffeomorphism between ∂M (k) and (∂d) × {0}.

such that any sequence x̃(k) ∈ M (k), satisfies

• the sequence g(k)(x(k)) is bounded;
• if furthermore g(k)(x(k)) ∈ x(k) × R

m for all k ∈ N, then any accumulation
point (x∗, y∗)T of the sequence g(k)(x(k)) satisfies y∗ ∈ F (x∗);

If n = 0, f is ma-continuous if and only if F 6= ∅.

The condition satisfied by the boundary of the manifolds was somewhat difficult
to find and can certainly be improved. It has the advantage of simplifying the proof
of the JOINT property although it may turn out to be difficult to prove the PROD
property — because Cartesian products of closed disks are not easily related to
disks, are they ?

3. JOINT

The following theorem is slightly more restrictive than the JOINT property as
it asks for a strict inclusion instead of a simple inclusion. However, the JOINT
property is certainly an easy consequence of this weaker property.
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Theorem 3.1. Let F : x ⊆ R
n −→ P(Rm), m > 0, n > 0, be a ma-continuous

set-valued function. Given i ∈ [1..m] and j ∈ [1..n], suppose that there exists an

interval x̃ ⊆ intxj such that

∀x ∈ x , Fi(x) ⊆ x̃ (1)

where Fi(x) stands for the projection of f(x) onto the i-axis. Then the function

G : x6=j ⊂ R
n−1 −→ P(Rm) defined by

G(x6=j) = {y ∈ F (x) | yi = xj}

is also ma-continuous.

Sketch of the proof. First, suppose that n > 1. Consider the C∞ function h̃ : R −→
xj defined like illustrated in the figure 1 — it can be formally constructed using

the function λ defined in Hirsch[1] page 42. As we can see, h̃ satisfies both

y ∈ x̃ =⇒ h̃(y) = y (2)

and

x = h̃(y) + ǫ ∧ |ǫ| ≤ α =⇒ x ∈ xj (3)

where α = 1
2 min{|xj − x̃|, |xj − x̃|} — we have α > 0 because by hypothesis

x̃ ⊆ intxj . Now define the following functions.

h : R
n+m −→ R ; h(x, y) = h̃(yi) − xj

and

h(k) : M (k) −→ R ; h(k)(x̃) = h(g(k)(x̃))

They are both C∞ because they are both composed of C∞ functions. The Morse-
Sard theorem — theorem 1.3 page 69 of Hirsch[1] — proves that critical values of
h(k) and the critical values of h(k)|∂M(k) have measure zero. So, we can pickup a
sequence ǫ(k) ∈ R, 0 ≤ |ǫ(k)| < α, which converges to zero such that ǫ(k) is a regular
value of both h(k) and h(k)|∂M(k) . Now define the sequence N (k) ⊆ M (k) by

N (k) = {x̃ ∈ M (k)|h(k)(x̃) = ǫ(k)}

By the regular value theorem 4.1 page 31 of Hirsch[1]1, N (k) is a compact (n − 1)-
submanifold of M (k) which satisfies ∂N (k) = N (k) ∩ ∂M (k). We define g′(k) :
N (k) −→ R

n−1 × R
m by g′(k)(x̃) = (x6=j , y)T where (x, y)T = g(k)(x̃). We now

prove that the sequences (N (k))k∈N and (g′(k))k∈N satisfies the definition of ma-
continuity for the function G.
First, notice that g′(k) is a C∞ diffeomorphism between ∂N (k) and ∂d′×{0} where
d′ ⊆ R

n−1 is a disk which contains x6=j — somehow because x ⊆ intd and by
definition of h, we have h(x, 0) = xj − c = 0 with c ∈ xj , so the (n − 1)-disk d′ is
the intersection of the n-disk d and the hyperplane xj − c = 0.

Second, consider any sequence x̃(k) ∈ N (k). We denote g(k)(x̃(k)) by (x(k), y(k))T so

g′(k)(x̃(k)) = (x
(k)
6=j , y(k))T . By definition of ma-continuous functions we know that

the sequence g(k)(x̃(k)) is bounded so the sequence g′(k)(x̃(k)) is also bounded. On

the other hand, any accumulation point (x∗
6=j , y

∗) of the sequence (x
(k)
6=j , y(k))T cor-

responds to at least one accumulation point (x∗, y∗) of the sequence (x(k), y(k))T .

1The dimension and compactness of the resulting manifolds are not explicitly written in the
regular value theorem 4.1. However, they are easily proved to hold.
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Figure 1.

Consider any accumulation point (x∗
6=j , y

∗) of (x
(k)
6=j , y(k))T and one correspond-

ing accumulation point (x∗, y∗) of the sequence (x(k), y(k))T . We suppose that
g′(k)(x̃(k)) ∈ x6=j × R

m for all k ∈ N and we have to prove that y∗ ∈ G(x∗
6=j). We

have x
(k)
6=j ∈ x6=j . Now, by definition of N (k), we have h(k)(x̃(k)) = ǫ(k), that is

h(x(k), y(k)) = ǫ(k), that is h̃(y
(k)
i ) = x

(k)
j + ǫk. This entails ∀k ∈ N, x

(k)
j ∈ xj

because ǫk < α and thanks to the equation (3). Therefore, we have x(k) ∈ x and
therefore

∀k ∈ N, g(k)(x̃(k)) ∈ x × R
m

So, by definition of ma-continuity, the accumulation point (x∗, y∗) of the sequence
(x(k), y(k))T satisfies x∗ ∈ x because x is closed, y∗ ∈ F (x∗) by definition of ma-
continuity, and y∗

i ∈ x̃ by (1). Furthermore, because h is continuous and be-

cause h(x(k), y(k)) = ǫ(k) for all k ∈ N, the accumulation point (x∗, y∗) also sat-
isfies h(x∗, y∗) = 0, that is y∗

i = x∗
j because y∗

i ∈ x̃. Therefore, we have finally

y∗ ∈ G(x∗
6=j).

The case n = 1 is different. It is a consequence of the fact that a compact 1-manifold
with boundary S0, i.e. two points, is homeomorph to a segment. Then the proof
should be achived thank to the intermediate value theorem. �

4. Continuous functions

Finally, the next proposition proves that continuous functions are ma-continuous.

Proposition 4.1. Let f : x ⊆ R
n −→ R

m be a continuous function. Then,

F : x ⊆ R
n −→ R

m defined by F (x) = {f(x)} is ma-continuous.

Sketch of the proof. Consider a disk d ⊆ R
n such that x ⊆ intd. Define the con-

tinuous function f̃ : d −→ R
m in such a way that f̃ |x = f and f̃(∂d) = 0 — such

a continuous function certainly exists. As f̃ |∂d is constant equal to zero, it is C∞.
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Therefore, f̃ can be approximated by C∞ functions f̃ (k) : d −→ R
m which sat-

isfy f̃ (k)(∂d) = 0 — check Hirsch[1] section 2 for approximation theorems. Then

M (k) = Dn and g(k) = f̃ (k) ◦ i — where i : Dn −→ d × {0} is the canonical
C∞ embedding of Dn into R

n × {0} — satisfy the hypothesis of the definition of
ma-continuity. �

5. Conclusion

The property COMP seems to be impossible to achieved in a direct way. How-
ever, PROD and PROJ seems to be possible to achieve, and the COMP would then
be a consequence of these latter.
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