
HAL Id: hal-00350416
https://hal.science/hal-00350416

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating Interpolation-Based Model-Checking
Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, Marc Zeitoun

To cite this version:
Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, Marc Zeitoun. Accelerating Interpolation-Based
Model-Checking. 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08), 2008, Budapest, Hungary. pp.428-442, �10.1007/978-3-540-78800-
3_32�. �hal-00350416�

https://hal.science/hal-00350416
https://hal.archives-ouvertes.fr

Accelerating Interpolation-based Model-Checking

Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux and Marc Zeitoun

LaBRI, Université Bordeaux - CNRS UMR 5800,
351 cours de la Libération, F-33405 Talence CEDEX France.

{caniart,fleury,leroux,mz}@labri.fr

Abstract. Interpolation-based model-checking and acceleration techniques have
been widely proved successful and efficient for reachability checking. Surpris-
ingly, these two techniques have never been combined to strengthen each other.
Intuitively, acceleration provides under-approximation of the reachability set by
computing the exact effect of some control-flow cycles and combining them with
other transitions. On the other hand, interpolation-based model-checking is refin-
ing an over-approximation of the reachable states based on spurious error-traces.
The goal of this paper is to combine acceleration techniques with interpolation-
based model-checking at the refinement stage. Our method, called “interpolant

acceleration”, helps to refine the abstraction, ruling out not only a single spuri-
ous error-trace but a possibly infinite set of error-traces obtained by any unrolling
of its cycles. Interpolant acceleration is also proved to strictly enlarge the set of
transformations that can be usually handled by acceleration techniques.

1 Introduction

Model

Abstract

Refine

Unfold

Check
Error
Path

Okinitial
predicates

abstract
model

safe

error

yes

(trace)
no

(proof)

new
predicates

Fig. 1. Interpolant-based Model-Checking.

Counterexample-guided abstraction refine-
ment (CEGAR) paradigm [6] makes it pos-
sible to perform efficient verification of
real-life software. In this approach (see
Fig.1), an initial coarse predicate abstrac-
tion [10] of the concrete model is first de-
rived and explored by a model-checker for
reachability of error states. If no error path
is found, the system is said to be ’safe’.
If an abstract error-trace is found, it is
checked against the concrete model. When the error also exists in the concrete model,
the system is said to be ’unsafe’ and a concrete error path is provided to the operator.
Finally, when the error is found to be spurious, a proof of the spuriousness of the trace
is used to build a refinement of the abstraction.

Interpolation-based model-checking [14, 15] is a CEGAR framework where check-
ing the error-trace is performed using decision procedures for various logics and re-
finement is produced by computing an interpolant, which provides a set of predicates
needed to invalidate the considered spurious error-trace in the abstraction. Interpolation-
based model-checking technique has been proved robust and efficient but, as other

CEGAR frameworks, cannot easily handle numerous cycles or infinite behaviors which
tend to generate a lot (possibly an infinity) of predicates, while another, better cho-
sen predicate could have captured the whole behavior of the cycle at once. Recently, a
’lazy’ [12] approach of this method has been introduced [16], allowing it to deal with
infinite systems. Still, the interpolation-based model-checking technique suffers from a
lack of good strategies to efficiently handle infinite behaviors of the input model. As an
illustration, consider the example shown on Fig. 2 taken from [13], and well-known in
the CEGAR framework [11]. On such a (correct) program, an interpolant-based model-
checker might never stop while deriving the predicates to refine the abstraction because
an infinity of values of i will have to be checked.

void foo(int i, int j) {

x = i; y = j;

while (x != 0)

{ x--; y--; }

if (i == j)

assert (y == 0);

}

ENTRY

ERROR

EXIT

x′ = i

∧y′ = j

x 6= 0

∧x′ = x−1

∧y′ = y−1

x = 0

i = j

∧y 6= 0

i 6= j

∨y = 0

Fig. 2. An example of CEGAR divergence (C code and Control-Flow Automaton (CFA)).

On the other hand, acceleration techniques [3, 5, 1] make it possible to check for
reachability of infinite systems thanks to a symbolic representation of configurations.
Basically, given some suitable control-flow cycle σ fulfilling some properties and a
set of states X , acceleration tries to compute the infinite union of all σn(X). Such a
set is called the σ∗-acceleration set. It captures the reachable states from X through
any unrolling of the cycle σ. Acceleration model-checking is usually performed by
adding meta-transitions σ∗ to the original model in order to create ’shortcuts’ allowing
to explore arbitrary iterations of a cycle in one single step, and thus computing the
reachable states even for infinite sequences of transitions. For example, systems such
as the one presented in Fig. 2 are quite easy to accelerate. Unfortunately, acceleration
techniques do not scale up to large systems and termination cannot be ensured.

Intuitively, interpolant-based model-checking focuses on large and simple systems
(large number of states, few predicates), where acceleration techniques focus more
on small and complex systems. Therefore, our idea is to combine interpolation-based
model-checking and acceleration techniques. Interpolation-based model-checking of-
fers a quite helpful automatic abstraction/refinement scheme which can discard un-
necessary parts of the system, helping the acceleration technique to deal with smaller
chunks to accelerate. Similarly, the acceleration technique can help the interpolation-
based model-checking to deal with complex behaviors. We propose here three ways to
combine them together:

– Static Acceleration: one simply performs static-analysis on the abstract model to
detect interesting cycles and adding the corresponding meta-transitions σ∗ to the
model. This method is quite simple but probably also extremely inefficient because
we possibly have to deal with large systems at this stage of the CEGAR for which
acceleration would not scale.

2

– On-the-fly Acceleration: While exploring and thus unfolding the abstract model,
paths can be processed on-the-fly to detect control loops and check for their con-
formance to acceleration requirements. Acceleration can then be used to fasten the
state-space exploration. This simple method is expected to have a better efficiency
as it does not require exhaustive cycle detection. Still, its complexity overhead can
be high since many cycles might be found during the unfolding. Heuristics can at
last be added to decide whether it is relevant or not to compute an acceleration.

– Interpolant Acceleration: Last but not least, we believe this method to be the
most promising one, though it can only be applied to lazy interpolant-based model-
checking and not to any CEGAR scheme as the previous ones. It takes place at the
refining stage, just after identifying an error-trace as ’spurious’ and when comput-
ing an interpolant for this trace. Suppose that some suitable cycles σ are found to
be such that any unrolling of them are also proved to be spurious. Then, computing
the σ∗-acceleration and extracting the interpolant will capture an enlarged set of
spurious counter-examples, thus yielding a better abstraction refinement.

We focus here on “interpolant acceleration” which reveals to be both theoretically
interesting and with room for improvements. We first extend the notion of interpolant on

a path [16] with the notion of error-pattern and accelerated interpolant and prove that
if an error-pattern is spurious, then there is an accelerated interpolant that will witness
every error-trace matching the error-pattern (section 2). We then identify two classes
of computable accelerated interpolants: Presburger accelerated interpolants (section 4)
and poly-bounded ones (sections 5 and 6). The first one makes it possible to assess the
spuriousness for error-patterns labeled by Presburger transformations, using standard
acceleration techniques. The second one allows us to compute interpolants for error-
patterns labeled by transformations whose iteration has polynomial, and not only linear,
behaviors (i.e. which are of the form x

′ =Mx + v where v ∈Zn and M ∈Mn(Z) is
such that the coefficients of its ℓ-th power are bounded by a polynomial in ℓ). Our proof
is constructive and can be translated into a (non-optimized) algorithm.

Our work is related to the framework recently presented in [2]. The approach of [2]
is to extract “path programs”, which are sub-graphs of the program leading to errors. In
our framework, we aim at capturing a characteristic unfolding of the program leading
to the error trace. Where path programs can be extremely complex and difficult to
exploit for acceleration techniques, error patterns tend to be simpler in the way loops
interleave and easier to process. On the other hand, path programs can capture much
more behaviors than error patterns.

The remainder of the paper is organized as follows: in Section 2 we recall the notion
of interpolant, introduce ’accelerated interpolant’ and relate it to set separability. We
recall basics on linear algebra and characterize the class of transformations that our
method can handle in Section 3. In Section 4, we rephrase the problem of computing an
accelerated interpolant for Presburger sets in more suitable terms. We then reduce this
latter problem in Section 5. Finally, using these intermediate results, Section 6 describes
how to compute an accelerated interpolant for our class of linear transformations and
two Presburger definable sets, one of which is finite. At last, we show that the finiteness
condition for one of the Presburger sets cannot be dropped.

3

2 Introducing Accelerated Interpolants

The need for interpolants in the CEGAR loop of interpolation-based model-checking

arises during the refinement step. More precisely, if we assume the input program of
the CEGAR loop to be given as a control-flow automaton [12] (CFA), an abstraction
of this one will be unfolded and explored to find an error-trace. In case one is found,
the algorithm tries to checks if it witnesses a real error-path or appears as a side ef-
fect of a too coarse abstraction. In the latter case the trace is said spurious. Finally, if
proved spurious, abstraction is refined to rule out the spurious error-trace thanks to the
computation of an interpolant capturing this trace.

Formally a CFA is a tuple G = (Q, qini, qerr, D, T) where Q is the finite set of
control-states, qini ∈ Q is the initial state, qerr ∈ Q is the error state, D is a possibly
infinite set representing the data domain, and T is a finite set of transitions t = (q, rt, q

′)
with q, q′ ∈ Q and rt ⊆ D×D. Intuitively, the binary relations over D×D can be used
either to encode guards, or to encode updates (see for instance Example 4.2). A trace

π = t0 · · · tk is a word of transitions ti ∈ T such that there exist q0, . . . , qk+1 ∈ Q and
r0, . . . , rk ⊆ D × D with ti = (qi, ri, qi+1) for 0 ≤ i ≤ k. Such a trace is also denoted

π = q0
r0−→ q1 · · ·

rk−→ qk+1, or just q0
rπ−→ qk+1 with rπ = r0 · · · rk

1 . It is called
an error-trace if q0 = qini and qk+1 = qerr. It is a cycle if qk+1 = q0. We denote by
r∗ =

⋃

ℓ∈N
rℓ the reflexive and transitive closure of a binary relation r ⊆ D × D where

rℓ denotes the ℓ-th power of r.
Semantically, a CFA defines a labeled transition system given by the set of config-

urations Q × D and the binary relations
r
−→ over the set of configurations by (q, d)

r
−→

(q′, d′) if q
r
−→ q′ and (d, d′) ∈ r. A path is an alternating sequence of configurations and

binary relations (q0, d0)
r0−→ (q1, d1) · · ·

rk−→ (qk+1, dk+1). A concretization of a trace

q0
r0−→ q1 · · ·

rk−→ qk+1 is a path of the form (q0, d0)
r0−→ (q1, d1) · · ·

rk−→ (qk+1, dk+1),

unambiguously abusing the
rk−→ notation, for the sake of simplicity.

Definition 2.1. An error-trace is said spurious if it does not have a concretization.

By definition, the existence of a concretization is sufficient to certify that an error-
trace is not spurious. Let us now recall why a sequence of sets X0, . . . , Xk called
an interpolant can certify that an error-trace is spurious. Let introduce few notations,
given X, X ′ ⊆ D and r ⊆ D×D, let postr(X) = {d′ | ∃ d (d, d′) ∈ r∧d ∈ X} and
wprer(X

′) = {d | ∀ d′ (d, d′) ∈ r ⇒ d′ ∈ X ′}. Recall that (postr(),wprer()) forms a
Galois connection, since clearly postr(X) ⊆ X ′ iff X ⊆ wprer(X

′). If these inclu-

sions hold true, we write X
r
−→X ′. Moreover if X =X ′ then X is called an r-invariant.

Definition 2.2. A sequence X0, . . . , Xk+1 of subsets of D is called an interpolant for a

decomposition π0, . . . , πk of an error-trace π = π0 . . . πk if:

D = X0

rπ0−−→ X1 · · ·Xk

rπk−−→ Xk+1 = ∅

Thus, the existence of an interpolant witnesses the spuriousness of an error-trace.
Conversely, we would like to establish that if an error-trace is spurious, then there exists
an interpolant. This immediately follows from [7, Propositions 1&2].

1 By convention rπ is the identity binary relation if π is the empty word of T ∗.

4

Proposition 2.3 ([7, Propositions 1&2]). An error-trace π0 · · ·πk is spurious if and

only if there exists an interpolant (Xi)0≤i≤k+1. In this case (postrπ0 ...rπi−1
(D))0≤i≤k+1

and (wprerπi
...rπk

(∅))0≤i≤k+1 are interpolants and we have:

∀ 0 ≤ i ≤ k + 1 postrπ0
...rπi−1

(D) ⊆ Xi ⊆ wprerπi
...rπk

(∅).

Thus, an error-trace is spurious iff one can find an interpolant witnessing its spu-
riousness. Unfortunately, using this property, the classical CEGAR scheme may only
discard error-traces one by one. Consider the case where a trace contains cycles form-
ing error-patterns. We would like then to discard every error-traces matching a pattern
at once (whatever is the number of iterations along each cycle). That is, we would like
to prove that an error-pattern is spurious, not only a single error-trace. More formally:

Definition 2.4. An error-pattern is a sequence (π0, θ1, π1, . . . , θk, πk) where each πi is

a trace and each θi is a cycle, of the following form:

qini = q0 q1 q2 qk qk+1 = qerr

rθ1
rθ2

rθk

rπ0−−→
rπ1−−→ . . .

rπk−−→

Note that, by extension, an error-pattern (π0, θ1, π1 . . . , θk, πk) is said spurious if all
error-traces in π0θ

∗
1π1 . . . θ∗kπk are spurious.

Definition 2.5 (Accelerated Interpolant). A sequence X0, . . . , Xk+1 of subsets of D

is called an accelerated interpolant for an error-pattern (π0, θ1, π1, . . . , θk, πk) if:

D = X0 X1 X2 Xk Xk+1 = ∅

rθ1
rθ2

rθk

rπ0−−→
rπ1−−→ . . .

rπk−−→

That is, in order for an interpolant X0, . . . , Xk+1 for (π0, π1, . . . , πk) to be an accel-
erated interpolant for the error-pattern (π0, θ1, π1, . . . , θk, πk), we require in addition
that each Xi is an rθi

-invariant, for 1 ≤ i ≤ k. Once again, it is easy to check that
accelerated interpolants characterize spurious error-patterns.

Lemma 2.6. Let (π0, θ1, π1, . . . , θk, πk) be an error-pattern, rθ0
= rθk+1

be the iden-

tity relation on D, and pi, si ⊆ D × D defined by pi = r∗θ0
rπ0r

∗
θ1
· · · rπi−1r

∗
θi

, si =
r∗θi

rπi
· · · r∗θk

rπk
. The error-pattern is spurious if and only if there exists an acceler-

ated interpolant (Xi)0≤i≤k+1. Moreover, in this case both (postpi
(D))0≤i≤k+1 and

(wpresi
(∅))0≤i≤k+1 are accelerated interpolants such that:

∀ 0 ≤ i ≤ k + 1 postpi
(D) ⊆ Xi ⊆ wpresi

(∅).

Corollary 2.7. An error-pattern is spurious iff there exists an accelerated interpolant.

We now investigate the computation of accelerated interpolants for error-patterns
containing one single cycle. We show that the accelerated interpolation problem for
such an error-pattern (π0, θ, π1) reduces to a separation problem.

5

Definition 2.8. Given a binary relation r, a set X is called a r-separator for a pair of

sets (E,F) if X
r
−→X , E⊆X and X∩F=∅. If such a set exists, (E,F) is said r-separable.

In fact, observe that (D, X, ∅) is an accelerated interpolant for (π0, θ, π1) iff X is an
rθ-separator for (E,F) where E = postrπ0

(D) and F = wprerπ1
(∅).

We have shown that if an error-pattern is spurious, then there exist an interpolant
that will witness it spuriousness. But, to find an interpolant for a given a error-pattern,
we need to be able to compute or approximate the relations r∗θi

. Considering the fact
that the set of error-traces matching a pattern may be infinite, it is obvious that this is
not possible in general. This is the question addressed in the next sections.

3 Some Notes on Linear Algebra

The method we present in the next sections computes accelerated interpolants for an
error-pattern with one single cycle θ whose associated binary relation is x rθ y if and
only if y = Mx + v, where v ∈Zn and M ∈Mn(Z) is such that the coefficients of
its ℓ-th power are bounded by a polynomial in ℓ. In this section, we first briefly recall
some material about matrices, and then characterize these integer matrices whose ℓ-th
power is polynomially bounded in ℓ.

Considering K∈{C, R, Q, Z}, we denote by Mn(K) the set of n-dim square ma-

trices with coefficients in K. The n-dim identity matrix and the zero matrix are respec-
tively denoted by In and 0n. The inverse of an invertible matrix P is denoted by P−1.
The matrix M ℓ, where ℓ∈N, denotes the ℓ-th power of M . The multiplicative monoid
{M ℓ | ℓ ∈ N} is denoted by M∗. Given S ⊆ Kn, we let MS = {Mx | x ∈ S} and
M∗S =

⋃∞
ℓ=0 M ℓS. Two matrices M1, M2 commute if M1M2 = M2M1. An n-dim

matrix ∆ is said diagonal if ∆ij =0 whenever i 6=j. A matrix D is said diagonalizable

if there exists a diagonal matrix ∆∈Mn(C) and an invertible matrix P ∈Mn(C) such
that D = P∆P−1. A matrix N is said nilpotent if there exists ℓ ∈ N \ {0} such that
N ℓ = 0n. Remember that Nn =0n. A set S⊆Kn is called an M -invariant if MS ⊆ S.
An M -invariant S is called an M -attractor for a vector x ∈ Kn if there exists ℓ0 ∈ N

such that M ℓ0x∈S. Observe that M ℓ
x∈S for any ℓ ≥ ℓ0 since S is an M -invariant.

Let Lm(X)= 1
!mX · · · (X−m+1) be the m-th Lagrange polynomial. The binomial

theorem states that for every pair (M1,M2) of commuting matrices and for every ℓ∈N:

(M1 + M2)
ℓ =

ℓ
∑

m=0

Lm(ℓ)M ℓ−m
1 Mm

2

Observe that a matrix M ∈ Mn(Z) generates a finite monoid M∗ if and only if
the coefficients of M ℓ are bounded independently of ℓ. And the finiteness of M∗ is de-
cidable in polynomial time [3]. We are going to show that the Dunford decomposition
algorithmically characterizes the set of matrices M ∈Mn(Z) such that the coefficients
of M ℓ are polynomially bounded in ℓ. Recall that the Dunford decomposition theorem

proves that any matrix M can be uniquely decomposed into a pair (D,N) of com-
muting matrices of Mn(C) such that M = D + N , where D is diagonalizable and

6

N is nilpotent. Moreover if M ∈ Mn(Q) then D,N ∈ Mn(Q) are effectively com-
putable in polynomial time2. In particular, we can decide in polynomial time if a matrix
M ∈ Mn(Q) is diagonalizable. In fact, a matrix M is diagonalizable if and only if its
Dunford decomposition (D,N) satisfies D = M and N = 0n.

Definition 3.1. A matrix M is poly-bounded if all the coefficients of M ℓ are polynomi-

ally bounded in ℓ.

Proposition 3.2. A matrix M ∈ Mn(Z) is poly-bounded if and only if the Dunford

decomposition (D,N) of M is such that D∗ is finite.

Example 3.3. Below is a poly-bounded matrix, and the transition system it encodes.

M =





1 1 0
0 1 1
0 0 1



 is poly-bounded as M ℓ =





1 ℓ ℓ(ℓ−1)
2

0 1 ℓ
0 0 1





x′

1 = x1 + x2

x′

2 = x2 + x3

x′

3 = x3

4 Presburger Accelerated Interpolants

In this section, we focus on the expressive power of the Presburger logic for effectively
computing accelerated interpolants.

Presburger logic [17] is a first-order additive arithmetic theory over the integers.
This decidable logic is used in a large range of applications such as compiler optimiza-
tion, program analysis and model-checking. A set Z ⊆ Zn that can be encoded by a
formula φ(x) in this logic is called a Presburger set. In this paper, we use two geometri-
cal characterizations of the Presburger sets respectively based on linear sets and linear

constraints. A linear set Z is a set of the form Z =a + P ∗ where a∈Zn, P is a finite
subset of Zn and P ∗ denotes the set of finite sums

∑k

i=1 pi with p1, . . . ,pk ∈P and
k∈N. Recall that a set is Presburger if and only if it is equal to a finite union of linear
sets [9]. A linear constraint is either an inequality constraint 〈α,x〉 ≤ c or a modular
constraint 〈α,x〉≡b c where α∈Zn, b∈N \ {0}, c∈Z and where 〈α,x〉=

∑n

i=1 αixi

denotes the dot product of α and x, and ≡b denotes the equivalence binary relation

over Z satisfying z1≡b z2 if and only if b divides z1 − z2. A quantification elimination

shows that a set Z ⊆ Zn is Presburger if and only if it can be encoded by a propositional
formula of linear constraints (i.e., a quantifier-free Presburger formula).

A CFA G = (Q, qini, qerr, Z
n, T) is said Presburger if x rt x

′ is encoded by a
Presburger formula φt(x,x′) for any transition t∈T . We say that an interpolant (resp.
accelerated interpolant) X0, . . . , Xk+1 is Presburger if the sets X0, . . . , Xk+1 are Pres-
burger. Since Presburger logic is decidable, observe that the spuriousness problem for
error-traces of Presburger CFA is decidable and that we can effectively compute a Pres-
burger interpolant.

Concerning the computation of Presburger accelerated interpolants, observe that the
reachability problem for Minsky machines can be reduced to the spuriousness problem

2 A possible algorithm consists in computing P = χM/gcd(χM , χ′
M), where χM denotes

the characteristic polynomial of M , and the sequence defined by D0 = M , and Dk+1 =
Dk−P (Dk)◦(P ′(Dk))−1, which is well-defined and stabilizes to D after O(log n) iterations.

7

of an error-pattern of the form (π0, θ, π1) where π0 intuitively initialized the Minsky
machine, π1 tests if the final state is reached and θ encodes the one step reachabil-
ity relation of the machine. This reduction shows that the spuriousness problem for
error-patterns of Presburger CFA is undecidable. However, observe that if there exists
a Presburger accelerated interpolant, such an interpolant can be effectively computed
with an enumerative approach. In fact, the set of Presburger accelerated interpolants is
recursively enumerable since it is sufficient to fairly enumerate the sequences of Pres-
burger formulas φ0(x), . . . , φk+1(x) and checks if such a sequence effectively encodes
an accelerated interpolant.

Naturally, such an enumerative algorithm has no practical interest. This explains
why we focus on error-pattern classes admitting Presburger accelerated interpolants
based on a non enumerative algorithm. Acceleration techniques provide such a class.
The following theorem shows that if θ is a control-flow cycle such that x rθ y iff
y = Mx + v where v ∈ Zn and M ∈Mn(Z) has a finite monoid M∗, then we can
effectively compute a Presburger formula encoding the binary relation r∗θ . Thus, if the
cycles of an error-pattern satisfy the finite monoid condition, we can effectively decide
the spuriousness, and in this case we can effectively compute a Presburger accelerated
interpolant. Observe that the obtained interpolant does not use the fact that r∗θ can be ap-
proximated, whereas the definition of accelerated interpolants does not require a precise
computation of this relation.

Proposition 4.1 (Acceleration [4, 8]). A binary relation r over Zn such that x r y if

and only if y = Mx + v where v ∈Zn and M ∈Mn(Z) satisfies r∗ is Presburger if

and only if M∗ is finite. Moreover, in this case we can compute a Presburger formula

φ(x,y) encoding x r∗ y.

Here is an example of spurious error-pattern with no Presburger accelerated interpolant.

Example 4.2. Let n = 2 and consider the CFA G1 depicted in Fig 3. Intuitively, tini

reset two integer variables x1 and x2, t1 and t2 are two deterministic loops such that
rt2 performs the inverse of rt1 , t does not modify the variables, and terr tests if x1 = 0
and x2 > 0. More formally G1 = (Q, qini, qerr, Z

2, T) where Q = {qini, q1, q2, qerr}
and where T = {tini, t1, t, t2, terr} is defined by :

tini = (qini , rini , q1) with (x, x′)∈rini iff x′
1 = 0 ∧ x′

2 = 0
t1 = (q1 , r1 , q1) with (x, x′)∈r1 iff x′

1 = x1 + 1 ∧ x′
2 = x2 + x1

t = (q1 , r , q2) with (x, x′)∈r iff x′
1 = x1 ∧ x′

2 = x2

t2 = (q2 , r2 , q2) with (x, x′)∈r2 iff x1 = x′
1 + 1 ∧ x2 = x′

2 + x′
1

terr = (q2 , rerr , qerr) with (x, x′)∈rerr iff x1 = 0 ∧ x2 > 0

tini:

x′

1 = 0

∧x′

2 = 0

t1:

x′

1 = x1 + 1

∧x′

2 = x2 + x1

t:
x′

1 = x1

∧x′

2 = x2

t2:

x1 = x′

1 + 1

∧x2 = x′

2 + x′

1

terr :
x1 = 0
∧x2 > 0

Fig. 3. The CFA G1

Observe that (Z2, X,X, ∅) where

X = {x∈Z2 | x2 = x1(x1−1)
2 } is an

accelerated interpolant for the error-
pattern (tini, t1, t, t2, terr). In partic-
ular this error-pattern is spurious. Un-
fortunately X is not a Presburger set.
Actually, the following lemma shows
that it is hopeless to try computing a
Presburger accelerated interpolant.

8

Lemma 4.3. There does not exist a Presburger accelerated interpolant for the spurious

error-pattern (tini, t1, t, t2, terr).

Proof. Let us consider an accelerated interpolant (Z2, X1, X2, ∅) for the spurious error-
pattern (tini, t1, t, t2, terr) and assume by contradiction that X1 is a Presburger set.
By replacing X1 by X1 ∩ N2, we can assume without loss of generality that X1 ⊆
N2. Let us consider a Presburger formula φ1(x) encoding X1. An immediate induc-

tion proves that postrinir
∗

1
(Z2) is equal to X ′ = {x ∈ N2 | x2 = x1(x1−1)

2 }. As

(Z2, X1, X2, ∅) is an interpolant, we deduce that X ′ ⊆ X1. Note that if X1 ∩ {x ∈

N2 | x2 > x1(x1−1)
2 } is empty then X ′ is encoded by the Presburger formula φ′(x′) :=

φ1(x
′) ∧ ∀x2φ1(x

′
1, x2) =⇒ x2 ≤ x′

2. As X ′ is not a Presburger set we deduce that

this intersection is not empty. Thus, there exists x∈X1 such that x2 > x1(x1−1)
2 . Now,

just observe that postrr
x2
2 rerr

({x}) shows that postrr∗

2rerr
(X1) 6= ∅ which is in con-

tradiction with the fact that (Z2, X1, X2, ∅) is an accelerated interpolant. ⊓⊔

5 Half-Space Attractors

In this section we provide an algorithm for solving the following convergence decision
problem: given the half-space

H(α, c) = {x ∈ Rn | 〈α,x〉 ≥ c}

with α ∈ Zn and c ∈ Z, and a matrix M ∈ Mn(R) such that N = M−In is nilpotent,
decide whether a vector x ∈ Zn satisfies M ℓ

x ∈ H(α, c) for some ℓ ∈ N. This
algorithm will be crucial for computing accelerated interpolants, in the next section.

We first show that the following two sets can be decomposed into an effectively
computable Boolean combination of half-spaces:

E−(α, c) = {x ∈ Rn | ∃ℓ0 ∈ N,∀ℓ ≥ ℓ0, M
ℓ
x 6∈ H(α, c)},

E+(α, c) = {x ∈ Rn | ∃ℓ0 ∈ N,∀ℓ ≥ ℓ0, M
ℓ
x ∈ H(α, c)}.

It is clear that E−(α, c) and E+(α, c) are disjoint (the decomposition proof will show
in addition that Rn = E−(α, c)∪E+(α, c)). Recall that Lm(X) denotes the Lagrange
polynomial. Since Nn = 0n and Lm(ℓ) = 0 for any m > ℓ, the binomial theorem
applied to the commutative matrices In and N yields:

〈α, M ℓ
x〉 =

n−1
∑

m=0

Lm(ℓ)〈α, Nm
x〉 (1)

We introduce the sets Zk(α) for k ∈ Z. First, Z0(α) = {x∈Rn |
∧

j≥1〈α, N j
x〉 = 0}

and, for ε ∈ {−1,+1} and m ∈ N \ {0}:

Zε.m(α) = {x ∈ Rn | ε.〈α, Nm
x〉 > 0 ∧

∧

j>m

〈α, N j
x〉 = 0}.

Clearly, the Zk(α) are pairwise disjoint, Zk(α) = ∅ if |k| ≥ n, and
⋃

k∈Z

Zk(α) = Rn.

9

Lemma 5.1. Let α,x ∈ Rn. We have:

lim
ℓ→+∞

〈α, M ℓ
x〉 =











+∞ if x ∈
⋃

k≥1 Zk(α),

〈α,x〉 if x ∈ Z0(α),

−∞ if x ∈
⋃

k≤−1 Zk(α).

From the previous lemma, we deduce the expression of E−(α, c) and E+(α, c):

E−(α, c) = (Z0(α) \ H(α, c)) ∪
⋃

k≤−1

Zk(α), (2)

E+(α, c) = (Z0(α) ∩ H(α, c)) ∪
⋃

k≥1

Zk(α). (3)

Naturally, if x ∈ E+(α, c) we can conclude that there exists ℓ ∈ N such that M ℓ
x ∈

H(α, c). On the other hand, if x ∈ E−(α, c) we cannot conclude that M ℓ
x 6∈ H(α, c)

for all ℓ ∈ N. We are going to characterize a set X−(α, c) with an empty inter-
section with H(α, c) that is an M -attractor for any vector x ∈ E−(α, c). Thus, if

E+ E−

H
X+

X−

x

x

x

Fig. 4. Likely trajectories of M ℓ
x, omitting (α, c)

x ∈ E−(α, c), it suffices to com-
pute the beginning of the sequence
M ℓ

x until we discover ℓ such that
M ℓ

x is in H(α, c) or X−(α, c).
In the first case there must be an
ℓ such that M ℓ

x ∈ H(α, c) and
in the second case we can tell that
M ℓ

x 6∈ H(α, c) for every ℓ ∈ N.
The situation is shown in Fig. 4.
We define the two sets X−(α, c) and X+(α, c) as follows:

X−(α, c) = {x 6∈ H(α, c) |
∧

j≥1

〈α, N j
x〉 ≤ 0},

X+(α, c) = {x ∈ H(α, c) |
∧

j≥1

〈α, N j
x〉 ≥ 0}.

Proposition 5.2. (a) X−(α, c) is an M -attractor for every x ∈ E−(α, c), and

(b) X+(α, c) is an M -attractor for every x ∈ E+(α, c).

Proof. We only prove (a) since (b) is symmetrical.
We first show that X−(α, c) is an M -invariant. Consider x ∈ X−(α, c). Since

M = In + N , we have 〈α, Mx〉 = 〈α,x〉 + 〈α, Nx〉. From x 6∈ H(α, c), we get
〈α,x〉 < c and since x ∈ X−(α, c), we deduce 〈α, Nx〉 ≤ 0. Therefore 〈α, Mx〉 <
c and we have proved that Mx 6∈ H(α, c). Moreover, given j ≥ 1, observe that
〈α, N jMx〉 = 〈α, N j

x〉 + 〈α, N j+1
x〉. From x ∈ X−(α, c) we get 〈α, N j

x〉 ≤ 0
and 〈α, N j+1

x〉 ≤ 0. We deduce that 〈α, N jMx〉 ≤ 0 for any j ≥ 1. We have proved
that X−(α, c) is an M -invariant.

It remains to show that for x ∈ E−(α, c), there exists ℓ such that M ℓ
x ∈ X−(α, c).

We use the expression (2) of E−(α, c). The case x ∈ Z0(α) \ H(α, c) is immediate

10

since it implies x ∈ X−(α, c). Thus, we can assume that there exists m ∈ N\{0} such
that x ∈ Z−m(α). By Lemma 5.1, there exists ℓ0 such that 〈α, M ℓ

x〉 < c for any ℓ ≥
ℓ0. Let j ≥ 1 and let us prove that there exists ℓj ∈ N such that 〈α, N jM ℓ

x〉 ≤ 0 for
any ℓ ≥ ℓj . Since M and N commute, we deduce that 〈α, N jM ℓ

x〉 = 〈α, M ℓN j
x〉.

From equation (1) we get:

〈α, M ℓN j
x〉 =

n−1
∑

i=0

Li(ℓ)〈α, N i+j
x〉

Thus ℓ 7→ 〈α, N jM ℓ
x〉 is a polynomial in ℓ. If this polynomial is equal to zero then

〈α, N jM ℓ
x〉 ≤ 0 for any ℓ ≥ 0. Otherwise, we get j ≤ m by definition of Z−m(α),

and the leading coefficient of this polynomial is equal to 〈α,Nm
x〉

!(m−j) . Now 〈α, Nm
x〉 < 0

again by definition of Z−m(α), and we deduce that limℓ→+∞〈α, N jM ℓ
x〉 = −∞.

Therefore there exists ℓj ∈ N such that 〈α, N jM ℓ
x〉 ≤ 0 for all ℓ ≥ ℓj . Now, just

observe that M ℓ
x ∈ X−(α, c) if ℓ = max{ℓ0, . . . , ℓn−1}. ⊓⊔

6 Computing Presburger Accelerated Interpolants

This section focus on the computation of a Presburger r-separator for a pair (E,F) of
r-separable Presburger sets. Observe that this is equivalent to the Presburger accelerated
interpolation problem for a spurious error-pattern with a unique cycle. We assume that
the relation r satisfies x r y iff y =Mx+v where v∈Zn and M ∈Mn(Z) is a poly-
bounded matrix. Note that this condition strictly extend the finite monoid M∗ condition
required in acceleration techniques (see Theorem 4.1). We prove that if (E,F) is r-
separable, then there exists a constructible Presburger r-separator for (E,F).

Remark 6.1. The unique cycle restriction is motivated by Example 4.2. In fact, this
example exhibits a spurious error-pattern (tini, t1, t, t2, terr) such that the cycles t1 and
t2 satisfy the condition presented above. However, let us recall that this error-pattern
does not admit a Presburger accelerated interpolant.

In the sequel, the Presburger sets E and F are decomposed into sets (Ei, Fj) follow-
ing the half-space attractors introduced in the previous section. Note that a Presburger
r-separator for (E,F) can be obtained as a combination of the Presburger r-separators
for (Ei, Fj) thanks to the following straightforward Lemma 6.2.

Lemma 6.2 (Stability by union).

(a) If Xi r-separates (Ei, F) for 1 ≤ i ≤ p, then
p
⋃

i=1

Xi r-separates (
p
⋃

i=1

Ei, F).

(b) If Xj r-separates (E,Fj) for 1 ≤ j ≤ m, then
m
⋂

j=1

Xj r-separates (E,
m
⋃

j=1

Fj).

Now, we reduce the r-separability problem to the uniform case v = 0. As expected,
this reduction is obtained by adding an extra component that remains equal to 1. More
precisely, consider the pair (E′, F ′) of Presburger sets defined by E′ = E × {1} and
F ′ = F ×{1} and the binary relation r′ over Zn+1 defined by ((x, xn+1), (y, yn+1)) ∈
r′ iff y = Mx + vxn+1 and yn+1 = xn+1. Note that the matrix M ′ = [[M v][0, 1]] ∈

11

Mn+1(Z) is poly-bounded. Moreover (E,F) is r-separable if and only if (E′, F ′) is
r′-separable. From a Presburger r′-separator X ′ of (E′, F ′) we deduce a Presburger
r-separator for (E,F) by considering X = {x ∈ Zn | (x, 1) ∈ X ′}. Note that under
the condition v = 0, a pair (E,F) of sets is r-separable if and only if M∗E ∩ F = ∅

and a set X is a r-separator if and only if X is an M -invariant such that E ⊆ X and
X ∩ F = ∅. Such a pair (E,F) is said M -separable and X is called a M -separator.

Next, the M -separability problem is reduced to a poly-bounded matrix M = In+N
where N ∈ Mn(Z) is a nilpotent matrix.

Lemma 6.3. Let M ∈ Mn(Z) be a poly-bounded matrix. Let (D,N) be the Dunford

decomposition of M . There exists an integer d ∈ N\{0} such that the matrix D′ = Dd

satisfies D′D′ = D′. In this case N ′ = Md − D′ is a nilpotent matrix of Mn(Z) and

M ′ = In + N ′ satisfies MdℓMdn = (M ′)ℓMdn for any ℓ.

A pair (E,F) is M -separable if and only if (E′, F ′) with E′ =
⋃d−1

ℓ=0 Mdn+ℓE
and F ′ = F is M ′-separable. Moreover, given an M ′-separator X ′ for (E′, F ′), the

following set X is an M -separator for (E,F).

X = E ∪ . . . ∪ Mdn−1E ∪ (
d−1
⋂

ℓ=0

{x ∈ MdnZn | M ℓ
x ∈ X ′})

Finally, denoting by b > 0 an integer extracted from the modular constraints defin-
ing the Presburger set F , the following lemma shows that by replacing (In +N) by one
of its powers In + N ′ = (In + N)d, we can assume that M ≡b In.

Lemma 6.4. For any matrix M ∈ Mn(Z) such that M = In + N and for any integer

d > 0 we have Md = In+N ′ where N ′ is a nilpotent matrix. Moreover, for any integer

b > 0 there exists an integer d > 0 such that Md ≡b In.

A pair (E,F) is M -separable if and only if the pair (E′, F ′) with E′ =
⋃d−1

ℓ=0 M ℓE
and F ′ = F is Md-separable. Moreover, given an Md-separator for (E′, F ′), the

following set X is an M -separator for (E,F).

X =

d−1
⋂

ℓ=0

{x ∈ Zn | M ℓ
x ∈ X ′}

We can now provide the proof of our main Presburger separability theorem.

Theorem 6.5. Let r be a binary relation over Zn such that x r y iff y = Mx + v

where v ∈ Zn and M ∈ Mn(Z) is poly-bounded. A pair (E,F) of Presburger sets,

with either E or F finite, is r-separable if and only if it is Presburger r-separable.

Moreover in this case we can effectively compute a Presburger r-separator.

Proof. We have previously provided the reduction to the uniform case v = 0. Let
(E,F) be a pair of r-separable Presburger sets. Recall that this condition is equivalent
to M∗E ∩ F = ∅. From the reduction given in Lemma 6.3, we can assume that M =
(In + N) where N ∈ Mn(Z) is nilpotent. We have to find a Presburger r-separator X
for (E,F) i.e., an M -invariant X such that E ⊆ X and X ∩ F = ∅.

Since the condition M∗E ∩ F = ∅ is equivalent to (M−1)∗F ∩E = ∅, and since
by hypothesis, either E or F is finite, it suffices by symmetry to handle the case where
E is finite. Since F is a Presburger set, it is defined by a propositional formula of linear

12

constraints, and one can effectively compute an integer b ∈ N \ {0} and an expression
F =

⋃m

j=1(Cj ∩
⋂qj

i=1 H(αi,j , ci,j)), where for all x ∈ Cj and y ∈ Zn, x ≡b y

implies y ∈ Cj . By the reduction given in Lemma 6.4 one can assume that Mx ≡b x

for all x ∈ Zn. Notice that this implies that both Cj and Zn \ Cj are M -invariant.
By Lemma 6.2 (b), one can assume without loss of generality that F is of the form
C ∩

⋂q

i=1 H(αi, ci).
Let x ∈ E. Assume that x ∈

⋂q

i=1 E+(αi, ci)∩C. Then M∗
x∩X+(αi, ci) 6= ∅

for 1 ≤ i ≤ q by Proposition 5.2(b). Since X+(αi, ci) is M -invariant, one would
have M∗

x ∩
⋂r

i=1 X+(αi, ci) 6= ∅. Since X+(αi, ci) ⊆ H(αi, ci), and since x also
belongs to C which is M -invariant, one would finally get M∗

x∩F 6= ∅, contradicting
the hypothesis M∗E ∩ F = ∅. Therefore, E ⊆

⋃q

i=1 E−(αi, ci) ∪ (Zn \ C), so that

E =

[

q
⋃

i=1

E−(αi, ci) ∩ C ∩ E

]

∪ [(Zn \ C) ∩ E] (4)

Again by Lemma 6.2 (a), it suffices to treat two cases

(a) E ⊆ E−(αi, ci) ∩ C, and (b) E ⊆ Zn \ C.

In case (a), Proposition 5.2 shows that for every x ∈ E there exists ℓ such that
M ℓ

x ∈ X−(αi, ci). Since E is finite and X−(αi, ci) is an invariant, there exists ℓ
such that M ℓE ⊆ X−(αi, ci). Furthermore, one can compute such an integer ℓ, just
by computing successive images of E by M . Therefore, X = {MkE | k ≤ ℓ} ∪
X−(αi, ci) is an M -separator for (E,F).

In case (b), where E ⊆ Zn \ C, it suffices to choose X = Zn \ C, which is a
Presburger M -invariant set such that E ⊆ X and X ∩ F = ∅. ⊓⊔

We finally prove that finiteness of either E or F is necessary to entail r-separability.

Proposition 6.6. Consider E = (1, 1)N and F = {x ∈ Z2 | x2 < x1 ∧ x1 < 0}. Let

r ⊆ Z2 × Z2 defined by x r y if y1 = x1 + x2 − 2 and y2 = x2 − 2. Then, the pair

(E,F) is r-separable, but it is not Presburger r-separable.

Proof. Computing rℓE = −(ℓ(ℓ+1), 2ℓ)+(ℓ+1, 1)N shows that r∗E∩F = ∅, whence
r∗E is an r-separator for (E,F). Assume by contradiction that there is a Presburger r-
separator X for (E,F). For t ∈ Z and t ≥ −1, let Dt = (t, t) + (t,−1)N. This linear
set is located on the line (∆t) : x1 + tx2 = t + t2. Figure 6 (a) depicts the set E, its
successive images under r, and F . Figure 6 (b) displays the sets Dt and the lines ∆t. An
easy computation gives (t, t)+k(t,−1) = rk(t+k, t+k) ∈ r∗E, so

⋃

t≥−1 Dt ⊆ r∗E.

Let Rt ⊆ Z2 be the set of points between ∆t−1 and ∆t in the half space x1 ≥ x2.

Rt =
{

(x1, x2) | x1+tx2 < t+t2, x1+(t−1)x2 > (t−1)+(t−1)2, and x1 ≥ x2

}

.

This is a Presburger set, and F = R0. One easily checks that rRt ⊆ Rt−1. We claim
that there exists t such that ∅ 6= Rt ∩ X . This will yield the contradiction, since then
∅ 6= r(Rt∩X) ⊆ r(Rt)∩r(X) ⊆ Rt−1∩X , and by induction, ∅ 6= R0∩X = F ∩X ,
contradicting the assumption that X is an r-separator for (E,F).

Choose an expression of the Presburger set X as a finite union of linear sets, and let
N ∈ N be greater than all the norms of the periods appearing in this expression. Then,

13

every point of X but a finite number is at distance at most N of another element of X .
Choose x ∈ DN ⊆ X , with x1 large enough so that the distance from x to both DN−1

and DN+1 is greater than N . There are infinitely many such x, since DN is neither
parallel to DN−1 nor to DN+1. Now, any two points of ∆N ∩ Z2 are at distance at
least N . By the choice of x and the definition of N , there must be an element in X∩RN

or X ∩ RN+1. This proves the claim and concludes the proof of the proposition. ⊓⊔

E
rE

r2E

F

5

20

(a) r∗E as an infinite union of rℓE

F = R0

Rt

(t, t)

∆t

∆t−1

∆0

5

20

(b) r∗E as an infinite union of Dt

7 Conclusion & Further Work

The main idea of this paper is to combine interpolation-based model-checking, which
works well on large and simple systems, and acceleration techniques, which prefers
small and complex ones. We explored a track to combine them, named interpolant

acceleration. in which we see a fair trade-off between the lack of scalability of accel-
eration, by applying it locally, and CEGAR inability to deal with of infinite behaviors.
We also strongly believe this paper to open a new field of investigation, and to offer
interesting research perspectives for future work.

We introduced the notion of error-pattern and accelerated interpolant. We identi-
fied two classes of computable accelerated interpolants: ’Presburger’ accelerated inter-
polants and ’poly-bounded’ accelerated interpolants. The second one allows to compute
interpolants for error-patterns labeled by transformations which strictly enlarge usual
classes used in acceleration techniques. This method is applicable for programs with a
finite set of initializations or with a finite set of errors, and this condition is necessary
due to Proposition 6.6. It would be interesting to extend the class of transformations, and
to find finer conditions for such interpolants to be computable. One can extract straight
from our constructive proof a rough algorithm. We would like to make it explicit, to
compute its theoretical complexity, and to test how it behaves in practice.

Indeed, we would like to find efficient algorithms to compute accelerated inter-
polants as the one we provide here through the proof is brute-force. One possible track
is to compute them from symbolic (e.g. automata based) set representations, and then
build an effective implementation of a CEGAR loop using accelerated interpolants.
Next, the full potential of accelerated interpolants in the refinement remains to be ex-
plored. From a more theoretical point of view, there are also many possible extensions:
among others, we would like to be able to handle transitions with explicit guards, or
check for some extensions of the class of transformations for which we can compute
accelerated interpolants. A full study of these classes would allow us to clearly delimit

14

what is the frontier between programs that can be handled by accelerated interpolants
and others. Finally, another track would be to investigate the influence of some struc-
tural properties of the CFA (e.g. nested cycles) and how to deal with spurious error-
traces whose proof does not hold after some unrolling.

References

[1] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat Acceleration in Symbolic Model-
Checking. In Proc. of 3rd Symp. on Automated Technology for Verification and Analysis

(ATVA’05), volume 3707 of LNCS, pages 474–488. Springer, 2005.
[2] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path Invariants. In Proc. of

the ACM SIGPLAN’07 Conference on Programming Language Design and Implementation

(PLDI’07), pages 300–309. ACM Press, 2007.
[3] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Faculté des

Sciences Appliquées de l’Université de Liège, 1999.
[4] B. Boigelot. On Iterating Linear Transformations Over Recognizable Sets of Integers. The-

oret. Comput. Sci., 309(1-3):413–468, 2003.
[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model-Checking. In Proc. of

12th Conf. on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages 403–
418, 2000.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. CounterExample-Guided Abstrac-
tion Refinement for Symbolic Model Checking. J. ACM, 50(5):752–794, 2003.

[7] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction Refinement with Craig Interpolation
and Symbolic Pushdown Systems. In Proc. of 12th Conf. on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2006), volume 3920 of LNCS, pages 489–
503. Springer, 2006.

[8] A. Finkel and J. Leroux. How to Compose Presburger-Accelerations: Applications to
Broadcast Protocols. In Proc. of Conf. on Foundation of Software Technology and The-

oretical Computer Science (FSTTCS’02), volume 2556, pages 145–156. Springer, 2002.
[9] S. Ginsburg and E. H. Spanier. Semigroups, Presburger Formulas and Languages. Pacific

Journal of Mathematics, 16(2):285–296, 1966.
[10] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS. In Proc. of 9th Conf.

on Computer Aided Verification (CAV’97), volume 1254 of LNCS, pages 72–83, 1997.
[11] B. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori, and S. K. Rajamani. Synergy: A New

Algorithm for Property Checking. In Proc. of 14th Symp. on Foundations of Software En-

gineering (FSE’06), pages 117–127. ACM Press, 2006.
[12] T. A. Henzinger, R. Jhala, R. Majumbar, and G. Sutre. Lazy Abstraction. In Proc. of 29th

Symp. on Principles of Programming Languages (POPL’02), pages 58–70, 2002.
[13] R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.

In Proc. of 12th Conf. on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS’06), volume 3920 of LNCS, pages 459–473. Springer, 2006.
[14] K. L. McMillan. Interpolation and SAT-Based Model Checking. In Proc. of 15th Conf. on

Computer Aided Verification (CAV’03), volume 2725 of LNCS, pages 1–13. Springer, 2003.
[15] K. L. McMillan. An Interpolating Theorem Prover. Journal of Theoritical Computer Sci-

ence, 345(1):101–121, 2005.
[16] K. L. McMillan. Lazy Abstraction with Interpolants. In Proc. of 18th Conf. on Computer

Aided Verification (CAV’06), volume 4144 of LNCS, pages 123–136. Springer, 2006.
[17] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du

1er congrès de Mathématiciens des Pays Slaves, pages 92–101, 1929.

15

A The algorithm to compute Presburger separators

Let F =
⋃m

j=1 Fj , with Fj =
⋂qj

i=1 H(αi,j , ci,j) ∩ Cj , where Cj denotes the modu-
lar constraints of Fj . The algorithm obtained from the constructive proof is written in
Fig. 5. Its purpose is to highlight the structure of the proof, not to provide an imple-
mentable algorithm. The functions (a) and (b) are justified by Lemma 6.3. The first one
reduces the matrix to one of the form In + N , where N is nilpotent. The second one
makes sure that M acts as the identity with respect to modular constraints appearing
in F . The functions SEPARATE3 and SEPARATE4 correspond to reductions made in
Theorem 6.5.

(a) Reduction to M − In nilpotent

SEPARATE (M, E, F):
D, N ← DUNFORD(M)

Compute d such that Dd = D2d

E′ ←
Sd−1

ℓ=0
M ℓE

M ′← In + Md −Dd

X ′ ← SEPARATE2(M ′, E′, F)

Return
Sdn−1

ℓ=0
M ℓE ∪

Td−1

ℓ=0
{x ∈MdnZn |M ℓ

x ∈ X ′}

(b) Reduction for stability wrt, mod-b constraints

SEPARATE2 (M, E, F):
b← lcm

1≤i≤m
(modular constraints of Ci)

d← b⌊log n+1⌋

E′ ←
Sd−1

ℓ=0
postMℓ(E)

X =SEPARATE3 (Md, E′, F)
Return

Td−1

ℓ=0
wpreMℓ(X)

(c) Eliminating unions and mod-b constraints from F

SEPARATE3 (M, E, F):

Return
m
T

j=1

SEPARATE4(M, E, Fj) ∪ (E \ Cj)

(d) Reduction on E

SEPARATE4 (M, E, F):
// Assume F of the form

Sq

i=1
H(αi, ci)

// M − In nilpotent, and M ≡b In.

for i in 1, . . . , q:
Ei = E ∩ E−(αi, ci)

Compute ℓi s.t. M ℓiEi ⊆ X−(αi, ci)

X ′
i =

Sℓi

ℓ=0
M ℓE ∪X−(αi, ci)

Return
S

X ′
i

Fig. 5. Algorithm for computing a Presburger separator

16

B An Example of Non-uniform Attractor

Example B.1. Note that even if X is an M -attractor for every x∈E, there might exist
no ℓ such that M ℓE ⊆ X . For instance, let X = {(1, 0)}∪] − ∞,−1]×] − ∞, 0],

E = {1}×[−1, 0] and M =

(

1 1
0 1

)

. First, M(1, 0) = (1, 0)∈X . Next, for λ∈ [−1, 0[.

We have M ℓ =

(

1 ℓ
0 1

)

and thus we have M ℓ(1, λ) = (1 + ℓλ, λ) which also belongs

to X for ℓ large enough. On the other hand, M ℓE contains M ℓ(1,−1/ℓ) = (0,−1/ℓ)
which does not belong to X .

E

X

Fig. 6. X is not an M -attractor for E

17

C Proof of Proposition 3.2

Remember that a matrix M ∈ Mn(Z) is said poly-bounded if all the coefficients of
M ℓ are polynomially bounded in ℓ.

Proposition 3.1. A matrix M ∈ Mn(Z) is poly-bounded if and only if the Dunford

decomposition (D,N) of M is such that D∗ is finite.

Proof. Assume first that D∗ is finite. The binomial theorem applied to the commuting
matrices D and N proves that the coefficients of M ℓ are polynomials in ℓ, just by
observing that Nn = 0n.

Conversely, assume that the coefficients of M ℓ are polynomially bounded in ℓ.
The binomial theorem applied to M and −N shows that the coefficients of Dℓ are
polynomially bounded in ℓ. Since D is diagonalizable, there exists a diagonal matrix
∆ ∈ Mn(C) and an invertible matrix P ∈ Mn(C) such that D = P−1∆P . Denoting
by λ1, . . . , λn ∈ C the eigenvalues of D, we deduce that λℓ

1, . . . , λ
ℓ
n are the diagonal

entries of ∆ℓ. From ∆ℓ = PDℓP−1, we deduce that |λi|
ℓ is polynomially bounded

in ℓ. Thus |λi| ≤ 1. From Dℓ = P−1∆ℓP , we deduce that the coefficients of Dℓ are
bounded, independently of ℓ.

Choose an integer k > 0 large enough so that kN i ∈ Mn(Z) for all 0 ≤ i ≤ n−1.
Observe that the binomial theorem applied to M and −N also provides kDℓ ∈ Mn(Z)
for every ℓ ∈ N (recall that Li(ℓ) ∈ N). Moreover, as k.Dℓ is bounded, we deduce that
{kDℓ | ℓ ∈ N} is included in a finite set of matrices. Thus D∗ is finite. ⊓⊔

18

D Proof of Lemma 5.1

Lemma 5.1. Let α,x ∈ Rn. We have:

lim
ℓ→+∞

〈α, M ℓ
x〉 =











+∞ if x ∈
⋃

k≥1 Zk(α),

〈α,x〉 if x ∈ Z0(α),

−∞ if x ∈
⋃

k≤−1 Zk(α).

Proof. Let x ∈ Zε.m(α) where ε ∈ {−1, 1} and m ∈ N \ {0}. Equation (1) shows
that ℓ 7→ 〈α, M ℓ

x〉 is a non-constant polynomial in ℓ whose leading coefficient is
1
!m 〈α, Nm

x〉. Since x ∈ Zε.m(α), we have ε〈α, Nm
x〉 > 0, which implies the result

if x ∈
⋃

k 6=0

Zk(α). Finally, if x ∈ Z0(α), then 〈α, M ℓ
x〉 is constant, equal to 〈α,x〉.

⊓⊔

19

E Proofs of Lemmas 6.3 and 6.4

Let us first provide the following technical lemma that will be useful when replacing X
by a nilpotent matrix N ∈ Mn(Z).

Lemma E.1. Let b ∈ N \ {0}. Then, for any k ∈ N, there exist P (X) ∈ Z/bZ[X] such

that, in Z/bZ[X] :

(1 + X)bk

= 1 + X2k

P (X). (5)

Proof. By induction on k. For k = 0, take P (X) = 1. Assume now that (5) holds.
Then we have, in Z/bZ[X]:

(1 + X)bk+1

=
(

1 + X2k

P (X)
)b

=

b
∑

i=0

Ci
b.

(

X2k

P (X)
)i

= 1 + X2k+1

Q(X)

with Q(X) =
∑b

i=2 Ci
b.

[

X2k]i−2
P (X)i. We have obtained (5) at rank k + 1. ⊓⊔

Corollary E.2. Let M ∈ Mn(Z) be a matrix such that its Dunford decomposition

(D,N) satisfies D2 = D. Then (D,N) is a pair of matrices in Mn(Z).

Proof. As D,N ∈ Mn(Q), there exists an integer d ≥ 2 large enough so that dDN ℓ ∈
Mn(Z) for every 0 ≤ ℓ ≤ n − 1. As Nn = 0n we deduce that dDN ℓ ∈ Mn(Z) for
any ℓ. Let us consider k ∈ N such that 2k ≥ n and let m = dk. In particular m ≥ n.
Lemma E.1 proves that the there exists a polynomial Q(X) ∈ dZ[X] and a polynomial

P (X) ∈ Z[X] such that (1 + X)m = 1 + Q(X) + X2k

P (X). Replacing X by N
provides (In + N)m = In + Q(N). Thus D(In + N)m = D + DQ(N). Note that
DQ(N) ∈ Mn(Z) since dDN ℓ ∈ Mn(Z) for any ℓ. The binomial theorem applied to
the commuting matrices D and N provides (D + N)m =

∑n−1
i=0 Li(m)Dm−iN i. As

D2 = D we deduce that Mm = D(
∑n−1

i=0 Li(m)N i). The binomial theorem applied

to In and N also provides (In + N)m = (
∑n−1

i=0 Li(m)N i). We deduce that Mm =
D(In + N)m. We have proved that Mm = D(In + Q(N)). Since Mm and DQ(N)
are both in Mn(Z) we deduce that D ∈ Mn(Z). From N = M − D we also obtain
N ∈ Mn(Z). ⊓⊔

Lemma 6.3. Let M ∈ Mn(Z) be a poly-bounded matrix. Let (D,N) be the Dunford

decomposition of M . There exists an integer d ∈ N\{0} such that the matrix D′ = Dd

satisfies D′D′ = D′. In this case N ′ = Md − D′ is a nilpotent matrix of Mn(Z) and

M ′ = In + N ′ satisfies MdℓMdn = (M ′)ℓMdn for any ℓ.

A pair (E,F) is M -separable if and only if the pair (E′, F ′) with E′ =
⋃d−1

ℓ=0 Mdn+ℓE
and F ′ = F is M ′-separable. Moreover, given an M ′-separator X ′ for (E′, F ′), the

following set X is an M -separator for (E,F).

X = E ∪ . . . ∪ Mdn−1E ∪ (

d−1
⋂

ℓ=0

{x ∈ MdnZn | M ℓ
x ∈ X ′})

20

Proof. As M is poly-bounded, we deduce that D∗ is finite and in particular there exists
an integer d > 0 such that D2d = Dd. Let D′ = Dd and N ′ = Md −D′. The binomial
theorem applied to the commuting matrices M and D shows that N ′ is a nilpotent
matrix. Observe that (D′, N ′) is the Dunford decomposition of Md ∈ Mn(Z). As
D′D′ = D′, Corollary E.2 proves that N ′, D′ ∈ Mn(Z).

Let us show that D′Mdn = Mdn. The binomial theorem applied on the commut-
ing matrices D′ and N ′ provides (D′ + N ′)n =

∑n−1
m=0 Lm(n)(D′)n−m(N ′)m =

D′(
∑n−1

m=0 Lm(n)(N ′)m) thanks to D′D′ = D′. We have proved that D′(D′+N ′)n =
(D′ + N ′)n and thus D′Mdn = Mdn.

We now show that MdℓMdn = (M ′)ℓMdn for any ℓ. The binomial theorem applied

to D′ and N ′ provides (D′ +N ′)ℓ =
∑ℓ

m=0 Lm(ℓ)(N ′)m(D′)ℓ−m. By multiplying by

D′, we get (D′+N ′)ℓD′ = (
∑ℓ

m=0 Lm(ℓ)(N ′)m)D′. The binomial theorem applied to

In and N ′ also provides
∑ℓ

m=0 Lm(ℓ)(N ′)m = (In + N ′)ℓ. Combining this equality
with the previous one provides (D′ + N ′)ℓD′ = (In + N ′)ℓD′. From the previous
paragraph, we get MdℓMdn = (M ′)ℓMdn.

Finally, let (E,F) be a pair of sets. From the previous equality we get M∗E =
(M ′)∗E′. Thus (E,F) is M -separable if and only if (E′, F ′) is M ′-separable. Let us
consider a M ′-separator X ′ for (E′, F ′) and let us prove that X is an M -separator for
(E,F). First of all, note that E ⊆ X . Moreover, as X ⊆ M∗E ∪ X ′ , M∗E ∩ F = ∅

and X ′ ∩ F = ∅ we get X ∩ F = ∅. Now, let us show that X is an M -invariant. Note
that Mdn+ℓE ⊆ E′ ⊆ X ′ for any 0 ≤ ℓ ≤ d − 1 and thus MdnE ⊆ X . Thus, it is
sufficient to prove that

⋂d−1
ℓ=0{x ∈ MdnZn | M ℓ

x ∈ X ′} is an M -invariant. Let us
consider x ∈ MdnZn such that M ℓ

x ∈ X ′ for any 0 ≤ ℓ ≤ d− 1 and let us prove that
Mx satisfies the same conditions. Observe that Mx ∈ MdnZn and M ℓ(Mx) ∈ X ′

for any 0 ≤ ℓ < d − 1. As x ∈ MdnZn, there exists a vector z ∈ Zn such that
x = Mdn

z. As X ′ is an M ′-invariant and x ∈ X ′ we deduce that M ′
x ∈ X ′. Thus

M ′Mdn
z ∈ X ′. From the equality MdℓMdn = (M ′)ℓMdn established in the previous

paragraph, we get M ′Mdn
z = MdMdn

z = Md
x. Thus Md−1(Mx) ∈ X ′ and we

have proved that M ℓ(Mx) ∈ X ′ for any 0 ≤ ℓ ≤ d − 1. We deduce that X is an
M -separator for (E,F). ⊓⊔

Lemma 6.4. For any matrix M ∈ Mn(Z) such that M = In + N and for any integer

d > 0 we have Md = In+N ′ where N ′ is a nilpotent matrix. Moreover, for any integer

b > 0 there exists an integer d > 0 such that Md ≡b In.

A pair (E,F) is M -separable if and only if the pair (E′, F ′) with E′ =
⋃d−1

ℓ=0 M ℓE
and F ′ = F is Md-separable. Moreover, given an Md-separator for (E′, F ′), the

following set X is an M -separator for (E,F).

X =

d−1
⋂

ℓ=0

{x ∈ Zn | M ℓ
x ∈ X ′}

Proof. The binomial theorem applied to In and N shows that N ′ = Md − In is a
nilpotent matrix. Let us consider an integer k ∈ N such that 2k ≥ n. Lemma E.1 shows
that there exists a polynomial Q(X) ∈ bZ[X] and a polynomial P (X) ∈ Z[X] such

21

that (1 + X)d = 1 + Q(X) + X2k

P (X) with d = bk. Replacing X by N provides
Md = In + Q(N). As Q(X) ∈ bZ[X], we deduce that Md ≡b In.

Let (E,F) be a pair of sets. As M∗E = (Md)∗E′, we deduce that (E,F) is M -
separable if and only if (E′, F ′) is Md-separable. Let us consider a Md-separator X ′

for (E′, F ′) and let us prove that X is an M -separator for (E,F). First of all, note
that E ⊆ X and from X ′ ∩ F = ∅ and X ⊆ X ′ we deduce that X ∩ F = ∅. It
sufficient to prove that X is an M -invariant. Let x ∈ X . We deduce that M ℓ

x ∈ X ′

for any 0 ≤ ℓ ≤ d − 1. In particular M ℓ(Mx) ∈ X ′ for any 0 ≤ ℓ < d − 1. As
X ′ is an Md-invariant and x ∈ X ′, we deduce that Md

x ∈ X ′. We have proved that
M ℓ(Mx) ∈ X ′ for any 0 ≤ ℓ ≤ d − 1. Therefore Mx ∈ X and we have proved that
X is an M -invariant. ⊓⊔

22

