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Abstract

Particles propagating in de Sitter spacetime can be described by the
topological BF SO(4, 1) theory coupled to point charges. Gravitational
interaction between them can be introduced by adding to the action a
symmetry breaking term, which reduces the local gauge symmetry down
to SO(3, 1), and which can be treated as a perturbation. In this paper
we focus solely on topological interactions which corresponds to zeroth
order in this perturbative expansion. We show that in this approximation
the system is effectively described by the SO(4, 1) Chern-Simons theory
coupled to particles and living on the 3 dimensional boundary of space-
time. Then, using Alekseev–Malkin construction we find the effective
theory of particles kinematics. We show that the particles action contains
standard kinetic terms and the deformation shows up in the presence
of interaction terms. The strength of the interactions is proportional to
deformation parameter, identified with Planck mass scale.

1 Introduction

It is well known that in 3 dimensions gravity is described by a topological field
theory, and therefore has a finite number of topological degrees of freedom re-
flecting the topology of spacetime [1]. If 3d gravity is coupled to point particles,
which can be modeled as charged punctures of space manifold, these topological
degrees of freedom can be “integrated out” leading to effective, deformed particle
kinematics [2], [4], [3]. This effective system of deformed particles is of Doubly
Special Relativity type (see [5], [6], [8] for the original proposal and [9], [10] for
reviews), being characterized by two scales, velocity of light c and Planck mass
κ. Similarly it turns out that integrating out topological gravitational degrees
of freedom in the case of gravity coupled to fields leads to effective field theory
on non-commutative spacetime [11], [12]. As a result spacetime symmetries of
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deformed systems become quantum symmetries, being described by quantum
groups, instead of the standard Lie groups.

The question arises if something similar could happen in the case of physical,
4-dimensional gravity coupled to particles and/or fields? Certainly, in 4d grav-
ity possesses local degrees of freedom exhibited by Newtonian interactions and
gravitational waves, for example. However, as stressed in the context of recent
investigations in quantum gravity phenomenology (see [13] for recent review
and references to earlier works) our best hope to see signals of quantum gravity
is to look for high-energetic events events (like scattering of ultra high energy
cosmic rays) in description of whose local degrees of freedom of gravity play no
role. If we expect to see some quantum gravity imprints there, to describe them
we must look for “no local gravity limit of gravity”, hoping that in this limit
the effective theory behaves like gravity in 3d, effectively deforming particles
and fields kinematics. This is why we make use of DSR-like test theories, that
predict deformation of spacetime-symmetries characterized by Planck-scale de-
formation parameter to describe quantum gravity signal that may be detected
in foreseeable experiments.

It is therefore of interest to look for a formulation of gravity such that one
keeps good control over the limit, in which local gravitational degrees of free-
dom are not present. In this limit gravity is described locally by its maximally
symmetric vacuum state: Minkowski space for zero cosmological constant, and
(anti) de Sitter space in the case of the (negative) positive one. Coupling such a
theory to point particles and then taking the limit makes it possible investigate
the effective behavior of the particles. One then can ask the question if the
quantum gravity scale is still present in this effective theory, acting as a defor-
mation? Naively the answer would be in the negative, and after taking a limit
we would end up with the standard theory of particles moving on Minkowski
space of special relativity (or on (anti) de Sitter space when the cosmological
constant is non-zero.) On the other hand, the experience of 3d gravity suggests
that even in the limit the effective theory might be deformed by the presence of
Planck scale.

This is the problem that we would like to investigate in this paper.

As said above, in 4 dimensions gravity is certainly not a topological theory.
However, it can be nevertheless described by a BF topological theory with de
Sitter SO(4, 1) gauge group, appended by a small term that breaks gauge sym-
metry down to Lorentz SO(3, 1). The presence of this symmetry breaking term
switches on the local degrees of freedom of gravity, while in the limit, in which
this term vanishes the theory becomes topological, as in 3d. Such formulation
of gravitational field has its roots in the proposal of MacDowell and Mansouri
[14] and has been recently investigated in depth in [15] and [16].

The construction presented in these works is as follows. The building blocks
are the SO(4, 1) connection AIJ with curvature F IJ = dAIJ +AIK ∧AKJ and
the so(4, 1) valued two-form field BIJ (I, J = 0, . . . , 4), in terms of whose the
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action takes the form

S =
∫
BIJ ∧ FIJ −

β

2
BIJ ∧BIJ −

1
2
BIJ ∧BKLεIJKLMVM (1)

In this action a constant algebra element VM enforces breaking the gauge
symmetry group down to SO(3, 1) (the subgroup of SO(4, 1) that leaves VM

invariant.) Without loss of generality we can take this vector to be VM =
(0, 0, 0, 0, V 4) = (0, 0, 0, 0, α2 ) so that the action takes the form

S =
∫
BIJ ∧ FIJ −

β

2
BIJ ∧BIJ −

α

4
BIJ ∧BKLεIJKL4 (2)

The first two terms in the action describe the topological field theory, and in
the limit α → 0 the only solution of equations of motion is de Sitter space,
the topological vacuum of the full theory. Notice that both the topological la-
grangian and the gauge breaking one are manifestly diffeomorphism invariant,
and thus the perturbation theory in α, around topological vacuum, correspond-
ing to topological theory at α = 0, is going to be manifestly diffeomorphism
invariant as well.

Remarkably, it can be shown [16] that if one decomposes the connection
Aa4 = 1

` e
a, with ` being a constant of dimension of length, Aab = ωab,

a, b = 0 . . . 3, where ea and ωab are tetrad and Lorentz connection one forms,
respectively, after solving for B this action reproduces, up to topological terms,
to the standard Einstein–Cartan one

SP = − 1
2G

∫
(Rab ∧ ec ∧ ed − Λ

6
ea ∧ eb ∧ ec ∧ ed)εabcd −

2
γ
Rab ∧ ea ∧ eb (3)

The last term in this action does not modify field equations if torsion vanishes.
The physical constants: Newton’s constant G, cosmological constant Λ and
Immirzi parameter γ are related to the dimensional parameters of the original
action (2) and the scale ` as follows

γ =
β

α
,

1
`2

=
Λ
3
, G =

3α(1− γ2)
Λ

=
3β(1− γ2)

Λγ
(4)

One can couple gravity described by the action (2) to particles in a rather
straightforward way [17] (see also [18] for recent discussion.) Each particle with
(dimensionless) mass µ = `m and spin s at rest is described by an appropriate
element of the so(4, 1) algebra1

D = µT 04 + sT 23 (5)

where T 04 and T 23 are “translational” “rotational” generators of so(4, 1) alge-
bra, respectively. Then the lagrangian describing the particle at rest is simply

Srest =
∫
dτTr(DAτ ), Aτ ≡ Aµżµ(τ) (6)

1Strictly speaking it is an element of the dual algebra so(4, 1)∗. Here we describe it by a
canonically conjugated element of the algebra.
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where zµ(τ) is the particle worldline, and τ is the affine parameter. The action
(6) breaks gauge invariance at the particle worldline. However SO(4, 1) gauge
transformations are just translations and Lorentz transformations, so acting by
gauge transformations on the particle at rest just makes the particle moving. In
this way the gauge degrees of freedom of gravity on worldline become dynamical
degrees of freedom of the particle and the action describing arbitrarily moving
particle has the form

Sparticle =
∫
dτTr(DAhτ ), Ahτ ≡ h−1Aτh+ h−1∂τh, h ∈ SO(4, 1) (7)

It can be shown [17] that this action leads to correct equations of motion for the
particle and generalized Einstein equations with mass and spin of the particle
being the source of curvature and torsion, respectively.

Notice that the action (7) easily generalizes to the case of a finite number of
particles in which case it reads

Sparticles =
∑
i

∫
dτTr(DiA

h
τ ), (8)

For further discussion of this formulation of gravity coupled to particles see [17]
and [19].

The action of gravity (2) coupled to particles (8) is a convenient starting
point to address the question raised above. The point is that the presence of
the parameter α in the action (2) makes the “no gravity limit” easy to control,
and to set up a perturbative theory. In the next section we consider the quantum
perturbative expansion in parameter α and we argue that the zeroth order of
this expansion is described by a holographic theory living on the boundary of
spacetime. Then, in the following two sections, we will show how such boundary
theory reduces to effective particles dynamics. In the final section we discuss
the obtained results.

2 From gravity in 4d to 3d Chern–Simons theory

The purpose of this section is to demonstrate that the zeroth order approx-
imation of perturbation theory of quantum gravity with particles around BF
topological quantum field theory is described by Chern-Simons theory coupled
to point sources. We will not study higher order corrections here.

For shortness let us write the action (2) as

S =
∫
LBF +

α

4

∫
LI , (9)

where now LBF is a lagrangian of topological field theory possibly coupled to
particles, and LI is a symmetry breaking interaction term.

The general perturbative expression for the partition function coupled to
arbitrary finite number of particles (where we neglect all the interactions except
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gravitational) looks like

Z({gpi}, {gpf }) =
∫
DADB

∑
n

(iα)n

n!

(∫
LI(x)

)n
exp

[
i
1
β

∫
M

LBF

]
=
∑
n

(iα)n

n!
Zn({gpi}, {gpf }), (10)

Here gpi and gpf are SO(4, 1) group elements labeling initial and final positions
and orientations of p-th particle with respect to the selected reference point.
They can be obtained as holonomies of connection A between corresponding
points (see [19] for detailed discussion.)

The expression (10) is formal, of course, and we have to define it precisely.
First we must specify the measure DA in the path integral. Since the action
describes a system with gauge symmetry the conventional way to proceed would
be to introduce a gauge-fixing term. An immediate problem with this approach
has been pointed out in [20] for Yang-Mills theory. Namely, since the interaction
term breaks the symmetry, higher order terms in perturbative expansion have
less gauge symmetry than the free action. On the other hand, if we do not fix
all the gauge symmetries of the free action we cannot construct a propagator
because of non-invertibility of the quadratic form. The approach of [20] has
been to introduce an auxiliary field that turns gauge degrees of freedom into
physical ones already at zero order. Such procedure however trivially reduces
the perturbative expansion to the standard one around fixed background. This
is appropriate in the case of Yang-Mills theory, but cannot be applied in the
case of a theory that is supposed to be background independent.

In this paper we consider a different approach which does not use a gauge
fixing. To define a path integral without gauge fixing one has to explicitly
construct the reduced phase space spanned by the complete set of gauge in-
variant observables and define a measure on it. In most situations the later is
not possible for technical reasons, e.g. it is certainly impossible to construct
all the diffeomorphism invariant observables of four dimensional General Rel-
ativity. Fortunately, this turns out to be possible for any finite order terms
of the perturbation theory considered here. This happens because the starting
point for the expansion is a topological field theory whose reduced phase space
(moduli space) is finite dimensional. Then, in finite order of perturbative expan-
sion the dimensionality of the moduli space is getting larger, but remains finite.
Therefore, in any finite order of expansion the moduli space can be, explicitly
constructed and the measure on it can be defined.

To show this let us replace the integral over the symmetry breaking la-
grangian in (10) by its Riemann definition. Divide the manifold M into N
cells Mi where each cell is sufficiently small so that every field φ on which the
lagrangian depends can be considered constant within each cell

φ(x)
∣∣∣
Mi

= φi
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The integral is a sum of contributions from every cell∫
LInt(φ(x)) =

N∑
i

SI(φi),

where
SI(φi) =

∫
Mi

LI(φi).

Here we took into account that the lagrangian LI is a density and the volume
element is already contained in it.

Consider the contribution of a cell Mi to the partition function at the first
order Z1i =

∫
DφeiST SI(φi) and compare it with the contribution Z1i from

another cell Mj . One can always find a diffeomorphism x → x′ such that
Mi →Mj . The fields also transform under this diffeomorphism φ → φ′. Due
to diffeomorpfism invariance of the interaction term

SI(φi) = SI(φ′j).

The free action is also diffeomorphism invariant and we assume that we can
define a diffeomorphism invariant measure of the path integral

ST (φ) = ST (φ′), Dφ = Dφ′.

As a result, the contribution to the path integral from different cells is equal,
Z1i = Z1j , and the sum over cells becomes trivial.

At higher order one has to distinguish the situations when the cells on which
the interaction term is applied are the same or distinct.

Zn = Nn

∫
Dφ
∏
i

SI(φi)eiST+ ...+N

∫
DφSI(φi)neiST

In the limit of large number of cells the first term, where interaction is
applied to the distinct cells, will be dominating.

The above argument is analogous to that of coordinates-independence of n-
point functions of diffeomorphism invariant theories (see e.g. [21] and references
therein).

So far we were using only diffeomorphism invariance of the free action. Its
topological invariance allows us to give a complete definition of every term in
the expansion of the the path integral. The free action can be replaced by
its discretized version ST →

∑
i

ST (φi), and the measure can be specified as

Dφ →
∏
i

dφi. The resulting path integral is finite dimensional and due to

topological invariance of the free action is independent of the discretization.
Let us now specify the model in (9) to be (2) with particles coupling in the

α→ 0 limit, i.e. being defined, after integrating out B-field, by

LBF =
1
β
F IJ ∧ FIJ +

∑
i

DIJ
i A0IJδ

3(x− xi(τ)) (11)
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In the formula above Di = µiT
04 + siT

23 is an algebra element defining mass
and spin of i-th particle (both µi = m`, where m is the physical mass and `
is the length scale of the model (4), and si are dimensionless here), xi(τ) is
a timelike particle trajectory which can be taken arbitrary due to topological
invariance of the model. In the present paper we are studying only the zeroth
order contribution, and therefore we do not consider the interaction term LInt
here.

Due to Bianchi identity the integral of the first term in (11) after integration
by parts reduces to a Chern-Simons action on the boundary of the original
manifold M.

1
β

∫
M
FAB ∧ FAB =

1
β

∫
∂M

YCS(A) (12)

Below we consider the boundary ∂M to be the direct product of a (punctured)
sphere S2

n with the real line R.
The second term in (11) breaks the gauge symmetry at the location of the

particles thus promoting some of the gauge degrees of freedom to the physical
ones. We can include the latter explicitly by substituting into the action the
connection in an explicit gauge transformed form:

A→ h−1dh+ h−1Ah (13)

At the location of the particles h(xi) ≡ hi become physical degrees of freedom.
To make a link with canonical formulation we will rewrite the resulting action

explicitly, decomposing the connection into .spacelike and timelike components.

SBF [AS ,A0, hi] =
∫

R
dx0

∫
S2
n

k

4π
〈∂0AS ∧AS〉 −

∫
R
dx0

n∑
p=1

〈
Di , h

−1
i ∂0hi

〉
(14)

+
∫
M
d4x

〈
A0 ,

k

2π
FSδ(∂M)−

n∑
p=1

Tiδ
(3)(x− x(i))dx1 ∧ dx2 ∧ dx3

〉

Let us explain the notation used in the formula above. The Chern-Simon
connection one-form A is decomposed into time and space part, to wit

A = A0 dx
0 +AS , F = dx0 ∧ (∂0AS − dSA0 + [A0, AS ]) + FS (15)

and thus FS is the space part of the curvature two-form. We take the Chern-
Simon coupling constant to be k/4π = 1/β. Di is the charge carried by the
particle, which in our case will be just its mass Di = µi T

04, while Ti is the
algebra element defined by

Ti = hiDih
−1
i (16)

Finally < ·, · > denotes the invariant, symmetric, bilinear form on the gauge
group algebra, which below will be taken to be a trace of product of appropriate
matrices, normalized such that < 1 >= 1.
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The one-dimensional delta function δ(∂M) reducing the expression to the
boundary is defined by ∫

M
δ(∂M)(?) =

∫
∂M

(?) (17)

In the action (15) the first line is the kinetic term, while the second is the
constraint

k

2π
FSδ(∂M)−

n∑
i=1

Tiδ
(3)(x− x(i))dx1 ∧ dx2 ∧ dx3 = 0 (18)

Notice that because of topological invariance of the model the deformation
of the trajectory of a particle x(i) → x′i(x(i)) does not change the value of
the physical degrees of freedom of the model. The later are encoded in the
group elements hi at the location of the particle and not in the position of the
trajectory. In particular, by such deformation one can map the whole particle
trajectory x(i) on the boundary ∂M of the manifold without changing hi.

However, the constraint (18) distinguishes the boundary, and in fact, map-
ping the particle trajectories to the boundary is the only way to satisfy it for
a nonzero value of Ti. Indeed, if some part of the particle trajectory does not
belong to the boundary, at such points the first term in (18) is zero, while the
second term is equal to a constant times Ti. In such situation the constraint (18)
would force Ti to be zero. As due to Bianchi identity the charge Ti has to be
conserved, Ti = 0 along some part of trajectory means Ti = 0 along the whole
trajectory which in turn means that there is no particle. Thus, the only way
to introduce a particle satisfying constraint (18) is to map the whole particle
trajectory on the boundary.

Mapping particle trajectories on the boundary is analogous to introduc-
ing the Dirac string singularity for magnetic monopole in electromagnetism.
Through the Dirac string the magnetic flux can reach from the boundary to
the point at which the monopole is located. In our model the situation is even
simpler. In topological field theory the position of a monopole with respect
to a manifold coordinates has no physical relevance. Therefore connecting a
monopole to the boundary with a string is the same as placing the monopole
on the boundary.

We have seen that the equations of motion of the model, namely the con-
straint (18), force the particle trajectories to lie on the boundary ∂M of the
manifold. So far our considerations were classical. But we should expect these
results to hold also in quantum theory because the equations of motion which
are constraints on initial data, such as (18) hold in quantum theory exactly. To
see this let us substitute the action (14) into the path integral over the con-
nection A and perform integration over A0. Among the spatial components of
connection A we will distinguish AS – the components lying within the bound-
ary and A3 – the component transverse to the boundary. As the action does
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not depend on A3 we will not include integration over it. We obtain

W0({gpi}, {gpf }) =
∫
DAeiSBF [AS ,A0,hi] =∫

DASe
i

( R
R dx

0 R
S2
n

k
4π 〈∂0AS∧AS〉−

R
R dx

0 Pn
p=1〈Di , h−1

i ∂0hi〉
)

∏
x∈∂M

δ
( k

2π
FS,12 −

n∑
i=1

Tiδ
(2)(x− x(i))

)
∏
x 6∈∂M

δ
( n∑
i=1

Tiδ
(‘3)(x− x(i))

)
(19)

The last factor in the path integral in (19),

∏
x 6∈∂M

δ
( n∑
p=1

Tiδ
(‘3)(x− x(i))

)
forces the partition function to be zero whenever we have a particle away from
the boundary. If all the particles are on the boundary this factor is (an infinite)
constant which can be absorbed in the normalization of the partition function.
Therefore the path integral (19) has only contributions from the particles sitting
on the boundary where the last factor can be ignored. The resulting path
integral is a path integral for the action

S[AS , A0, hi] =
∫

R
dx0

∫
S2
n

k

4π
〈∂0AS ∧AS〉 −

∫
R
dx0

n∑
i=1

〈
Di , h

−1
i ∂0hi

〉
(20)

+
∫

R
dx0

∫
S2
n

〈
A0 ,

k

2π
FS −

n∑
i=1

Tiδ
(2)(x− x(i))dx1 ∧ dx2

〉

of Chern–Simons theory on the boundary coupled to point charges. We will
study this action in the next section.

The relation between quantum gravity in the bulk and Chern–Simons theory
on the boundary was first studied in [22] and extended to include translational
degrees of freedom in [23]. For the amplitudes considered in this paper the
correspondence is precise. This picture is also supported by spinfoam studies [24]
where it was shown that the invariants of four dimensional Crane-Yetter model
are equivalent to Turaev-Viro invariants on the three dimensional boundary.

3 From Chern–Simons to particle kinematics

Let us summarize what was achieved above. We showed that in the topological
limit the action for gravity coupled to the particles is equivalent to the Chern-
Simon action for the gauge group SO(4, 1), coupled to particles, carrying the
charges (masses and spins) of the same group. The 3 dimensional manifold

9



on which this theory is defined is assumed to be a product of a punctured 2-
sphere S2

n, with each puncture corresponding to the particle, with real line R
representing time. Thus in the zeroth order of perturbative expansion, i.e., in
the “no local gravity limit of quantum gravity” our theory is described by a
holographic quantum SO(4, 1) Chern–Simons theory with particles.

In what follows we recall the construction of Alekseev and Malkin [25] (see
also [4], from which we borrowed the notation). In the case when the topology
of the boundary of spacetime is simple (no handles) and thus reflects only the
presence of particles exhibited by punctures, the topological degrees of freedom
of gravity can be absorbed by particle’s. Thus effectively we obtain a (possibly
deformed) theory of particles kinematics. As stressed above this theory could
only depend on gauge group elements, as positions in spacetime do not play any
role.

In what follows we will consider only the classical theory. The symplectic
form on the space of gauge field and particles configurations can be easily found
from the action (20) and reads

Ω =
k

4π

∫
S2
n

〈δAS ∧ δAS〉+
n∑
i=1

δ
〈
Di, h

−1
i δhi

〉
(21)

This symplectic form is subject to the constraint

k

4π
FS =

n∑
i=1

Tiδ
(2)(x− x(i))dx1 ∧ dx2 (22)

which makes the curvature zero everywhere except for the positions of the par-
ticles. It follows that the connection AS takes simple form at appropriately
defined submanifolds of S2

n.
Alekseev and Malkin [25] define these submanifolds as follows. Take a point

p0 away from the punctures and construct loops mi with this base point around
each puncture (Figure 1). Along these loops we will later calculate holonomies.
Now cut the surface along the loops and remove the so obtained discs. As a
result we obtain n punctured discs Qi and the polygon Q0 with no punctures
inside, whose boundary will contain exactly n edges which we denote mi and
vertices pi p0

m1→ p1 · · · pn−1
mn→ p0 (Figure 2).

Now the first term in (21) can be decomposed as follows

k

4π

∫
S2
n

〈δAS ∧ δAS〉 =
k

4π

∫
Q0

〈δAS ∧ δAS〉+
k

4π

n∑
i=1

∫
Qi

〈δAS ∧ δAS〉 (23)

The virtue of the decomposition (23) is that on each region the form of the
connection is quite simple. Consider the region Q0 first. Since there are no punc-
tures in this simply connected region the constraint (22) tells that connection
AS is trivial there

AS |Q0 = γ0dSγ
−1
0 (24)

10



Figure 1:

Then by direct calculation one can convince oneself that the first integral in
(23) reduces to the boundary one

k

4π

∫
Q0

〈δAS ∧ δAS〉 =
k

4π

∫
∂Q0

〈
δγ−1

0 γ0, d(δγ−1
0 γ0)

〉
(25)

The contribution from the discs Qi can be found by similar analysis. The
only difference is that now we have to do with a region with puncture inside,
carrying the charge, being an element of gauge algebra. Since the curvature
must have the delta singularity at the puncture, the most general connections
on the disc must be given by gauge transformations of the canonical ones. The
latter are defined by

Bi =
1
k
D̃idφi, D̃i =

k

2π
µiT

04 =
k

2π
Di

where φi are angular coordinates, that along with the radial ones (defined such
that the singularity corresponds to ri = 0) can be introduced on the disks
globally. Thus

AS |Qi =
1
k
γiD̃idφiγ

−1
i + γidγ

−1
i (26)

It is easy to see that since ddφi = 2πδ(x− xi)dx∧ dy this connection solves the
constraint (22) if γi(xi) = hi. Plugging (26) to one of the Qi integrals in (23)
we find ∫

Qi

〈δAS ∧ δAS〉

11



Figure 2:

= −δ
〈
D̃i, h

−1
i δhi

〉
+

k

4π

∫
∂Qi

〈
δγ−1
i γid

(
δγ−1
i γi

)〉
− 1

2π

∫
∂Qi

δ
〈
D̃iδγ

−1
i γi

〉
dφi

(27)
Notice that the sum of the first terms in (27) cancels exactly the second term
in (21). Thus the symplectic form is a sum of (25) and the last two terms in
(27). Its form can be simplified further by observing that the connections on
the segments of ∂P0 =

⋃
imi must be equal to the connection on appropriate

∂Pi, in order to make connection continuous. We have therefore

AS |mi = γ0dSγ
−1
0

∣∣
mi

=
(

1
k
γiD̃idφiγ

−1
i + γidγ

−1
i

)∣∣∣∣
∂Qi

= AS |∂Qi (28)

This equation can be solved to give

γ−1
0

∣∣
mi

= Ni exp
(

1
k
D̃iφi

)
γ−1
i

∣∣
mi
, dNi = 0 (29)

Substituting this expression to (25) and then, along with (27) to (23) will give
us the final result.

Before doing this final step, let us consider again the polygon P0. It has n
vertices p0, p1, . . . , pn−1 connected by edges mi. Since the connection is trivial
on the polygon, the parallel transport along an edge is given simply by a product
of the gauge parameters at the beginning and the end of the edge

PTpi−1→pi = γ0(pi)γ−1
0 (pi−1)

12



But because of the continuity of the connection the values of γ0 at the vertices of
the of the polygon P0 are just the products of holonomies Mi of the connection
of the disks

γ0(pi) ≡ K−1
i = MiMi−1 · · ·M1, γ0(p0) ≡ K−1

0 = 1 (30)

Next, since the connection γi is single valued on each disk it is clear from (26)
that each holonomy is of the form

Mi = giC
−1
i g−1

i , Ci = exp
(

2π
k
D̃i

)
, gi = γi(pi) (31)

Now we are ready to present the central result of this section, the Alekseev–
Malkin theorem [25]: The symplectic form Ω (21) gets contributions only from
vertices of the polygon Q0 and reads

Ω =
k

4π

n∑
i=1

(〈
Cig
−1
i δgiC

−1
i ∧ g

−1
i δgi

〉
−
〈
δKiK

−1
i ∧ δKi−1K

−1
i−1

〉)
(32)

The first term in this expression is a deformed kinetic term (a deformation of
the standard free particle symplectic form

∑
δpµ∧δqµ, and the second describes

some “topological interaction” of the particles. Notice that as expected the final
form of the symplectic structure does contain no trace of the connection; there
is as many degrees of freedom as the number of particles, each described by a
gauge group element. In this way the topological degrees of freedom of gravity
has been “eaten” by the particle’s ones.

We will discuss the theory of particles provided by this symplectic structure
in the next section.

4 The deformed particle

Having obtained the symplectic form for single particle (32), let us try to un-
derstand in which sense it describes a deformed particle. To do that let us
first compare it with with an analogous expression for free particle moving in 4
dimensional de Sitter spacetime in the limit of vanishing cosmological constant.

The Lagrangian for such particle is given by equation (7) and reads (fol-
lowing [17] we represent SO(4, 1) generators by gamma matrices, T IJ = γIJ ≡
1/2[γI , γJ ], I, J = 0, . . . , 4 with γ5 matrix denoted here γ4)

L =< DAhτ >=
〈
µγ04(h−1A(0)

τ h+ h−1ḣ)
〉
, (33)

where µ = `m with ` being the cosmological length scale, related to the cosmo-
logical constant, cf. (4). Since de Sitter background is gauge equivalent to zero
configuration we take A(0)

τ = 0 Then (33) takes the form

L =
〈
µγ04h−1ḣ

〉
(34)
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Let us decompose the SO(4, 1) group element into translational and Lorentz
SO(3, 1) parts (using Cartan decomposition)

h = T L, T = 1 +
qa
`
γa4 +O

(
1
`2

)
, (35)

Substituting this into (34) and keeping only the leading term after simple cal-
culation we find (the L−1L̇ term is proportional to γab and cancels under the
trace)

L =
〈µ
`
γ04L−1γa4Lq̇a

〉
, a = 0, . . . , 3 (36)

After some γ matrices algebra this expression gives

L = paq̇
a, pa = m

〈
γ0L−1γaL

〉
(37)

and it follows that pa defined above is to be identified with particle momentum.
Notice that it follows from (37) that

paγ
a = mLγ0L−1 (38)

This equation just says that there is one to one correspondence between mo-
mentum of a particle and the Lorentz transformation that boosts the particle
from the rest to its actual velocity. It follows that the components of momenta
on the left hand side are restricted to be on shell, p2 +m2 = 0. As usual we can
treat these components as independent adding to the lagrangian the on shell
constraint p2 +m2. Thus we conclude that the lagrangian (33) describes a free
relativistic particle, as it should.

Returning to the starting point, eq. (33) it can be easily computed that the
Lagrangian L =< Dh−1ḣ > corresponds to the symplectic form

Ωfree =< Dδh−1 ∧ δh >= −1
2
〈
[D,h−1δh] ∧ h−1δh

〉
Comparing this with the first term in (32) we see that as the result of defor-
mation instead of commutator with algebra element D = µγ04, in the deformed
case we have to do with conjugation with group element

C = e2πD/k = exp(2πµγ04/k) = cosh
2πµ
k

1 + sinh
2πµ
k

γ04

It can be checked that the first “free” term in (32) reduces to

Ω =
k

4π
cosh

2πµ
k

sinh
2πµ
k

〈
[γ04, g−1δg] ∧ g−1δg

〉
(39)

Now we have to recall that the Chern–Simons coupling constant is related
to the original coupling constant β: k/4π = 1/β ∼ `2κ2, where κ = ~/G.
Therefore the prefactor in Ω in (39) becomes, in the leading order in `, 1

2 m`.
One can then easily check using definition of momenta (38) and the expansion
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(35) that (39) exactly reproduces (up to the sign and a prefactor depending on
Immirzi parameter) the free particle symplectic structure. We conclude that
the first term in (32) is just a sum of free particle actions.

Let us now turn to the second, interaction term, in the symplectic form (32).
As an example consider the case of two particles. In this case the interaction
term reads

− k

4π
〈
δK2K

−1
2 ∧ δK1K

−1
1

〉
, K1 = M−1

1 , K2 = M−1
1 M−1

2 (40)

To calculate this let us first expand the holonomy in powers of `, by making use
of the Cartan decomposition of the group (35) and definition of momenta (38)

M−1 = gCg−1 = 1 +
1
κ2`

paγ
aγ4 +O

(
1
`2

)
(41)

Thus
− k

4π
〈
δK2K

−1
2 ∧ δK1K

−1
1

〉
=

− 1
κ2

(
δp(2)

a + δp(1)
a

)
∧ δp(1)

b

〈
γaγ4γbγ4

〉
=

1
κ2

δp(2)
a ∧ δp(1)a (42)

Equation (42) can be easily generalized to an arbitrary number of particles, and
knowing the symplectic form one can readily reproduce the lagrangian for the
n-particles system. It is a sum of the standard kinetic terms and the on shell
constraints for each particle along with the interaction terms

L =
n∑
i=1

p(i) · d
dτ

q(i) + λ(i)
[
p(i)2 +m(i)2

]
+

1
κ2
p(i) ·

i−1∑
j=1

d

dτ
p(j)

 (43)

where τ is the affine parameter and λ(τ) is the Lagrange multiplier enforcing
the mass shell constraints, and · is the standard Minkowski product.

Equation (43) is the final result of our paper. It shows that in the action
of n-particles system, the actions of each particle is not deformed while the
deformation arises in the form of the presence of the additional interaction
terms. It is worth noticing that this deformation does not change equations of
motion (because the momenta p(i) are constants of motion), while it certainly
changes the Poisson brackets. In particular the brackets of positions will not
vanish anymore. However, it is easy to see that by simple change of variables

q(i) −→ q̃(i) = q(i) +
1
κ2

i−1∑
j=1

d

dτ
p(j) (44)

the lagrangian (43) can be cast into the form of the one of the standard system
of free relativistic particles.
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5 Discussion

The results of the preceding section can be regarded surprising. Building on the
experience with 3d gravity one would expect that the deformation of the final
particle action is essentially guaranteed, and the recent investigations reported
in [27] suggested that the deformation was to be of κ-Poincarè form [28]. Instead
what we got was just a standard undeformed relativistic particles action. Let
us therefore try to understand this result.

To get some more insight let us try to investigate how the results above
change if we go beyond the the leading order in large cosmological scale ` ex-
pansion. Our starting point is again the formula (39)

Ω =
k

4π
sinh

4πµ
k

〈
γ04 g−1δg ∧ g−1δg

〉
(45)

Using the definition of momenta and Cartan decomposition as above one com-
putes

Ω =
k

4πm
sinh

4πµ
k

(
pa
〈
γa4 T −1δT ∧ T −1δT

〉
− δpa ∧

〈
γa4 T −1δT

〉)
(46)

with momenta restricted to be on-shell p2 + m2 = 0. It is now convenient to
parametrize the translational part of the group as follows

T = Q4 1 +Qa γ
aγ4 (47)

with (dimensionless) positions Q belonging to de Sitter space

Q2
4 +Q2 = 1, Q2 ≡ −Q2

0 + ~Q2 (48)

Plugging this into the symplectic form above after straightforward calculations
we find

Ω =
k

4πm
sinh

4πµ
k

δ

(
Q4 pa δQ

a +
1
Q4

paQ
aQb δQ

b

)
(49)

It follows that the lagrangian is again up to the irrelevant prefactor just the one
of a relativistic particle moving on de Sitter background: defining qa = `Qa we
have

L =
1
`

√
1− q2/`2 paq̇a +

1
`3

1√
1− q2/`2

paq
a qbq̇

b + λ
[
p2 +m2

]
(50)

Notice that again we see no trace of any deformation and both the symplectic
structure and the lagrangian are linear in momenta, which makes the position
space commutative.

However we were not able yet to calculate the second “interaction” terms of
the symplectic structure beyond the leading term in large ` expansion, which
may change the picture considerably. It is a general result of Alekseev and
Malkin [25] that such interactions can be removed by an appropriate symplectic
transformation. In this transformation the Borel subroup of the original gauge
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group is known to play a role, and on the other hand it is directly related to
κ-Poincarè algebra and κ-Minkowski space [29]. One should also remember that
in order to get the κ-Poincarè algebra as a contraction limit of ` → ∞, a non-
trivial rescaling of momenta is required (see [28] and [30] for details.) Although
such rescaling is well motivated mathematically, it is not clear how to justify
it physically. We are going to address all these questions in the forthcoming
paper.
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