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aSnecma, SAFRAN Group, Rond-Point René Ravaud - Réau, 77550 Moissy Cramayel, France;
bFemto-ST Institute, Applied Mechanics Dpt, 24 rue de l’Epitaphe, 25000 Besançon, France

ABSTRACT

Dynamics of gas-turbine blades are particularly aero-elastic coupling sensitive. These aerodynamic limits can be
pushed away by adding extra damping to the structure in order to reach even better compressor performance.
However nowadays design and manufacturing techniques in aero-mechanics are achieving their maximum of
state-of-the-art.

As in many fields active control would solve easily this kind of instability. But the difficulty remains in the
needed energy supply for actuators whereas these components are aimed to be bonded on rotating structures.
The capacity of different auto-supplied devices using shunted piezoelectric circuits had been studied here to
prevent turbomachine bladed from fluttering.

Before realizing the study on complex turbomachine geometries, the presented technique uses a numerical
development thanks to a 1D Euler-Bernoulli beam model combining both mechanical and electrical coupling
parameters. A second development thanks to a 3D model had been made using a commercial tool, Comsol
software. These approximate models are used to optimize electrically the shunted piezoelectric element and its
localization. The results, verified experimentally, let suppose that vibrations can be reduced significantly when
shunted piezoelectric circuits are mounted on a real structure.

Keywords: Piezoelectricity, Semi-passive control, Damping, Turbomachine, Single-crystal, Negative capaci-
tance

1. INTRODUCTION

Each new gas turbine generation require more and more demanding design techniques to correspond to the
extreme environments and conditions of use. These have to be especially more and more light and efficient. The
design methods for these machines imply an augmentation in volume and speed of the airflow to achieve such
proportion of thrust/mass with the use of less components or lighter materials. The space between blade stages
in compressors are also tighter with a lower number of stages. Consequently new compressors use extremely long
profile blades, which rises the aerodynamics stresses.

The vibrations induced by the airflow in turbomachines are the cause of High Cycle Fatigue (HCF) and
ask for regular and unexpected maintenance needs. The minimization of the vibration responses toward to
the aerodynamics forces can reduce the HCF and by the way reduce significantly the deterioration phenomena
and avoid high cost in repairing. The need of new solutions is trivial as most of the traditional solutions of
minimization of HCF effects bring negative effect on the new effective designs, adding mass to the structure for
instance. Moreover as the elderly concept engines may match the new expectations, after-design solutions have
to be suggested and optimized easily without replacing any components.

The piezoelectric material present a new approach to vibration suppression in aeronautical structures1,2 .
They can be adapted to the creation of damping or control elements. Indeed when the electric current is applied
to a piezoelectric material, a corresponding strain is produced within the material, which produces an electric
voltage. Vibration damping of an elastic structure can be obtain by an piezoelectric actuator embedded into it
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and shunted to an electric resonant circuit adjusted to the mode to damp. The obtained damping depends on
the type of electronic shunt and can be expressed directly taking into account the inherent structural damping
coefficient or unstable phenomena as fluttering of the studied system.

In this paper, we present a simple Euler-Bernoulli beam model created on the Hamilton Principle3,4 to be
able to describe the studied phenomena and explain the role of the piezoelectric component in energy transfer
between the schematically modeled blade structure and the electronic circuit. A more complex 3D model thanks
to the Comsol software has been also achieved. First optimization guidelines have been highlighted to maximize
the induced damping. An experiment has been settled to verify theoretical results on damping with a passive
shunt the damping realized thanks to different piezoelectric shunt sticked onto steal beams of different length in
order to be able to quantify the capability of passive control and check how much the piezoelectric system can
likely dampen passively the structure.

2. EULER-BERNOULLI BEAM MODELING THANKS TO HAMILTON PRINCIPLE

2.1 Energy description

The Hamilton principle5 is often used to construct Finite Element models. The beam model studied and exploited
in this paper has been built on the same criteria. The variational principal can be written as δ

∫ t1

to
(L+W)dt = 0

with L Lagrangian term and W the virtual work of mechanical and electrical forces. L = T + H with T kinetic
energy and H the enthalpy which worths by the IEEE definition6 of the piezoelectricity, H = U − EiDi with U
the intern energy of the studied model.

2.1.1 Kinetic Energy expression

The kinetic energy expression can be expressed as T = 1
2

∫

Ω
ρu̇iu̇idΩ, which leads to:δT =

∫

Ω
ρδ(u̇i)u̇idΩ

2.1.2 Strain Energy Expression

For a piezoelectric element we can express the strain energy as: H = 1
2

∫

Ω
†{S}{T}dΩ − 1

2

∫

Ω
†{E}{D}dΩ

The piezoelectric equations of behaviour are:

{T} =
[

cE
]

{S} − † [e] {E} (1)

{D} = [e] {S} +
[

εS
]

{E} (2)

where {T} represents the stresses tensor, {S} the strain tensor, {E} the electric field, {D} the electric displace-
ment, [cE ] the elastic coefficients at constant electric field {E}, {εS} the dielectric coefficients at constant strain
{S}, and [e] the piezoelectric coupling coefficients.

We replace {T} et {D} by their respective expression in the Hamilton principle. Considering {S} as a
symmetric field, we find for H:

∫ t1

to

δHdt =

∫

Ω

∫ t1

to

[

†{δS}
[

cE
]

{S}
]

dtdΩ −

∫

Ω

∫ t1

to

[

†{δS} † [e] {E}
]

dtdΩ

−

∫

Ω

∫ t1

to

[

†{δE} [e] {S}
]

dtdΩ −

∫

Ω

∫ t1

to

[

†{δE}
[

εS
]

{E}
]

dtdΩ (3)

2.2 Euler-Bernoulli Beam Model

2.2.1 Kinematic hypothesis of Euler-Bernoulli beam model

The initial 3D problem of elasticity is reduced to 1D problem. All functions (displacement, stresses...) depend

on only one variable along the length of the beam, here noted x. We suppose also that the thickness and the
width are small in comparison with the length and the beam is charged in its plane. The transverse strain is
neglected in this model.
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2.2.2 Strain expression in the case of a Euler-Bernoulli beam

Some articles show studies7 with piezoelectric patches facing each other. These sandwich systems usually show
a better efficiency of their system while the piezoelectric elements are perfectly bonded in opposite. In the case
of aeronautical structure as blades, this position could not happen and that is why all our study is done with
piezoelectric elements placed independently. For a beam with a piezoelectric element bond onto the surface the
representative drawing of the model is the following:

✻w θ
■

✲✛
Ls

✲✛ Lp

✻❄ts✻

❄tp
✲ x

✻
z

We consider the beam widths ls et lp respectively the one of the structure and of the piezoelectric. The
variables w et θ correspond to the degrees of freedom of the beam.

By definition the termes ij of the strain tensor i in the hypothesis of small linear perturbations can be

expressed as Sij = 1
2

(

dui

dxj
+

duj

dxi

)

. Further we will note Sij = Si for i = j and 2Sij = S9−(i+j) for i �= j.

2.2.3 Piezoelectric coefficient correction

The characteristic coefficients of a piezoelectric are affected by the Euler-Bernoulli type modeling. The beam
hypothesis implies a reduction of the number of piezoelectric parameters. We can consider the transverse efforts
Txz or T5 neglected. The efforts T2, T3, T4 et T6 are considered equal to zero by the Euler-Bernoulli model.

For a piezoelectric element the equations can be written as:
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(4)

Which gives us:

T1 =

[

cE
11 −

(

cE
33c

E
11 − cE

13

2
)−1 [

cE
12

(

cE
33c

E
12 − cE

13

2
)

+ cE
13

2 (
cE
12 − cE

11

)

]

]

S1

+

[

(

cE
33c

E
11 − cE

13

2
)−1

[

cE
12

(

−cE
33e31 + cE

13e33

)

+ cE
13

(

−cE
13e31 + cE

11e33

)]

− e31

]

E3 (5)

By the same way we calculate the electrical equation part:

⎧

⎨

⎩

D1

D2

D3

⎫

⎬

⎭

=

⎡

⎣

0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

⎤

⎦

⎧

⎪

⎪

⎪
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⎪

⎪

⎪
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⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

+

⎡

⎣

ε11 0 0
0 ε11 0
0 0 ε33

⎤

⎦

S⎧

⎨

⎩

E1

E2

E3

⎫

⎬

⎭

(6)

D3 = e31S1 + e31S2 + e33S3 + ε33E3 (7)

= e31S1 − e31

(

cE
33c

E
11 − cE

13

2
)−1 [(

cE
33c

E
12 − cE

13

2
)

S1 +
(

cE
33e31 + cE

13e33

)

E3

]

− e33

(

cE
13

2
− cE

11c
E
33

)−1
[

cE
13

(

cE
12 − cE

11

)

S1 +
(

−cE
13e31 + cE

11e33

)

E3

]

+ ε33E3 (8)

3



when we write the system as in the manner developed by Maurini8 , the new piezoelectric parameters are:

{T1} = cE
11

∗
{S1} − e∗31{E3} (9)

{D3} = e∗31{S1} + εS
33

∗
{E3} (10)

cE
11

∗
= cE

11 +
(

cE
33c

E
11 − cE

13

2
)−1 [

2cE
12c

E
13

2
−
(

cE
12

2
cE
33 + cE

13

2
cE
11

)]

(11)

e∗31 = e31 +
(

cE
33c

E
11 − cE

13

2
)−1 [

−
(

cE
12c

E
33 − cE

13

2
)

e31 + cE
13

(

cE
12 − cE

11

)

e33

]

(12)

εS
33

∗
= εS

33 +
(

cE
33c

E
11 − cE

13

2
)−1

[

−e31

(

cE
33e31 + cE

13e33

)

+ e33

(

−cE
13e31 + cE

11e33

)]

(13)

In the case of a Euler-Bernoulli type resolution the displacement ui which is defined as u1 = −z ∂w
∂x

, u2 = 0

et u3 = w(x, t) with w(x, t) displacement of a point distant from the neutral fiber and ∂w
∂x

(x, t) = −θ(x, t)

corresponding to the rotation of the section at the coordinate x. We obtain the strain S11 = S1 = ∂H1

∂x
= z ∂2w

∂2x
.

We replace the obtained expressions into the Hamilton principle:
∫ t1

to

δHdt =

∫

Ω

∫ t1

to

cE
11

∗
z2 ∂2δw

dx2

∂2w

∂x2
dtdΩ −

∫

Ω

∫ t1

to

δE3e
∗
31z

∂2w

∂x2
dtdΩ

−

∫

Ω

∫ t1

to

∂2δw

∂x2
e∗31zE3dtdΩ −

∫

Ω

∫ t1

to

δE3ǫ
S
33

∗
E3dtdΩ (14)

2.2.4 Electrical model hypotheses

The electrical field can be defined as a potential gradient φ such as:
→

E= −
→

∇ φ. Then φ corresponds to the
difference of electrical voltage between the two electrodes of the piezoelectric element. We can approximate the
electrical field as constant through the thickness, which implies: E3 = − φ

dz
(z direction through the thickness

of the piezoelectric element). We suppose that the inferior electrode is grounded: φ(x, y, z, t) = φ(z, t) and we
define zp the height of the inferior electrode zp = ts

2 . At the superior electrode we find z = zp + tp = ts

2 + tp.

and we have φ(zp, t) = V (t) − V0 = V (t), which gives us as solution φ = V
tp

(z − ts

2 )

E3 = −
∂φ

∂z
= −

V

tp
z (15)

In the framework of these hypotheses we find as piezoelectric strain expressions:
∫ t1

to

δHdt =

∫

Ω

∫ t1

to

cE
11

∗
z2 d2δw

∂x2

∂2w

∂x2
dtdΩ +

∫

Ω

∫ t1

to

δV
e∗31z

tp

∂2w

∂x2
dtdΩ

+

∫

Ω

∫ t1

to

∂2δw

∂x2

e∗31z

tp
V dtdΩ −

∫

Ω

∫ t1

to

δV
ǫS
33

∗

t2p
V dtdΩ (16)

3. FINITE ELEMENT DECOMPOSITION

3.1 1D Finite Element model

We replace, in the strain energy expression, the precedent displacement as a polynomial function and split up
into two distinct functions independent respectively from time and space parameters w(x, t) = W (x)η(t). We
can distinguish three terms in the strain energy expression9 : a pure mechanical parameter δHm, two electro-
mechanical coupling parameters δHem et δHme and an electrical parameter δHe.

Let i be the index summing the structural elements s and the piezoelectric ones p.

δHm = †{δη(t)}

∫ Li

x=0

EiIi
†[W

′′

(x)][W
′′

(x)] dx {η(t)} (17)
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δHme = δHem = −δV
∫ Lp

x=0
lp(ts+tp)

2 e∗31[W
′′

(x)] dx {η(t)} and δHe = −
lpLp

tp
ǫS
33

∗
δV V

The elementary stiffness and mass matrices for the system {beam+piezoelectric} can be calculated from the
strain energy expression.

3.1.1 Stiffness Matrix

The elementary stiffness matrix can be written as equation 18 with I structural inertia developed in Appendix B.

Ke =

[

Ke
mm Ke

me

Ke
em Ke

ee

]

=

[

cE
11

∗
ILe

†[W
′′

][W
′′

]
lp(ts+tp )

2 e∗31
†[0,−1, 0, 1]

lp(ts+tp)
2 e∗31 [0,−1, 0, 1] −

lpLp

tp
εS
33

∗

]

(18)

We note the piezoelectric characteristics: α =
lp(ts+tp)

2 e∗31 coupling coefficient and CS
p =

lpLp

tp
εS
33

∗
the

inherent capacity at constant strain of the piezoelectric element of length Le.

3.1.2 Mass Matrix

The mass matrix M of the system comes from the kinetic expression T previously calculated and using the same

methodology as before for the stiffness matrix. δT = −ρi

∫

Ωi
δuiüidΩ but u1 ≈ 0, u2 = z

∂w

∂x
et u3 = w.

The influence of the inertia is neglected on the kinetic energy.

δT = −ρiSi
†{δη(t)}

∫ Li

x=0

†[W (x)][W (x)] dx {η̈(t)} (19)

From the expression 19, we drag out the elementary matrix [Me]:

[Me] = ρiIi

∫ Li

x=0

†[W
′

(x)][W
′

(x)] dx (20)

To complete the study the pure mechanical matrices of a Euler-Bernoulli model are recalled in Appendix C.

3.2 FE electromechanical system

For a FE system the assembly of the whole system linked to a shunt circuit in dynamic and in the case of a
electrical shunt realized between the electrodes, we have for a piezoelectrical mechanical system the following
relation written for one element:

[Mmm]{ẅ} + [Gmm]{ẇ} + [Kmm]{w} + [Kme]{V } = {F} (21)

[Kem]{w} − [Kee]{V } = −{q} (22)

In the case of a shunt with a Z impedance, V = −sZq with s Laplace coefficient.

[Mmm]{ẅ} + [Gmm]{ẇ} +
(

[Kmm] + [Kme][Kee]
−1[Kem]

)

{w} + [Kme][Kee]
−1{q} = {F} (23)

sZ[Kee]{q} + {q} + [Kem]{w} = 0 (24)

We can notice that in the case of short circuit V = 0 and we return to a purely mechanical system:

[Mmm]{ẅ} + [Gmm]{ẇ} + [Kmm]{w} = {F} (25)

and in the case of open circuit q = 0:

[Mmm]{ẅ} + [Gmm]{ẇ} +
(

[Kmm] + [Kme][Kee]
−1[Kem]

)

{w} = {F} (26)

The stiffness value increases from a parameter K ′
mm = [Kme][Kee]

−1[Kem] linked to the electromechanical (the
coupling α) and electric (the inherent capacity Cp) parameters. This frequency gap between open and short
circuit is regularly used as a optimization criteria10 .
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Figure 1. Picture from 3D Comsol model

3.3 3D modeling and state space system resolution

The 3D model represented in figure 1 is realized with the Comsol myltiphysics software.

The FE electromechanical system from equation 3 is firstly reduced by the methodology developed by Col-
let11 . This methodology condensation allows a more accurate computation of the piezoelectric impedances. The
induced matrices are exploited to create the final model in Matlab. To connect the FE model to shunt circuit
we write the system as a Linear Time Invariant (LTI) System described just below:

{

Ṅ = AN + BE
S = CN + DE

(27)

We define the observability variable with all the displacements x = φη with φ functions based on the con-
densation methodology11 :

N =

{

η
η̇

}

(28)

The input of the system:

E =

{

V
F

}

(29)

The output with w = Cd1x deflection of the beam tip:

S =

{

q
w

}

(30)

We write the initial system as a linear state problem with M, K and G respectively Mass, Stiffness, Damping
Matrices:

{

ẋ
ẍ

}

=

[

0 I
−M−1K −M−1G

]{

x
ẋ

}

+

[

0 0
M−1Fu1 M−1Fu2

]

E (31)

S =

[

Cd1 0
Cd2 0

]{

x
ẋ

}

+ [Dd 0]E (32)

In the case of a shunted piezoelectric with a electrical circuit of Z impedance. We have also the relation
V = −Zsq with s the Laplace operator. Here we connected to the piezoelectric a resistive Rs and negative
capacity Cs in series and Z = Rss + 1/Cs and q = Cd1x + DdV as in our experimental work (developed in
section 4.3) but the method can be used for many other kinds of electrical circuits.

V = −(Rss + 1/Cs)(Cd1η + DdV ) = −RsCd1η̇ − RsDdV̇ − C−1
s Cd1η − 1/CsDdV (33)
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Hence V̇ = −Cd1D
−1
d η̇ − (C−1

s Cd1)(RsDd)
−1η − (C−1

s Dd + 1)(RsDd)
−1V ;

{

Ṅ = A N + B E

V̇ =
[

−Cd1D
−1
d − (C−1

s Cd1)(RsDd)
−1
]

N + [−(C−1
s Dd + 1)(RsDd)

−1 0] E
(34)

{

Ṅ = A N + B E

V̇ = C ′ N + [Dd′ 0] E
(35)

We can write the new linear state system taking into account the electronic circuit with a new observation

parameter N ′ =

{

N
V

}

, entry F and output S′ =

{

V
w

}

.

Ṅ ′ =

[

A M−1Fu1

C ′ D′
d

]

N ′ + M−1Fu2 F (36)

S′ =

⎡

⎣

Cd2 0 0
0 0 0
0 0 1

⎤

⎦N ′ + 0 F (37)

3.4 First study of optimal piezoelectric damping with a resistive shunt

Many studies5,12 have detailed some damping optimization with several electronic shunts involving inductive,
resistive, capacitive or switching components. In this paper we focused on the capability of passive damping
on structure as it is very difficult, if not impossible, to supply the electric devices in aeronautical structures.
Therefore we glanced preferentially at the mechanical coupling carried out between the structure and the piezo-
electric element and which plays a very high role in passive control. A first study has been realized to observe
the evolution of the maximal damping ratio obtained by a purely resistive shunt as a function of the length of the
piezoelectric element from the resolution of sections 3.2 and 3.3 for an electric impedance Z = R. The piezo-
electric is kept at the base of the root of the cantilever beam and we took here a 55mm long-10mm wide-1mm
thick beam. The piezoelectric has the same width as the beam and is 0.5mm thick. These values correspond
to the values used later in the experimental work (section 4.1). The simulations are realized for a piezoelectric
element from Saint Gobain Quartz (P1 94).

Figure 2. Comparison of the evolution of the length of the piezoelectric element modeled in 1D and 3D

In this particular case we observe that the maximum of damping, calculated at an optimal resistance for each 

length ratio, is obtained for a piezoelectric length around the middle of the beam (fig. 2). At the same time of 
the decreasing of the damping ratio, the added mass on the second part of the beam, where the beam strain is 

the weaker, makes also the eigen frequency of the first mode diminish.
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4. EXPERIMENTAL RESULTS

4.1 Experimental protocol

A steel beam has been used to check the modeling by the Euler-Bernoulli and 3D Comsol model (fig. 3). Each
time we kept constant the size of the piezoelectric (20mm x10mm x0.5mm) to be able to compare and evaluate
the extra damping in function of different relative lengths (55-70-90mm x10mm x1mm) of the host structure.
The piezoelectric element is bonded close to the cantilever beam root (2mm distance) to retrieve good damping
results for the first bending mode as the strain is then maximum, the piezoelectric being sensitive to the beam
strain.

Figure 3. Picture of the experimental assembly

The beam is excited by an electro-magnetic generator with a residual magnetic field to be able to excite the
metal beam at distance. The damping on the first mode from a white noise is measured by a laser velocimetre
and acquired by a PC with Siglab software.

4.2 Resistive shunt

4.2.1 Damping influence from the length ratio of piezoelectric patches

We desired to quantify the capability of damping impact thanks to a resistive shunt and by this way evaluate
the maximum of coupling between the piezoelectric and the beam. When we make the resistance shunt on the
piezoelectric patch vary from 0 (short circuit) to +∞ (open circuit). This phenomena can be explained by the
direct impact which the resistance has onto the stiffness of the whole structure {piezo+beam} as explained in
section 3.2. Increasing the resistance implies so an increase of the damping ratio at the beginning and a decrease
after passing by an optimum, while the frequency keeps increasing.

A summary table 1 of all the experiments is drew up for the first mode.

55mm beam 70mm beam 90mm beam

Short-circuit frequency 360.3 Hz 210.0 Hz 121.4 Hz

Open-circuit frequency 366.5 Hz 212.7 Hz 122.7 Hz

Structural damping (%) −0.1768 −0.1295 −0.1376

Maximal damping at Ropt (%) −0.9764 −0.744 −0.654

δ damping at Ropt (%) −0.80 −0.61 −0.52

δ magnitude damping −18 dB −13 dB −12 dB

Table 1. Passive damping results from experiments
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4.2.2 Damping impact due to piezoelectric material type

Two different types of piezoelectric material have been also tested during the experimental studies. Keeping the
same size of material, we wanted to test the capability of the new material PMN-33PT from TRS Technology
in comparison with PZTs (Appendix A)13 . The capabilities of such a material were already proved in vibration
absorption14 . The PMN-33PT is a single crystal material and is a relatively softer piezoelectric element, which
induce lower eigen frequencies of the whole structure. It has so less impact on the host behaviour and deflection
of the beam. Moreover it has also better coupling coefficients. For a 55mm beam we observe experimentally a
damping gain of about 100% with a PMN-33PT in comparison to the used PZT in section 4.2.1 . The extra
damping ξ on the structure reaches about 2%, which corresponds to an amplitude loss of −25dB (fig. 4).

Figure 4. Bode and Evans diagrams of a 55mm beam with a PMN-33PT at different resistive shunt

4.2.3 Correlation with theoretical modeling

Though the whole experimental work has been realized with a PZT, P1 94 from Saint Gobain Quartz, we
choose to move the piezoelectric characteristics closer to the ones of a P1 91 from Appendix A. Indeed we can
hypothetically suppose that the PZT may have lost of its polarization during the cure needed to bond on the
steel beam (80◦C) thanks to a conductive glue (H20E of Epotek).

Beam length 55mm 70mm 90mm

Model type 1D 3D 1D 3D 1D 3D

Short-circuit frequency 361.0 Hz 354.9 Hz 213.9 Hz 211.0 Hz 124.0 Hz 122.7 Hz

Experimental relative error (%) 0.194 −1.50 1.86 0.48 2.1 1.07

Open-circuit frequency 367.0 Hz 361 Hz 216.9 Hz 213.9 Hz 125.4 Hz 124.1 Hz

Structural damping (%) −0.18 −0.18 −0.13 −0.13 −0.14 −0.14

Maximal damping at Ropt (%) −0.995 −1.00 −0.832 −0.811 −0.655 −0.666

Experimental relative error (%) 1.90 2.4 11.8 9.0 0.153 1.83

Table 2. Passive damping results from 1D and 3D theory

The relative error which can be read in table 2 on the expected theoretically damping is rather small. We
pointed out that most of the frequencies are overestimated which can be explained by the fact that the glue is
not taken into account in the different models. In consequence we observe that the glue may add some mass on
the structure  but seems to have a poor impact on the damping  ratio.

4.3 Negative capacitance shunt

To increase the efficiency of the damping due to Joule Effect and heat consummation through the resistance,
we studied also the possibility to prevent the energy from getting stocked into the inherent capacity. The study
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Figure 5. Electronic negative capacity diagram

such a system (developed in 3D in section 3.3) correspond to the one brought by an integral force feedback10 .
Therefore a negative capacity Cs represented by the figure 5 is added into the electrical circuit.

The device works as an equivalent negative capacity Ceq = −R7+γR8

(1−γ)R8

C1 for frequencies above 1
R3C1

. It can

be tuned thanks to γ through the potentiometer R8 variable from 0 to 20kΩ, which explains the lines break
on the evans diagram (fig. 6). We can then observe the very high degree of damping thanks to this system in
figure 6, where resistive damping evans loops are represented for different values of negative capacities. With a
simple PZT bond on a 55mm long beam, we gain more than 4% of damping and −30dB in magnitude on the
first mode just before the instability, in comparison to 1% of damping and −18dB in magnitude with a simple
resitive shunt (section 4.2.1). Indeed the system remains stable for negative capacities below the capacity at
contant stress CT

p . This instability corresponds to the highest pick visible on the bode diagram on figure 6 traced

for a capacity Cs just above −CT
p .

Figure 6. Bode and Evans diagrams of a 55mm beam with a PZT at different negative capacity and resistive shunt

5. CONCLUSION

With the arrival of new designs of engine components and the severe requirements which they have to follow,
innovation techniques to control blade vibrations in gas turbines have to be considered and studied. The critical
vibration modes are associated to the aspect ratio of blades. A high ratio makes the blade considered as a beam
with a typical response of low orders as bending or torsion modes. The model presented here corresponds to these
systems. However the characteristics of blade vibrations with a low aspect ratio are closer to a shell model and
present more complex modes. Induced fluid-structure coupling vibrations present in this last case have a very
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low inherent structural damping so this technique of damping with a piezoelectric shunt can be very interesting
too if applied here.

The potential of such a damping on a turbomachine is very interesting in theory as shown by the theoretical
models presented here and validated by the experimental work. Indeed the gain obtained experimentally is
as good as expected from a two-degree-of-freedom model (Euler-Bernoulli Beam) suggested by the variational
principle as well as from the 3D Comsol model. The purely passive method seems so to conclude experimentally
to a very large damping addition (almost 2% with a PMN-33PT and about −25dB only with a resistance), which
is actually globaly efficient enough to prevent instability from aerodynamics coupling to occur. The negative
capacity circuit presents better results, however it can present some difficulties to be adjusted correctly. The
passive control remains also always stable and can be adapted more easily to a muti-modal damping with several
piezoelectric element correctly adjusted and wisely localised on the structure. For a complex blade geometry,
the theoretical model is certainly to crude to represent fairly enough an hypothetic experimental model and will
be soon enriched, the experimental perspectives being to be able to implement a passive control on fan blades or
disk-assemblies15 . The aim of our next studies will be to prevent fluttering phenomena from appearing and to
push as far as possible the aerodynamics limits within the material resistance frontiers thanks to the optimisation
presmiss guidelines.

APPENDIX A. PIEZOELECTRIC PROPERTIES

cE(109N.m−2) cE
11 cE

12 cE
13 cE

33 cE
44 cE

66

P1 94 153.1 104.9 103.9 136.9 37.5 24.1
P1 91 120.9 76.3 73.1 112.6 33.6 22.3

PMN-33PT 115 103 102 103 69 66

Table 3. Modulus parameters

e(C.m2) e31 e33 e15

P1 94 −12.4 26.2 20.8
P1 91 −4.9 21.4 17.1

PMN-33PT −3.9 20.3 10.1

ε(ε0) εS
11 εS

33

P1 94 2710 2230
P1 91 1820 1461

PMN-33PT 1434 680

Table 4. Piezoelectric coupling and permittivity coefficients

APPENDIX B. INERTIA CALCULATION

The inertia Ixy is defined as Ixy =
∫

z

∫

y
z2dA with dA = dzdy.

For the structure Is =
∫

ts
2

z=−
ts
2

∫
ls
2

y=−
ls
2

z2dA =
lst

3
s

12
.

For the piezoelectric element Ip =
∫

ts
2

+tp

z= ts
2

∫

lp

2

y=−
lp

2

z2dA =
lp
3

tp

(

3t2s
4

+
3tpts

2
+ t2p

)

.

APPENDIX C. EULER-BERNOULLI COEFFICIENTS

The Hamilton principle leads naturally to the pure mechanical results for a Euler-Bernoulli beam that we find
out developing the term †[W

′′

][W
′′

] with W (x) expressed as with {w1,θ1} and {w2,θ2} respectively degrees of
freedom of nodes at the coordinate x1 and x2:

W (x) =

[

1 −
3

L2
e

x2 +
2

L3
e

x3

]

w1 +

[

x +
1

Le

x2 +
1

L2
e

x3

]

θ1 +

[

3

L2
e

x2 −
2

L3
e

x3

]

w2 +

[

−
1

Le

x2 +
1

L2
e

x3

]

θ2
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Stiffness matrix for a determined-determined element beam for a determined-free element

Ke
mm

EI
L3

⎛

⎜

⎜

⎝

12 6Le −12 6Le

6Le 4L2
e −6Le 2L2

e

−12 −6Le 12 −6L
6Le 2L2

e −6Le 4L2
e

⎞

⎟

⎟

⎠

EI
L3

⎛

⎜

⎜

⎝

3 3Le −3 0
3Le 3L2

e −3Le 0
−3 −3Le 3 0
0 0 0 0

⎞

⎟

⎟

⎠

Mass Matrix for a determined-determined element beam for a determined-free element

Me
mm

ρV
420

⎛

⎜

⎜

⎝

156 22Le 54 −13Le

22Le 4L2
e 13Le −3L2

e

54 13Le 156 −22Le

−13Le −3L2
e −22Le 4L2

e

⎞

⎟

⎟

⎠

ρV
420

⎛

⎜

⎜

⎝

204 36L 58.5 0
36L 8L2 16.5L 0
58.5 16.5L 99 0
0 0 0 0

⎞

⎟

⎟

⎠
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