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Introduction Contemporary mainstream programming languages offer mechanisms for expressing domain-specific
abstractions, but these languages and their compilers fall short in support for optimizing the use of such abstractions.
Optimizations rules in compilers are typically hard-coded and apply only for “low-level” operations of built-in types;
there are no mechanisms for defining domain-specific optimization rules or strategies that would apply to a specific set of
user-defined types. Addressing this discrepancy has been an active area of research (1; 2; 3; 4; 5; 6; 7). Approaches, such
as Active Libraries (8) and Simplicissimus (2), exploit compilers’ abilities to perform computations, e.g. template
metaprogramming. These approaches can be applied to new domains with relative ease, but are limited in that they are
flow-insensitive and do not integrate well with other compiler optimizations; the computations (and thus domain-specified
optimizations) must occur in the front-end where flow information is typically not accessible. In contrast, lightweight
optimization tools, such as CodeBoost (3), and full-fledged compilers, such as Telescoping languages (9) and the
BroadWay compiler (6), allow more powerful domain-specific optimizations by devising their own program analyses and
optimizations, whose functionalities and implementations overlap those of traditional compilers; the effort of developing
and maintaining domain-specific optimizations for a given domain may be more involved with these approaches.

Assuming a system that supports expressing domain specific user-defined optimizations, the programming tasks that
are necessary to enable such optimizations are, first, to describe the domain-specific transformation rules for specific types
and their operations, and, second, to annotate the programs to indicate where the transformations should apply. Regarding
the first task, it is not realistic to expect all programmers to provide type-specific optimization rules for all new user-defined
types. Authors of widely used libraries could, however, engage to such an effort if the effort was reasonable and amortized
over many uses of the abstractions offered by the library. Regarding the second task, the burden of annotating programs
to enable domain-specific optimizations should be very light, preferably incurring no burden at the client side, when
using abstractions that support domain-specific optimizations. Our work studies the potential of generic programming
for easy expression of generic optimization rules in libraries, and very lightweight annotations to enable those rules:
both the expression of the rules, as well as the annotations are part of the normal course of generic programming, that
encourages the explicit expression of abstractions’ semantic properties. Furthermore, we explore a mechanism to make
domain-specific optimizations flow-sensitive, so that they can be applied when traditional optimizations, such as inlining
and copy propagation, reveal more optimization opportunities.

Background: Generic Programming Yields Generic Optimizations Generic programming is a paradigm for designing
and implementing reusable software libraries. It allows for classifying types based on their capabilities, that is, the
operations they support and the semantics of these operations. This classification is the key to economical expression
of domain-specific optimizations: they need not be specified for operations of each user-defined type individually, but
rather at once to classes of types that have the essential characteristics for a particular transformation. The central notion
of generic programming is concept, essentially the (algebraic) description of requirements on types. A type that satisfies the
requirements described by a concept is said to model that concept. We tie domain-specific optimization rules to concepts;
the modeling mechanism is what enables these optimizations.

Our work is in the context of C++, in particular its forthcoming extension, the “concepts” language feature (10). The
language construct concept defines a set of requirements for a type or types, operations that must be defined and a set of
accessible “associated” types. The language construct concept map establishes modeling relationship between a type (or
types) and a concept. A special axiom construct, used inside concept definitions, allow programmers to express semantic
constraints as equations that operations of a concept’s operations must satisfy. The use of axioms has been previously
explored for optimizations and tests (11; 12); in the former use the equations of axioms are viewed as rewriting rules.
Transformation rules induced from equations in a concept’s axioms are generic, as the equations hold for all types that
model a concept. Listing 1 shows a concept defining monoids—mathematically defined to be a set with one associative
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binary operation and one identity element obeying the axiom of identity element. This axiom is denoted by the Identity
axiom in the programmatic expression of monoids as the concept Monoid, and give rise to a transformation rule. The two
concept maps in Listing 2 justify the transformation, e.g., for x+0 for any expression x of type int and for s+string(””)
for any expression s of type string.

concept Monoid<typename Op, typename T> {
T identity element(Op, T);

axiom Identity(Op op, T x) {
op(x, identity element(op, x)) == x;
op(identity element(op, x), x) == x;

}
}

Listing 1. Monoid concept definition

concept map Monoid<plus<int>, int> {
int identity element(plus<int> op, int x)
{ return 0; }

}
concept map Monoid<plus<string>, string> {

string identity element(plus<string> op, string x)
{ return string(””); }

}

Listing 2. concept map definition

Domain-Specific Compiler Optimizations We report on our work in utilizing C++ concepts, and their axioms, in
communicating domain-specific optimization opportunities to a compiler. Our goal is to enable high-level effective
optimizations with very little extra burden to the programmer. In particular, we discuss our approach to permit and apply
high-level domain specific transformation rules throughout the compiler—particularly, in the middle-end.

The outline of our approach is as follows:

• We induce generic rewriting rules from invariants declared inside axioms of concepts, and thereafter use them to directly
optimize generic code;

• We instantiate generic rules to arrive at type-specific ones for optimizing non-generic code;
• We utilize flow information to enable high-level optimizations;

Our contributions include developing an approach for domain-specific optimizations based on generic programming, and
the tools and techniques to effect them, as well as demonstrating their effectiveness and applicability with a prototype.

First, we refer to the report (11) regarding how axioms give rise to generic optimization rules, and how to effect them in
generic code. For example, Interpreting as rewrite rules the axiom Identity’s equations in Listing 1 from left to right gives
rise to the generic right identity rule 1, and the generic left identity rule 2.

op(x, identity element(op, x)) → x (1)
op(identity element(op, x), x) → x (2)

In our current work, we focus on applying generic optimization rules to non-generic code. The central idea is to use the
generic rules in a “generative” role, to transform generic optimization rules into rules applicable for specific user-defined
(and built-in) types. We accomplish this transformation in a traditional compiler utilizing its operations for eliminating
abstractions.

Specifically speaking, in terminology of guaranteed optimization (13), we can view parametrization and encapsulation
as abstracting operations, and template instantiation and inlining as their reverse de-abstracting operations. The above de-
abstracting operations are well implemented in traditional compilers. Thus, considering functions are basic manipulation
units in the compiler, we embed rewriting rules into individual functions, called rule functions, so that the compiler could
directly manipulate them. Figure 1 illustrates the process to handle the axiom Identity for the concept Monoid in Listing 1.
Note that two rule functions, axiom 1 lhs(for lhs) and axiom 1 rhs(for rhs), are generated for one single rule 2.

To enable generic optimization rules to be used in the compiler’s middle end, we utilize the de-abstraction operations on
the rules themselves, and, to render flow-sensitive transformations, we examine the resulting rules after de-abstractions for
their flow patterns and conduct rewriting on these patterns. For example, in Listing 1, the Identity axiom actually defines
this pattern for the type string: given one operand defined to be empty, the operation operator+ could be simplified. And
it is clear that an optimizing compiler could reveal this pattern in many cases: use-def links could see through statements
and find definitions for operations, and inlining through functions.

The key mechanism our framework uses is carrying over concept knowledge to the middle-end, so that optimizers could
exploit semantics of high-level abstractions in manipulating user-defined transformations and improving high-level flow
information. Besides, rearranging traditional optimizations account for more optimization opportunities, because some
optimizations dis-aggregate high-level abstractions too soon.
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 operator()(op, identity_element(op, x), x) == x;

string  _axiom_1_lhs(plus<string> op, string x) {
tmp1 = idenity_element(op, x);
tmp2 = operator() (op, x, tmp1); 
return tmp2; 

}
...

axiom Identity(Op, op, T x) {
 op(x, identity_element(op, x)) == x;

}
 op(identity_element(op, x), x) == x;

optimizing

string  _axiom_1_lhs(plus<string> op, string x) {

generating rule functions

return operator()(op, x, identity_element(op, x));

return x;
string  _axiom_1_rhs(plus<string> op, string x) {

}

}

...

string  _axiom_1_lhs(plus<string> op, string x) { 

inlining identity_element() 
inlining operator() ()

tmp1 = string("");
tmp2 = operator+ (x, tmp1); 

}
...

return tmp2; 

compiling
instantiating

type checking
parsing

axiom Identity(plus<string> op, string x) {

}

 

  operator()(op, x, identity_element(op, x)) == x;

Figure 1. The procedure to compile and optimize axioms

Conclusion and Future Work We have built up a prototype on ConceptGCC and our preliminary experiments can
demonstrate the effectiveness and relatively effortless specification of select domain-specific compiler optimizations.
Domain-specific optimizations are enabled in a simple, non-disruptive manner: once the optimization framework is in
place, what a user needs to do to enable a set of optimizations is as simple as declaring a particular concept map, like that
for std::string or LiDIA::bigint in Listing 2.

This position paper reports work in progress, and we continue to study the expressiveness of axioms as a foundation for
domain-specific optimization rules, and investigate asymmetries of the current compiler in handling high-level abstractions
and built-in entities.
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