
HAL Id: hal-00350242
https://hal.science/hal-00350242

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementing the MyFEM Embedded Domain-specific
Language

Jonathan Riehl

To cite this version:
Jonathan Riehl. Implementing the MyFEM Embedded Domain-specific Language. Domain-Specific
Program Development, 2008, Nashville, United States. pp.1. �hal-00350242�

https://hal.science/hal-00350242
https://hal.archives-ouvertes.fr


Implementing the MyFEM Embedded Domain-specific Language

Jonathan Riehl

University of Chicago

jriehl@cs.uchicago.edu

Abstract

Mython, an extensible variant of the Python programming lan-
guage, exposes the tools and libraries of its implementation to
users. This kind of reflection allows domain-specific language im-
plementations to reuse parts of Mython. This paper looks at the
MyFEM domain-specific language, showing how MyFEM reuses
the tools of Mython. MyFEM is a language for describing partial-
differential equations and boundary conditions as a part of the finite
element method. Using MyFEM as a high-level interface, users can
generate fast, scalable scientific codes using very compact source
programs. This paper also discusses plans for further automation,
where MyFEM and Mython act as a seamless front end. These
plans involve not just hiding the target code from the user, but also
any necessary build details, including linkage and foreign function
interfaces.

1. Introduction

Domain abstractions are useful for hiding the complexity of their
implementation from users. Ideally, domain abstractions lower both
the development and maintenance costs of creating domain-specific
programs. Optimization of domain-specific code often works
against abstraction by forcing users to work with the low-level
implementation code instead of the high-level abstraction layer.
Reliability can add further complexity to optimization through of
static and run-time checks. The result is a tradeoff between relia-
bility, maintainability, and optimality.

The FEniCS project (FEniCS 2008), seeks to develop more
reliable, maintainable, and optimal scientific software. The FEniCS
project serves this goal by providing a suite of software for building
scientific simulations. Their approach to improving simulations
is automated code generation (Terrel et al. 2008), and they are
pursuing technologies that can help generate glue code for their
existing suite of tools.

The Mython programming language (Riehl 2008a) presents a
good candidate for a glue platform because of its extensible front-
end, back-end, and the native extensibility of Python’s runtime. The
front-end extensibility of Mython allows customized concrete syn-
tax. Users can use Mython’s back-end extensibility to extend the
code generator, adding domain-specific optimizations. The Mython
implementation consists of a compiler that generates Python mod-
ules, meaning Mython programs can benefit from the native exten-
sibility of the Python runtime. For example, Python bindings are
available for many of the FEniCS libraries.

Figure 1 presents an example of Mython and the FEniCS em-
bedded domain-specific language, MyFEM. This program gener-
ates a C++ function that is 64 lines of code, with multiple nested
loops that are up to six deep. The actual domain-specific code ap-
pears on lines six through nine, showing that MyFEM can provide
an order of magnitude reduction in line count. This is not atypical
in the finite element method domain. Input and output sizes for the
related FEniCS form compiler (FFC) can differ by four orders of

magnitude, with several thousand lines of code generated from a
six line input (Kirby and Logg 2006).

This paper describes the purpose and implementation of MyFEM.
It serves as a case study of embedded domain-specific language
implementation in an extensible host language. Section 2 reviews
background material, including a brief review of the finite ele-
ment method and the Mython programming language. Section 3
describes the MyFEM compiler design and how it is used to ex-
tend Mython. This paper concludes by identifying open issues and
related work.

2. Background

This work is a fusion of two disciplines in computer science: scien-
tific computing and programming languages. This section provides
some background on scientific computing and embedded domain-
specific language implementation. It begins with an overview of
the motivations and goals of automating scientific computing. It
then describes the finite element method, a computational tool for
simulation. Finally, it provides an introduction to the Mython pro-
gramming language, which uses compile-time metaprogramming
to embed domain-specific languages as concrete syntax.

2.1 Automating Scientific Computing

Simulation grants scientists and engineers the ability to do exper-
iments that are not feasible in the real world. Some experiments
are not feasible because of resource constraints, and include such
domains as high energy physics. Other experiments may be pro-
hibitive because they pose real risks to the experimenters, their en-
vironment, or the public. For this very reason, one of the first and
still common applications of the digital computer is the simulation
of atomic physics. Even when resources are available and sufficient
precaution can be taken, researchers can use simulation as a tool for
guiding and validating both theory and experimentation.

In simulations people input mathematical models of systems
and a set of boundary conditions, which may include initial con-
ditions. Frequently, these models employ partial-differential equa-
tions (PDE’s) to relate the change in the system as a function of
the system’s instantaneous state (Logg 2004). An example of this
might be an equation of the form:

u
′ = f(u)

In this model, the function f presents a means of calculating
an instantaneous rate of change of a state vector, u′, using only
the current state vector u. Simulation involves the calculation some
unknown, which can either be u′ (which is trivial in this case), u,
or f .

One of the most important aspects of automating scientific com-
puting is the management of error. Solving problems using digital
simulation necessitates discretization of the problem domain. Since
many of these models are continuous, discretization introduces er-
ror into the calculations. These calculations are often then repeated



1: from basil.lang.fenics import FEniCS
2: from basil.lang.fenics.bvpir import *
3: quote [myfront]: from basil.lang.fenics import FEniCS
4:
5: quote [FEniCS.bvpFrontEnd] Laplace:
6: TestFunction v
7: UnknownField u
8:
9: <grad v, grad u>
10:
11: print "void Jac_Laplace (const Obj<ALE::Mesh>& m,"
12: print " const Obj<ALE::Mesh::real_section_type>& s,"
13: print " Mat A, void * ctx)"
14: print FEniCS.bvpIRToCplus(Laplace)

Figure 1. An example MyFEM code generation program.

by the simulation, which can cause the error to compound. This
compounding nature of error can limit a simulation’s usefulness.

Iterative methods allow management of a simulation’s error, but
they also impact the simulation’s portability and maintainability.
Iterative methods track error, iterating computations to decrease er-
ror when the error exceeds expectations. This iteration can add both
space and time complexity to the underlying program. Therefore,
automation of scientific computing includes a quantification of ac-
ceptable error as an input, in addition to a model and boundary
conditions.

2.2 The Finite Element Method

The finite element method (FEM) is a means of discretization
for the purpose of solving partial-differential equations. Typically
the finite element method, particularly its application to boundary
value problems, has three inputs: a mesh, boundary conditions, and
partial differential equations (PDE’s) that govern the relationship
between field values. A mesh is typically a discretization of space
into a triangulation, but this abstracts to arbitrary manifolds. The
discretization also determines the relationship between field values
and vertices in the mesh.

The MyFEM implementation allows engineers and scientists
to specify boundary and conditions and PDE’s, generating C++
code that interfaces with the Sieve (Knepley and Karpeev 2008)
and PETSc (Balay et al. 2006) libraries. The Sieve library handles
user mesh inputs. Sieve lets users represent arbitrary meshes, both
in dimension and shape. This representation allows MyFEM to
emit integration loops independent of the mesh, the finite element,
and the solver. The PETSc library provides a variety of solvers
which are used to solve the algebraic systems that result from
discretization.

MyFEM’s role in the finite element method is the specification
of partial differential equations and boundary conditions. For ex-
ample, an engineer may want to find a field u where given some

test function v, the following constraint holds 1:

Z

Ω

∇v · ∇u −

Z

Ω

vf = 0 (1)

The domain of integration, Ω, is explicitly given above. This
domain corresponds to a required input of a MyFEM program,
and left implicit in the MyFEM source. The MyFEM syntax for
expressing equation (1) is:

TestFunction v

1 This example, and how a user derives this constraint, are given in § 2.2 of
Gockenbach (Gockenbach 2006)

UnknownField u
CoordinateFunction f

<grad v, grad u> - <v, f>

This example illustrates how MyFEM uses inner-product no-
tation (<,>) to denote integration over the product of two subex-
pressions. The result is a concrete syntax that is closer to actual
mathematical notation, while still being machine readable.

2.3 Mython: An Extensible Language

Mython (Riehl 2008a) is an extensible variant of the Python lan-
guage (van Rossum 2006). Mython achieves extensibility at all lev-
els of language implementation, allowing developers the ability to
change the language syntax, semantics and runtime from inside the
language itself. Mython allows easy incorporation of new syntax
through interoperability with popular parser generators. Compile-
time reflection allows developers to easily embed and extend the
syntax of Mython and its embedded domain-specific languages.
Mython achieves semantic extensibility by reflecting the compiler
to the Mython language. This allows developers to do such things
as add optional static typing to increase program safety, and im-
plement optimizations that increase program performance. Mython
inherits runtime extensibility from the Python language itself, af-
fording both dynamic runtime extensions via multiple third-party
foreign function interface generators (Beazley 1996), and modifi-
able runtime semantics via Python meta-classes. Mython achieves
all these features by starting with a popular programming lan-
guage, Python, and adding open compiler technology (Tatsubori
et al. 2000), staged computation (Taha 2003), and compile-time
metaprogramming (Tratt 2005). MyFEM uses all these features to
create a programmable interface to scientific computing automation
that is both flexible and fast.

The example in Figure 1 illustrates several of the properties
discussed above. The Mython compiler evaluates quote statements
at compile time. The expression in square braces is evaluated first,
and the result of that evaluation is used to evaluate the nested
code. The compiler has its own environment for name binding.
In the example, line three extends the compiler by importing the
FEniCS language library. The compiler binds the myfront name
before compilation to a function that evaluates nested Python code
in the compilation environment. Line three may seem redundant
because of the import on line one. However, line one only binds the
name at run time, requiring the second, compile-time import. Line
five uses a front-end function from the MyFEM library to parse
the embedded MyFEM code on lines six through nine. The result
generates code that is bound to the Laplace identifier at run time.



Line fourteen uses the Laplace identifier at run time to generate
C++ code.

Syntactic and semantic details that are not directly related to
MyFEM’s implementation are outside the scope of this paper. The
author’s dissertation (Riehl 2008b) provides these details for both
the Mython and MyFEM languages.

3. Implementing MyFEM

This section describes the implementation of MyFEM, and how this
implementation interoperates with Mython. The global design of
MyFEM is typical for a compiler, where a front-end handles trans-
lation of the concrete syntax into some intermediate representation,
and a back-end manages optimization and code generation for the
intermediate representation. Section 3.1 looks at the general meth-
ods used to embed a domain-specific language in Mython. Sec-
tion 3.2 covers the front-end implementation details of MyFEM.
Finally, section 3.3 discusses the code optimization and generation
portions of the language implementation.

3.1 Methodology

The most straightforward means of embedding a formal language
in Mython is to build a parser using a parser generator. The person
developing the embedding creates a Python function that parses
a string, and outputs a parse tree. The Python function can either
use a native parser from a Python parser generator, or a wrapped
foreign function. Mython includes a function, myescape(), that
will generate abstract syntax from a Python value. The compiler
passes the resulting abstract syntax to the code generator, causing
the compile-time value to be rebuilt at run time. Binding and using
a composition of the parser and escape function at compile time,
the Mython compiler will parse embedded code and bind the result
at run time.

One problem with simply wrapping a parser is the verbosity of
the resulting concrete parse tree. Therefore, it is often convenient
to transform the concrete parse tree into an intermediate representa-
tion that is more closely representative of the underlying language
semantics. Abstract syntax trees are one such intermediate repre-
sentation, but developers can find creating abstract syntax tree con-
structors and utilities tedious due to a duplication of a lot of boiler-
plate code. The following subsections identify how Mython and its
libraries help developers generate parsers, traverse trees, and gen-
erate abstract syntax trees.

3.1.1 Parsing

Part of Mython’s reflective nature involves exposing its parser
generator to the surface language. The pgen parser generator is
an LL(1) parser generator that takes extended Backus-Naur form
(EBNF) grammars and generates parsing automata. Originally de-
veloped in C by Guido van Rossum for the implementation of
Python, Mython offers a reimplementation of pgen in Python.
Mython uses this version of pgen to generate parsers for Python,
Mython and MyFEM.

This approach has two drawbacks. First, pgen has no integra-
tion with its lexical syntax. Parsers generated by pgen are con-
strained to using either Python’s lexer or some adaptive lexer that
outputs Python-compatible lexical tokens. This limitation does not
pose too great a hindrance, since keywords are not given specific
lexical classes in Python, but passed as identifiers to the parser.
This also means that the formal language is whitespace sensitive,
since Python uses indentation for lexical scoping. MyFEM uses
keywords for several of its new operators, sidestepping the issue
of limited lexical extensibility.

The second drawback involves the robustness of pgen. Its her-
itage as a Python-specific tool mean it has not been hardened for

general-purpose parser generation. It does not provide good error
detection for ambiguity, and grammars that are not in the family
of LL(1) languages. Finally, pgen does not include support for er-
ror recovery in the generated parsers. Both pgen and the parsers it
generates will halt upon detection of the first syntax error.

The output of pgen generated parsers is a concrete syntax tree.
These trees have the following structure:

node := (payload, children)
payload := ID

| token
token := (ID, string, lineno, . . .)

children := [node1, . . . , noden]

3.1.2 The Visitor Pattern in Mython

Mython’s compiler uses an implementation of the visitor pattern
(Gamma et al. 1995) to walk and transform tree data structures.
The approach described by this section closely follows other im-
plementations in Python, including one found in Python compiler
library (van Rossum 2008). Mython reflects this implementation up
to the surface language as an abstract base class, Handler. Mython
uses subclasses of the Handler class to both transform concrete
syntax trees to abstract syntax tress, as well as generate code from
abstract syntax trees.

The Handler class implements a generic visitation method,
handle node(). The handle node() method first looks at the
current tree node being visited, and uses the get handler name()
method to determine a method name that specifically handles
the given node type (by default, this is “handle NT()”, where
NT is the name of the nonterminal symbol for the node). The
handle node() method then uses introspection to see if the han-
dler method exists in the current Handler instance. If the specific
method exists, handle node() calls it, otherwise it calls a generic
handler method, handle default().

Mython users can follow the same pattern as Mython itself, spe-
cializing the Handler class to walk both concrete and abstract syn-
tax trees for domain-specific languages. This requires the user to
specialize several methods. These include the get nonterminal(),
which get handler name() uses to generate the dispatch name,
get children(), which the visitor uses to determine a node’s
children, and finally handle default(), which is the default han-
dler method.

3.1.3 Abstract Syntax

Mython reflects the abstract syntax definition language (ASDL) to
its surface language (Wang et al. 1997). ASDL is a domain-specific
language for describing abstract syntax data structures. Mython in-
herits its use of ASDL from Python, where both languages use
ASDL to define their abstract syntax. While not part of the stan-
dard library, Python implements an ASDL parser and a utility for
translating ASDL to C. Mython builds on the Python utility by pro-
viding a tool that translates from ASDL to a Python module. The
module defines a class hierarchy for representing abstract syntax.
Users can in turn use introspection of the output Python modules to
create pretty-printers, visitors and other utilities.

Mython has a second visitor base class, GenericASTHandler,
that is designed specifically for ADSL syntax trees. The
GenericASTHandler class simplifies the number of methods
needed to implement the visitor pattern, directly using a node’s
type name to determine its handler method, and providing a default
handler that performs a depth-first traversal of the tree. The Mython
compiler specializes this class into several subclasses, including
one for lexical scoping calculations, and one for code generation.



3.2 The Front-end

The MyFEM front-end applies the methods described in sec-
tion 3.1 to create a front-end function that Mython users can
use to embed MyFEM programs. The example code in figure 1
shows such an embedding, where line 3 imports the MyFEM lan-
guage definition module into the compiler. Line 5 then uses the
FEniCS.bvpFrontEnd function to parse the MyFEM code on lines
6–9.

The bvpFrontEnd() function is a composition of several func-
tions:

def bvpFrontEnd (name, text, env):
global bvpParser, bvpToIR, bvp_escaper
cst, env_1 = bvpParser(text, env)
ir = bvpCSTToIR(cst)
esc_ir = bvp_escaper(ir)
stmt_lst = [ast.Assign([ast.Name(name,

ast.Store())], esc_ir)]
return stmt_lst, env_1

The first function, bvpParser(), is a parser generated using the
pgen tool. This outputs a parse tree. The front-end then sends the
parse tree to a transformer function, bvpCSTToIR(). This function
translates the parse tree into several intermediate representations,
finally resulting in an abstract syntax tree for an imperative inter-
mediate representation. The imperative abstract syntax tree is trans-
lated into Python abstract syntax by the bvp escaper() function,
completing the quotation.

3.3 The Back-end

A back-end is responsible for performing any user specified op-
timizations and generating target code from the intermediate rep-
resentation. Users can implement domain-specific optimizations as
transformations of abstract syntax using the AST visitor techniques
described in section 3.1.3. A user defines a custom back-end by
composing his or her optimizers with a code generator. This sec-
tion describes a simple back-end that generates C++ target code
from the intermediate representation output by the front-end docu-
mented in the previous section.

The example in figure 1 uses the front-end to generate the ab-
stract syntax tree for an imperative intermediate language. As part
of the Mython quotation mechanism, the Mython program recon-
structs this tree at run-time and binds it to the Laplace identifier.
The script then passes the reconstructed tree to the back-end func-
tion, bvpIRToCplus() (in the FEniCS module), on line 14. The
back-end function constructs a visitor for the intermediate repre-
sentation, and uses the visitor object to generate a string containing
the target C++ code.

MyFEM uses ASDL to define the imperative intermediate lan-
guage. MyFEM follows the ASDL AST visitation methodology,
specializing the GenericASTHandler class. The resulting sub-
class, IRToCplusHandler, contains custom handler methods re-
sponsible for translating each of the abstract syntax nodes into C++
strings.

4. Open Issues

MyFEM is a work in progress, presenting several remaining im-
plementation challenges. These challenges include domain-specific
optimizations, type systems, and making MyFEM and Mython sim-
pler to use.

4.1 Domain-specific Optimization

Mython’s extensibility allows users to create domain-specific opti-
mizations that can interface with the Mython compiler’s code gen-
erator. We are looking at adding GHC-style rewrites (Peyton Jones

et al. 2001) to the Mython language as one method of presenting
users with an abstraction that hides details of the Mython com-
piler’s implementation. Rewrites pose problems in Mython because
non-local names are neither bound at compile nor import time.
Naive approaches to rewrite implementation would restrict them
to rewriting specific, locally bound names, or expression syntax
that deals with known types (such as list comprehensions). MyFEM
also has a set of domain-specific optimizations that can not be rep-
resented using rewrites. The next subsection discusses a specific
example of one such optimization.

4.2 Type Systems

MyFEM includes a type system that only ensures that a MyFEM
program is capable of calculating a function for the residual (where
the residual is a scalar that is suggestive of the error of an approxi-
mate solution). One possible optimization in MyFEM involves se-
lecting a solver known to have good run-time performance for de-
termining the requested residual. Specifically, MyFEM constraints
can be linear, non-linear, or a combination of both linear and non-
linear terms. Separating terms based on their linearity, and using
separate solvers for specific sub-terms presents an opportunity for
improving the run-time performance of MyFEM programs. We are
currently looking at extending the current type system to account
for the linearity of terms. Alternatively, linearity might be easier
to express as a separate type system, since it has little impact on
correctness concerns.

4.3 Gluing It All Together

At the time of writing, the MyFEM implementation’s back-end
only generates C++ code. Users must still compile and link their
MyFEM programs in a separate compilation pass. One of the
goals behind Mython is to provide an environment where the lines
between compiler-compile time, compile time, and run time are
blurred, if not invisible to the user. In order to accomplish this, we
plan to add a just-in-time compilation suite. Additionally, Mython
should be able to generate glue code on the fly, providing a just-in-
time foreign function interface generator.

The current division of MyFEM translation between compile
time and run time does not provide any specific benefit (other than
providing syntactic checks at compile time). This division suits
Mython’s use of staging as a means of controlling and containing
extensibility, and serves as a test of the Mython implementation.
Other possible targets for the current MyFEM compiler are em-
bedding the generated C++ code as a string or as constructors for
some lower-level intermediate representation. These embeddings
lose domain-specific information if a user wants to apply transfor-
mations at run time.

5. Related Work

The MyFEM language is related to several other scientific com-
puting systems which inhabit similar roles in the FEniCS project.
The FEniCS form compiler, or FFC, is a Python based compiler
that translates from Python code to C++ (Kirby and Logg 2006).
SyFi is a C++ library for building finite elements (Alnæs and
Mardal 2007). SyFi uses the GiNaC symbolic computation library
to express partial-differential equations (Alnæs and Mardal 2007;
Vollinga 2006). SyFi still requires that users write code to assemble
the matrices used in simulation, where MyFEM will automate this
process.

The Mython host language is related to a set of other extensi-
ble languages, most notably Converge (Tratt 2005). Though devel-
oped independently, both Mython and Converge are quite similar.
Converge features a Python-like syntax, and both languages feature
special syntax that distinguishes code evaluated at compile time



from run-time code. Unlike Mython, Converge includes expression
syntax for using compile-time metaprogramming, and binds run-
time code in the compile-time environment.

The Fortress compiler also allows user-defined syntax (Allen
et al. 2006). Users add syntax by defining parsing functions, and
then associate a custom pair of delimiters with each function. The
compiler pre-processes embedded code using these parsing func-
tions, which return Fortress abstract syntax. Unlike Mython and
Converge, parsing functions can not appear in the same module,
requiring separate compilation of the extension syntax before its
use.

Many extensible languages should allow users to define and
use custom syntax with only a few additional lines of code. These
languages start with a general purpose language, and allow users
to embed syntax definition languages. The OMeta language inverts
this approach, starting with a syntax definition and transformation
language, and allowing users to embed and extend other languages
(Warth and Piumarta 2007).

Stratego/XT and the MetaBorg pattern inspired the design and
language embedding approach of Mython (Bravenboer and Visser
2004). Mython uses compile-time metaprogramming to realize the
ideas and solve some issues with a previous proposal for build-
ing extensible languages (Riehl 2006). Future work slated for
Mython includes embedding the Stratego and SDF languages. As
the Mython language implementation story evolves, the MyFEM
implementation presents an opportunity for comparative analysis
between visitor and strategy methods.

6. Conclusions

This paper presented a case study of using an extensible language
to embed another domain-specific language. This work differs from
previous work in the scientific computing community by providing
both concrete syntax and the opportunity for user-level domain-
specific optimization. This work also provides a case study of
using a recent class of extensible languages. These languages allow
developers to embedded languages with concrete syntax and permit
integration of some or all of their compiler with the host language
compiler.

Acknowledgments

The author wishes to thank Matthew Knepley, John Reppy, and
Andy Terrel for their help and feedback.

References

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.
The Fortress Language Specification, Version 1.0α. Technical report,
Sun Microsystems Inc., September 2006.

Martin Alnæs and Kent-Andre Mardal. SyFi User Manual, September 2007.
Available at http://www.fenics.org/wiki/Documentation.

Satish Balay, Kris Buschelman, Victor Eijkhout, Will iam D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc users manual. Technical Report ANL-95/11
- Revision 2.3.2, Argonne National Laboratory, September 2006. URL
http://www.mcs.anl.gov/petsc/docs.

David M. Beazley. SWIG: An Easy-to-Use Tool for Integrating Scripting
Languages with C and C++. In Proceedings of the Fourth USENIX

Tcl/Tk Workshop. USENIX Assoc., 1996.

Martin Bravenboer and Eelco Visser. Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
Douglas C. Schmidt, editor, Proceedings of the 19th ACM SIGPLAN

Conference on Object-Oriented Programing, Systems, Languages, and

Applications (OOPSLA’04), pages 365–383, Vancouver, Canada, Octo-
ber 2004. ACM Press.

FEniCS. FEniCS Project, 2008. http://www.fenics.org/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns. Addison-Wesley Professional, January 1995. ISBN
0201633612.

Mark S. Gockenbach. Understanding and Implementing the Finite Element

Method. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

Robert C. Kirby and Anders Logg. A compiler for variational forms.
ACM Trans. Math. Softw., 32(3):417–444, 2006. ISSN 0098-3500. doi:
http://doi.acm.org/10.1145/1163641.1163644.

Matthew G. Knepley and Dmitry A. Karpeev. Mesh Algorithms for PDE
with Sieve I: Mesh Distribution. Scientific Programming, 2008. (To
appear).

Anders Logg. Automation of Computational Mathematical Modeling. PhD
thesis, Chalmers University of Technology, 2004.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In Ralf
Hinze, editor, Preliminary Proceedings of the 2001 ACM SIGPLAN

Haskell Workshop (HW ’01), pages 203–233, Firenze, Italy, September
2001.

Jonathan Riehl. The Mython Language, 2008a. Available at http://www.
mython.org/.

Jonathan Riehl. Assimilating MetaBorg: Embedding language tools in lan-
guages. In Proceedings of the Fifth International Conference on Gen-

erative Programming and Component Engineering (GPCE’06), October
2006.

Jonathan Riehl. Reflective Techniques in Extensible Languages. PhD thesis,
University of Chicago, 2008b.

Walid Taha. A gentle introduction to multi-stage programming. In Domain-

Specific Program Generation, pages 30–50, 2003.

Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian.
OpenJava: A class-based macro system for java. In Proceedings of the

1st OOPSLA Workshop on Reflection and Software Engineering, pages
117–133, London, UK, 2000. Springer-Verlag. ISBN 3-540-67761-5.

Andy R. Terrel, L. Ridgway Scott, Matthew G. Knepley, and Robert C.
Kirby. Automated FEM Discretizations for the Stokes Equation. BIT

Numerical Mathematics, 2008. (To appear.).

Laurence Tratt. Compile-time meta-programming in a dynamically typed
OO language. In Proceedings of the Dynamic Languages Symposium,
pages 49–64, October 2005.

Guido van Rossum. Python Reference Manual (2.5), September 2006.
Available at http://www.python.org/doc/2.5/ref/ref.html.

Guido van Rossum. Python Library Reference (2.5.2), February 2008.
Available at http://www.python.org/doc/2.5.2/lib/lib.html.

Jens Vollinga. GiNaC: Symbolic computation with C++. Nucl. Instrum.

Meth., A559:282–284, 2006.

Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Chris S. Serra. The
Zephyr Abstract Syntax Description Language. In Proceedings of the

USENIX Conference on Domain-Specific Languages, pages 213–228,
October 1997.

Alessandro Warth and Ian Piumarta. OMeta: an Object-Oriented Language
for Pattern Matching. In Proceedings of Dynamic Languages Symposium

’07, October 2007.


