N

N

A DSL approach to improve productivity and safety in
device drivers development
Laurent Réveillere, Fabrice Mérillon, Charles Consel, Renaud Marlet, Gilles
Muller

» To cite this version:

Laurent Réveillere, Fabrice Mérillon, Charles Consel, Renaud Marlet, Gilles Muller. A DSL approach
to improve productivity and safety in device drivers development. 15th IEEE International Conference
on Automated Software Engineering, 2000, France. pp.101-109. hal-00350233

HAL Id: hal-00350233
https://hal.science/hal-00350233
Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00350233
https://hal.archives-ouvertes.fr

A DSL Approachto Impr ove Productivity and Safetyin Device Drivers
Development

LaurentRéweillerd FabriceMérillon
CharlesConsel RenaudVarlett Gilles Muller

Composesroup,IRISA / INRIA, Universityof Renned
CampudJniversitairede BeaulieuF-35042RennesCede, France
E-mail:{Ireveill,merillon,consel ,marlet,nuller}@risa.fr

Abstract

Althoughperipheral devicescomeout at a frantic pace
andrequire fastrelease®f drivers, little progresshasbeen
madeto improve the developmentof drivers. Too often,
thisdevelopmentonsistof decodinghardwareintricacies,
basedon inaccurate documentation.Then,assembly-leel
opemtionsneedo beusedto interactwith thedevice These
low-levelopemtionsreducehereadabilityof thedriver and
preventsafetypropertiesfrombeingcheded.

This paper presentsan approadc basedon domain-
specificlanguagesto overcometheseproblems. We define
a language, namedDevil, dedicatedto definingthe basic
communicationwith a device Unlike a generl-purpose
language, Devil allowsa descriptionto be chedkedfor con-
sistency Thisnotonly improvesthe safetyof theinteraction
with thedevice but alsouncoversbugsearly in thedevelop-
mentprocess.

To assessur approach, we haveshownthat Devil is ex-
pressiveenoughto specifya large numberof devices. To
evaluate productivity and safetyimprovementover tradi-
tional developmentn C, wereporta first experimentased
onmutationtesting

1. Intr oduction

Many appliancesrenow equippedvith processorge.g.,
cellularphonessmartcards,cars,etc.) andmary new pe-
ripheraldevicesare beingdeveloped. PC devicesare also
arapidly evolving area. Typical examplesarevideo adap-
tors, which comeout at a frantic pace(every 6 months)to

*This work hasbeenpartly supportedoy ThomsonMultimedia under

thecontractl99C03landthe FrenchMinistry of EducationandResearch.

fAuthor's current address: LaBRI / ENSERB, 351 cours de la
Libération,F-33405TalenceCede, France.

Author’s currentaddress TrustedLogic, 5 rue du Bailliage, F-78000
VersaillesFrance E-mail: Renaud.Marlet@trusted-lagir.

matchthe needsof ever demandingcomputergames. In
sucha competitive context, time-to-marletis essentialde-
vice driversneedto be availableassoonasa new deviceis
ready

A device driver is situatedbetweenthe device andthe
operatingsystemkernel (or directly in the applicationfor
smallsystems) |t is a critical pieceof code:miscommuni-
cationwith eitherend may createmajor problems.On the
onehand,thedriver canincorrectlyusethe device andthus
disableit. Ontheotherhand,the device driver may misuse
theresourcesnadeavailableby the OS (or application)and
crashthesystem.

The precedingobsenationsshow thatthereis an acute
needfor bothproductvity andsafetyin device driverdevel-
opment.However, this needis difficult to satisfyfor several
reasonsoriginating in the natureof the devices and their
documentationijn the lack of adequatgrogramminglan-
guagesupportandin the commonprogrammingpractices.

An approachbasedon domain-specificlanguages

Yet, a good productvity shouldbe possibleto achieve as
device drivers sharea lot of commonalitiesand cover a
very specificdomain;this calls for someform of codere-

useaswell as expertisere-use. To that end, we propose
a novel approachnot only to achiere both kinds of re-

usebut alsoto systematizeéhem. Our approachis based
on domain-specifidanguagegDSLs) [7], as opposedto

general-purposéanguageqGPLs). Besidesproductvity,

this approachalsoimprovessafety without compromising
efficiengy.

A DSL is well adaptedo this taskbecause DSL cap-
turesandabstractshe designandimplementatiorexpertise
of adomain theDSL programmepnly hasto focusonwhat
to computeor to describe asopposedo howto doit. In
otherwords,fundamentatonceptsandissuesghatmustbe
addressetly the programmemaremadeexplicit in the DSL
while implementationssuestayhidden;thisimprovespro-

ductivity. Moreover, becaus¢heexpressie powerof aDSL
canbe restricted propertiesthat are critical to the domain
canbe madedecidableandchecledautomaticallythusim-
proving safety Besides,systematicdomain-specificopti-
mizationsthat aretediousanddifficult to manuallyimple-
mentwith a GPL canbe automatedand systematizedn a
DSL compiler
Becauselevicedriversincludeseseraldomainsof exper
tise (hardwareandoperatingsystemissues)a goodsepara-
tion of concernsactuallyrequiresa separatdSL for each
conceptualayer. This multi-DSL approachs further moti-
vatedby thefactthatthedifferentlayersof adrivercouldbe
describedby differentprogrammerswith a specificback-
groundandspecificconstraints.

This paper

In this paper we do not addresghe completedevelopment
of device driversbut focuson one of the conceptualay-
ers. We introducea DSL namedDevil (for DEVice Inter-
faceLanguagejhatprovidesthelow-level layerof adevice
driver, i.e., the basicinteractionwith the device. We only
considerdocal devices i.e., piecesof hardwarethatcandi-
rectly communicatewith the CPU using /O, addressand
databuses We donotconsiderremotedevicessuchasprint-
ers,thatactuallycommunicateat a higherlevel throughlo-
caldevicessuchasserialor parallelinterfaces.

A Devil specificationrigorously describesthe access
mechanismsthe type and the layout of datathat are ex-
changedo operatethe device, aswell assomebehaioral
properties. It doesnot assumeary particularOS, and can
thereforebe usedfor ary target platform. As a matterof
fact, using the languageonly requiressomehardware ex-
pertise;a descriptionin Devil couldtypically bewritten by
thedevice vendor

Compiling a Devil descriptionprovides a typed, high-
level interfaceto the device which canbe usedto write the
upperlayersof the device driver. For the driver program-
mer, the benefitof thisapproachs thattheinterfacemodels
anidealizeddevice and abstractdhe hardwareintricacies.
The upperlayerscaneitherbewrittenin a GPL, which di-
rectly utilizes the implementationof the device interface,
or in the future, combinedwith programswritten in other
DSLs for drivers. BecauseDevil is a restrictedlanguage,
varioustyping andconsisteng propertiesof a specification
canbe verified. Becausehe generatednterfaceis strongly
typed, its usein the upperlayersof the device driver can
alsobechecledby a standardsPL compiler

Our contributionsarethefollowing.

e We have carried out a domain analysison device
drivers,which pointsout the difficulties of driver de-
velopment. By separatinghe concernsof hardware

vendorsand OS driver programmers,we have ex-
tracted and structuredthe key conceptsas well as
the commonalitiesandvariationsin the codeusedfor
communicatingvith a device. We have alsoidentified
importantpropertieghatprovide safetyguaranteefor
suchcommunication.

e Basedon this analysis, we have designeda lan-
guage(Devil) to preciselydescribeheinteractionwith
hardware devices and to provide a high-level soft-
ware interface for operatingthem. The languageis
strongly typed, and enablesconsisteng propertiesto
bechecledonthespecificatioraswell asontheuseof
the correspondingnterfacein a driver. Suchverifica-
tion would beimpossibleto performon driverswritten
usingaGPL.

e To assesghe usefulnessof the language,we have
shavn that it is expressve enoughto describea
wide rangeof standard®C devicesincluding Ethernet,
video, IDE disk, sound,interrupt, DMA and mouse
controllers.

e To evaluatethe productvity and safetyimprovement
offeredby Devil, we have conductechmutationtesting
experiment.This evaluationdemonstratethata driver
writtenin C but usingthe Devil-generatedibrary may
containfrom 60%to 500%timesfewer errorsthanan
equivalentdriver fully writtenin C.

Thepaperis organizedasfollows. Section2 analyzeghe
difficulty of device driver development.Section3 presents
DSLs and argueswhy they are well suitedfor specifying
device drivers. Section4 describeghe designof the Devil
language. Section5 presentghe mutationtesting experi-
ment. Section6 describegelatedwork. Finally, Section7
concludesandsuggest$uturework.

2. Writing low-level device drivers

We have performeda domainanalysisof device driver
development.Thefollowing pointssummarizevariousrea-
sonswhy developingdevice driversis difficult.

Devicesare complex. The designof a device is subject
to numerous sometimesontradictoryconstraintssuchas
performanceequirementandbackward compatibility. As

aresult,theprogrammingnterfaceof adeviceis oftenawk-

ward: contortedaddressingnodes randompartitioning of

deviceregisters,obscurdnitialization sequencestc.

1We concentratéereon thelow-level partof thedrivers, i.e., thecom-
municationwith the device; the higherlevel layersraise other kinds of
issuessuchaspropermanagementf OSresources.

Devices are inaccurately documented. Device drivers
arebasedon the documentationrmadeavailableto the pro-
grammersby the hardwarevendor This documentationis
noteasyto readsincelow-level andhigh-level conceptsare
generallyintertwined: electronics communicatiormecha-
nisms,physicalplacemenbf data(registerlayout), seman-
tics. Theterminologyusedalso changedrom one device
vendorto another Moreover, ary documentatiorstill is
informal becausat is written in a naturallanguage.Con-
sequentlya device descriptionis oftenambiguousjncom-
plete, or eveninconsistent.In fact, thereis no systematic
way for the hardwarevendorto validatea device specifica-
tion.

Mapping device documentationinto codeis not straight-

forward. Extractingthe hardwareinterfacefrom thedoc-
umentationand expressingit in a programrequiresa sig-

nificantwork, thatis alsotediousanderrorprone. On the
onehand,the device specificationis expressedn termsof

ports,registers(thatarepossiblyindexedor paged)bit vec-
tors (registerfragmentsandcorrespondingalues) etc. On

the otherhand, manipulatinga device in a driver requires
the useof assembly-leel operations:explicit I/O bus ac-
cesseandbit manipulationoperatorgshift, and,or, etc.).

Languageprimiti vesare not adequate. While program-
ming languagesave put programmergurther andfurther

away from the functional units of a CPU, they only offer

low-level instructionsto operatea device. Theseassembly-
level operationsaccountfor a significantpart of a device

driver; they represenbetweenl10% and 20% of the lines

of code.Becausef their low-level nature,suchoperations
arenot checledfor type-correctnesandotherconsisteng

properties Moreover, they arefairly unreadable.

Language abstraction mechanismsare inappropriate
and little used. A commonapproacho reducingthe ef-
fectsof low-level operationson programmabilityandread-
ability is to introducemacros,as available in the C lan-
guage. In practice,macrosin existing drivers are mostly
usedto give symbolicnamesto specificconstantssuchas
bit masksor I/0 port offsets.Very few of thedriverswe ex-
aminedusemacrosto encapsulata whole setof low-level
operationsThereasoris that,althoughthe patternsof com-
municationwith the device are similar, thereis little shar
ing from onedevice registerto another On the onehand,
theabstractiorof low-level codefragmentsnto genericre-
usablemacross consideredootedious.Ontheotherhand,
defining more specificmacros,suchasindividual register
accessorgs notconsideredisefulasthey would oftenonly
beusedonceor twice; eventhoughdoingsowould makethe
resultingcodemorereadableln any casetheuseof macros
depend®n the programmers careandcustoms.Typically,

it is neithersystematianor uniform: mary literal constants
arehardwiredin thecodeanddefinitionsareoftenscattered
into differentsourcefiles without apparenteason.

Speedis an overrated concem. Althoughthey offer bet-
ter typing guaranteeshan macrosand can be inlined for
efficiengy, functionsarealmostnever usedbecausé¢hey are
reputedoo slow. Thefactis thatspeeds acrucialissuefor
mary devicedriversandthatnotall compilerssupportfunc-
tioninlining. Still, insteadof focusingon critical paths,de-
vice driver programmergendto alwayskeepperformance
in mind andoptimizeevery pieceof code.

Programming practices are poor. The above issues
shawv thatsomedeficienciedn the softwareengineeringof

mary device driverstoday alsooriginatein the attitude of

programmerslin fact, peoplewho write device drivers,es-
pecially for Linux, are proudto have written codethatis

incomprehensiblegvento their peers.

Low-level device driversrequire programmerswith two

domains of expertise. The uniquesituationof a device

driver requiresan expertisein two differentareas.On the
one hand, specifichardware expertiseis neededio under

standthe low-level interfaceof the device andits internal
behaior. On the otherhand,software engineeringexper

tiseis requiredto imposea programmingstyle, to structure
the code(e.g., by definingappropriateabstractiongor the
low-level parts),to achieve efficiency, yetto make the code
openenoughto enablefuture extensions. As a matter of

fact, few driver programmersan be consideredexpertin

bothdomains.

Example. Consideran excerptof an actualdriver (log-
itech mouse),displayedin Figure 1. As canbe seen,the
valuesof dx, dy (the horizontalandvertical motion of the
mouse)andbut t ons areconstructedisinginterleavedbit
operationsand device accesses.This code fragmentis a
compellingexampleof the awkward programsthat canbe
written ata largescalewhenappropriatesupportfor manip-
ulating low-level device functionalitiesis not availableand
whengoodprogrammingpracticesarenot favored.

Assessinghe software engineeringof device drivers

Thecompleity of devices,theinaccuray of thedocumen-
tation, the complex mappingfrom a device specification
to code,the unsuitability of languagesupportandthe pro-
grammers’practiceandexpertiseall have a significantim-
pacton the software engineeringof device drivers. As a
matter of fact, developing driversis not an efficient pro-
cessand often leadsto codethat is intricate and unread-
able,which impedesmaintenanceind evolution. Not sur

#def i ne MSE_DATA_PORT 0x23c

#def i ne MSE_CONTROL_PORT 0x23e

#defi ne MSE_READ X LOW 0x80

#defi ne MSE_READ_X_HI GH 0xa0

#defi ne MSE_READ_Y_LOW 0xc0

#defi ne MSE_READ_Y_HI GH 0xe0 1a. Definition
out b(MSE_READ X_LOW MSE_CONTROL_PORT) ;

dx = (inb(MSE_DATA_PORT) & 0xf);

out b(MSE_READ_X_HI GH, MSE_CONTROL_PORT) ;

dx | = (inb(MSE_DATA_PORT) & Oxf) << 4;

out b(MSE_READ_Y_LOW MSE_CONTROL_PORT);

dy = (inb(MSE_DATA_PORT) & 0xf);

out b(MSE_READ_Y_HI GH, MSE_CONTROL_PORT) ;

buttons = i nb(MSE_DATA_PORT) ;

dy | = (buttons & Oxf) << 4;

buttons = ((buttons >> 5) & 0x07); 1b. Use

Figure 1. Example of communication with the
Logitech bus mouse (Linux 2.2.12)

prisingly, this situationcanhave a disastrousmpacton the
reliability of commercialoperatingsystems.For example,
Microsoft reportsthat 44% of systemfailure in NT4 are
causedy drivers.

Yet, drivers developmentis a repetitve processand is
built on patternsof codethat are specificto the domain:
bus transactionshit manipulations,usagepatternsof OS
resourcesfixed API, etc. This obsenationcallsfor re-use,
to improve both productivity andsafety However, asmen-
tionedabove,general-purposkanguagesffer little support.
First, codepatternsaretoo fine-grainedto be usefully ab-
stracted.Secondtyping rules,thatareaboutthe only vali-
dationmechanisnofferedby GPLs,aretoo looseto detect
bugsearlyin thedevelopmenfprocessthe programmecan
only rely ontestingwith sampledata.

Domain-specifidanguageffer a solutionto all these
problems.Becausehey offer suitablebuilt-in abstractions,
they capturedomainexpertiseand systematizee-use,re-
gardlesf the programmels practice.Moreover, they pro-
vide additional safety guaranteesas they allow domain-
specificpropertiesto be automaticallychecled. DSLs are
furtherpresentedh the next section.

3. Domain-specificlanguages

A domain-specifidanguagds a programmingor speci-
ficationlanguagededicatedo a particulardomainor prob-
lem. A DSL providesappropriatebuilt-in abstractionsand
notations;it is often small, more declaratve thanimpera-
tive,andlessexpressve thana general-purposknguage.

Examplesof DSL are numerous. Someare distributed

2As from a samplefrom ProductSupportServicesfor NT-Sener 4.0,
May—July1999,communicatiorby Jim Allchin (SeniorVice Presidentn
chage of Windows 2000), COMDEX, Novemberl15th 1999.

worldwideandusedonadaily basisge.g., SQL, Unix shells,
malefiles, etc. DSLs have beenusedin variousdomains
suchasgraphicg[12, 15|, financialproducts[2], telephone
switchingsystemg13, 17], protocolg5, 23], operatingsys-
tems[20], device drivers[25], routersin networks[23] and
robot languaged3]. This profusionshows the recentat-
tentionthatDSLshave receivedfrom boththeresearctand
industrialcommunities.

Thefollowing pointsexplainwhy DSLsaremoreattrac-
tive thanGPLsfor avariety of applications.

Easier programming. Becauseof appropriateabstrac-
tions, notationsand declaratve formulations,a DSL pro-
gramis moreconciseandreadablghanits GPL counterpart.
Hence,developmenttime is shortenedand maintenances
improved. As programmingocuseon whatto computeas
opposedo how to compute the userdoesnot have to bea
skilled programmerSpecificoptimizationstratgjiescanbe
implementedn the DSL compilernot only to offer perfor
mancebut alsoto systematizaét.

Systematic re-use. Most GPL programming erviron-

mentsinclude the ability to abstractcommonoperations
into libraries.However, re-useof librariesis left to the pro-

grammer In contrast,a DSL offers guidelinesand built-

in functionalitieswhich enforcere-use. Additionally, a

DSL capturesdomainexpertise eitherimplicitly by hiding

commonprogrampatternsin the DSL implementationor

explicitly by exposingappropriateparameterizatiotio the

DSL programmer Thus, the programmemecessarilyre-

usedibrary componentanddomainexpertise.

Improved safety DSLs enable more propertiesabout
programgo beautomaticallychecled. In contrasto aGPL,
thesemanticof a DSL canberestrictedto make decidable
somepropertiesthat are critical to a domain[23]. Detect-
ing errorsearly in the developmentprocessalsoimproves
productiity. In addition,asre-useis notonly improvedbut
systematizedPSL programsrely on componentghat are
frequentlyusedandthuswell tested.

DSLs asa software architecture

Not all applicationscall for a DSL. In fact, a DSL only

makessensdo structureandimplementa programfamily.

A program family is a setof programsthat shareenough
characteristicghat it is worthwhile to study and develop
themasawhole[18]. A programfamily is typically associ-
atedto agivenproblemin agivendomain.A DSL program
canbe viewed as a way to designatea memberof a pro-

gramfamily. A DSL compilerthenactsasan application
generatomwhich canproduceary memberof the program
family.

In practice,the formulationin termsof a DSL suggests
an attractve way to architecturesoftware to implementa
programfamily [7]. A programfamily is traditionally im-
plementedusinga library that capturescommoncodepat-
ternsandoffersre-usefor implementingthe variousfamily
members.As alibrary becomedarger or moregeneric,its
usabilitydecreasedueto the multiplicationof entrypoints,
parametersand options offered. As a result, the library
might be ignoredby programmerdecauset is considered
too complex to useor too difficult to read.In this situation,
aDSL canoffer adomain-specifiinterfaceto thelibrary so
that the programmerdoesnot have to directly manipulate
numeroushighly-parameterizetuilding blocks; the com-
plexity is hidden. To that effect, the DSL compiler auto-
maticallygeneratesodethatcallsthelibrary functions;the
library canthenbeseermasanabstractmachinefor the DSL.
The generatedtodecorrespondso the codethatwould be
manuallywritten to implementa family memberusingthe
library.

Designingand developinga DSL

Thedefinitionof aDSL critically relieson athoroughanal-
ysisof thecommonalitiesandvariationsin a programfam-
ily, which identifiescommonpatterndn the designandim-
plementatior{7]. Thegoalof this analysids alsoto extract
the key abstractionspropertiesnotationsandterminology
usedin thedomain. It contributesto determiningthe basic
elementof thelanguagedo bedesignedaswell aspossible
or requiredverificationsto be performedon programs.

DSLsfor device driver development

Devicedriversform agoodexampleof atight programfam-

ily: in additionto having the sameAPI (for agivenoperat-
ing systemandtype of device), they all sharesimilar oper

ations,althoughthey vary accordingto the hardware. They

arethus a goodtarget for DSLs. Moreover, as shovn in

Section2, theproductvity andsafetyof devicedriverdevel-

opmentarepoor. Thesearesoftwareengineeringconcerns
thatare addressedby DSLs. Additionally, DSLs canalso
addresghe efficiency issue,which canbe a major concern
in device driverdevelopment.

4. Designof Devil

This sectiongivesa summaryof our domainanalysisof
the lower layer of drivers(i.e. the communicatiorwith de-
vices). For eachidentified concept,we presentthe corre-
spondingDevil languageconstruct.

4.1 Domain analysis

To performour domainanalysiswe exploited a variety
of information sources. We thoroughly examineda wide
spectrunof devicesandtheir correspondinglrivers,mainly
from Linux sourcesEthernetyideo,sound disk, LED dis-
play, interrupt, DMA andmousecontrollers.Thisstudywas
supportedby literature aboutdriver development[8, 21],
device documentationswvailable on the web, and discus-
sionswith device driver expertsfor Windows, Linux and
embeddedperatingsystems.

The overall resultof our domainanalysisshows that a
languageis neededo provide a high-level softwareinter-
faceto hardwaredevices. As is usuallythe casefor inter-
faceg[10, 11], our languageshouldhave a declaratve na-
ture.

4.2 Levelsof abstractions

Thetoplevel of aDevil specificatioris thedeclaratiorof
adevice. Physicaladdressesabstractedsports or ranges
of ports,parameterizéhe declaration.Portsthenallow de-
vice registers to be declared.Finally, device variablesare
definedfrom registers,forming the functionalinterfaceto
the device. Thesethreelevels of abstractiomareillustrated
by asimplifiedfragmentof the Devil descriptiorof amouse
controller, displayedbelow.

devi ce | ogitech_busnouse(base :

{
register sig_reg
vari abl e signature

,

The top-level declaration introduces the | og-
i tech_busnouse description. This description is
parameterizedvith respecto a rangeof portsprovidedas
themainaddresdase andarangeof offsets(from 0 to 3).
An eight-bit registersi g_r eg is declaredat port base,
offsetby 1. Finally, the device variablesi gnat ur e is
the interpretationof this register as an eight-bit unsigned
(by default) integer The resulting descriptionfragment
declaresa device whose functional interface consistsof
a single device variable (si ghat ure). Only device
variables are visible from outside a Devil description
(unlessthey are declaredprivate); ports and registersare
hiddensincetheseabstractiongarenot partof thefunctional
interfaceof the device.

Let usnow examinein detaileachof theselevels.

bit[8] port@O..3})

base@l;
sig_reg :

int(8);

4.3 Ports

Theportabstractions atthe basisof thecommunication
with thedevice. Thisabstractiorhidesthefactthat,depend-
ing on how the deviceis mappedijt canbe operatediia I/0

and memoryoperations. Sincea device often hasseveral
communicatiompointswhoseaddressearederivedfrom a
few main addressed)evil includesa port constructoyde-
notedby @ which takesasargumentsa rangedport anda
constanbffset(e.g., base@ asillustratedabove). To limit
the setof accessiblgortsto thosethat are meaningfulfor
thegivendevice, therangeof valid offsetsmustbespecified
(e.g.,port @O0. . 3} asillustratedabove).

4.4 Registers

Basedon ourdomainanalysisregistersaretypically de-
finedgiventwo ports:aportfor readinganda portfor writ-
ing. Only oneport needgo be providedwhenreadingand
writing sharethe sameport (asis the casefor si g_r eg,
shavn above), or whenthe registeris read-onlyor write-
only (seeexamplebelaw). Registersalsohave a size(num-
berof bits), which mustbe explicitly specified.

Bit masks. A registerdeclaratiormaybe associatedvith

a maskto specify the constraintson bits of this registet

Eachsymbolin the maskcorresponddo a bit in the reg-

ister A symbolcaneitherbe‘.’ to denotea relevantbit,

‘0’ or ‘1’ for anirrelevantbit but with afixedvalue(0 or 1)

whenreador written®, or **’ for anirrelevantbit whether
reador written. By default, if no maskis specifiedall bits

of aregisterareassumedelevant. As anexample,consider
thedeclaratiorof the registerbelow.

register index_reg = wite base@, mask '1..00000;

The maskindicatesthatonly bits 6 and5 arerelevant.
Bit 7 must have value 1 whenwritten. Similarly, bits 4
through0 musthave value 0 whenwritten. Only therel-
evantbits of a registercanbe usedto constructa variable.
In the examplebelaw, the two relevantbits make up a two-
bit unsignedinteger variable(i.e., a variablethat cantake
valuesfrom 0 to 3).

private variable index = index_reg[6..5] : int(2);

Accesre-actions. Someregistersequireotherregisters
to be setto specificvaluesbeforebeingaccessedFor ex-
ample, indexed registerscan be viewed as a sequencef
registerswith afixedbaseaddressaccessinguchregisters
typically consistsof manipulatingtwo ports: oneto setthe
index of theregisterto be accessedndoneto reador write
the target register To do so, pre-actionsmay be attached
to a registerto setup a specificcontext beforeit is read
or written. The following exampledeclarestwo read-only

3This canbe a hardvare constraintor a provision madeby the device
vendorto allow future extensions.

“4Following the corventionusedin device andchip documentationbits
arenumberedrom right to left, startingwith 0.

registersthat can be accessedt the sameport base @,
provided that the device variablei ndex is seteitherto 0
orl.
register dx_low =
read base@, nmask '****

regi ster dx_high =
read base@, mask 'x***

pre {index = 0};

pre {index = 1};
4.5. Device variables

For hardware efficiengy reasonge.g., to minimize the
numberof 1/0s), a registermay groupvariousindependent
values. For example(seeFigurel), threebits in aregister
may be usedto denotewhich buttonsof amousehave been
pushedwhile theremainingpits of theregistermayprovide
information concerningthe motion of the mouse. In other
casessomemeaningfulvalueshave to be constructedoy
assemblingit sequencefrom differentregisters. For ex-
ample,the mousemotiondx in Figurel is encodedn the
device usingthe lowestfour bits of two differentregisters.
In fact, thosemeaningfulvalues,that are possibly spread
over severalregisterfragmentsrepresena corvenientway
to expresshigh-level communicationsvith the device. As
they canconceptuallyoereador writtenlik e any variablein
aGPL,we call themdevicevariables Sincethey donotdi-
rectly mapto physicalentries thesevariablescorrespondo
alogical view of the device; they abstracverthe physical
representatiof the device state. In essencegevice vari-
ablesform the functionalinterfaceof the device to be used
by the programmer

Construction of values. Previous examplesof device
variableshave shavn declarationsorrespondingo anen-
tire register (si gnat ur e) and register fragments(i n-

dex). It is alsopossibleto declarea variableasa com-
binationof these asillustratedin thefollowing example.

variable dx =

dx_high[3..0] # dx_low3..0] :
variable dy =

dy_high[3..0] # dy_low3..0] :

signed int(8);

signed int(8);

The horizontalandvertical motion of the mouseis con-
structedby the concatenatiorfusingthe # operator)of the
two fragmentsof the motionregistersthatstorethelow and
high four bits of the actualmotion values. The resulting
eight-bitsequenceareinterpretedassignedintegers.

Types. Devil allows bit sequence$o be interpretedas a
giventype. The setof typescurrentlyofferedby Devil re-
flectsthe typesusedin the variousdevice driversthatwere
studiedduringthe domainanalysis:booleanssignedor un-
signedintegersof varioussizes,enumeratedypes,ranges
or setsof integers. For lack of space,examplesof these
constructareomitted.

Someotherfeatureof Devil arenotdetailechere.These
featuresncludeaccesgost-actionsenumeratedypesand
arrays,structurego synchronizedevice variables,orderof
register accessesiegister constructorsyariable behaiors
and conditional declarationsdependingon device modes.
A detaileddescriptionof Devil canbefoundin [22].

4.6. Verification

In contrastwith GPLs,aDSL makesdomain-specifién-
formationexplicit. In Devil, declarationenablethreecat-
egoriesof verificationthat are beyond the scopeof GPLs.
First, becauséevil is stronglytyped,all usesof the enti-
ties(e.g., ports,registers variables)canbe matchedagainst
their types. Second,omitted or double definitionscan be
detected.For example,all bits of registerscanbe checled
asbeingusedatleastonce : nodevice variabledefinitionis
thusmissing. Lastly, overlappingdefinitions,i.e., building
entitiesusedmore thanonce,canbe locatedand reported
asanerror. For example,the sameregisterbits cannotbe
includedin two differentvariables.

Theuseof Devil’ sfunctionalinterfacein aGPL alsopro-
videsopportunitiedor verifications.Theseverificationsin-
cludetypecheckingandconditionalvariablecheckingthey
canbebothstaticanddynamic[22].

5. Assessment

In the previous sectionswe have shavn that DSLs en-
able more propertiesabout programsto be automatically
checled. In this section,we examinethe numberof errors
detectedi.e., covered)by bothaGPLandaDSL. The GPL
usedin our studyis the C languagesinceit is traditionally
usedto write device drivers. Using Devil asan alternatve
to GPLsintroducestwo languagesn the developmentpro-
cess:Devil for specifyinga device interfaceandC (this use
of C is denotedby C,., in the restof the paper)for using
thelibrary thatimplementshe Devil description.This ap-
proachleadsto an evaluationof the pair C,,,+Devil, and
thusof C,,; andDevil.

The evaluationof the error-detectioncoverage of Devil
and C is basedon mutationanalysis. This evaluationen-
ablesusto demonstrat¢éhe benefitsof the DSL approachn
termsof softwarerobustness.

DeMillo andMathurhave analyzed?9] the errorsof TeX
reportedby Knuth [16]. Their analysisclearly revealsthat
simpleerrorsdo represena significantfraction, thoughnot
the majority, of the errorsin productionprograms. It also
revealsthatsucherrorsremainhiddenfor alongtimebefore
testingexposesthem. Theseobsenationsare even more
importantconsideringthe permissive natureof a language
suchasC.

5Somebits canbe declaredsirrelevant usingbit masksthough.

For a programP, mutationtestingproducesa setof al-
ternateprograms.Eachalternateprogram, P;, known asa
mutantof P, is formedby modifying onestatemenof P at
atime, accordingto somepredefinednutationrules. These
mutationrulesarederivedempiricallyfrom studiesof errors
commonlymadeby programmersvhentranslatingrequire-
mentsinto code[1].

In traditionalmutationtesting,we wantto reasonabout
the coverageof a sett of testswith respecto a programP.
Mutationtestingworks on the principlethatif ¢ adequately
coversP, thensometestin ¢ shouldbe ableto discriminate
P from amutationP’. Presumablyif amutationcannotbe
discriminatedoy sometestin ¢, thent doesnot adequately
cover P. Theproportionof mutantghatdie duringmutation
testingindicateshow well P is coveredby ¢.

A compiler(in our case,a C compileror a Devil com-
piler) canbe thoughtof asa testset,if we considereach
analysisperformedby the compilerto be atest(i.e., anele-
mentof t). We'll saythatthe compileradequatelcoversa
programpP if someanalysiscandiscriminateP from every
mutationP’.

Our studyfocuseson threedifferentdevices(Busmouse,
Ethernetcard,andIDE controller)andtheir corresponding
Cdriver®. Ourexperimentconsistof measuringheerror
detectioncoverageof C,.;, Devil and C asdiscoveredby
the correspondingompilers/checkrs’. Mutationrulesare
definedso asto ensurethat the resultingmutantis syntac-
tically correct,and actually modifiesthe semanticsof the
program.Mutationrulesfor C andDevil arealwayschosen
asto favor C. Our experimentthusreflectsworst casedor
Devil.

Mutantsare generatedat a given programpoint. Such
a programpoint is calleda site. Eachsite leadsto several
mutants.For example givenanintegerof two digitsin base
16, 80 mutantscan be generated?2 for removing a digit,
48 for insertinga new digit, and 30 for replacinga digit).
Tablel shaws, for eachtargetdevicein our experimentthe
numberof siteswheremutantsaregenerated.

Device C Devil Cheil Devil+C pgjil
Logi tech Lines of code 36 21 18 39
Busnmouse Mutation sites 62 81 21 102

| DE Linesofcode | 64 [127 81 208

| | |

(Intel PIIX4) [Mutationsites [95 | 277 | 42 | 319 |
Et her net [Linesofcode [204 [144 | 137 | 281 |

(NE2000) | Mutation sites | 247 | 456 [258 | 714 |

Table 1. Number of mutation sites

Coverage Analysis. Figures2 and 3 summarizethe re-
sultsof our mutationanalysisperformedon C, Devil, and

6C driverscomefrom the Linux kernelversion2.2.12.
"Besidestaticverification,Devil alsoprovidesdynamicchecking.This
dynamiccheckingis nottakeninto accounin our experiment.

Co.i- Thex-axis consistsof the device driversusedin the
study The y-axis of Figure 2 representshe rate of unde-
tectedmutantsper site. The y-axis of Figure 3 represents
the numberof undetectednutantsbalancedy the number
of sites.

Theseanalysisdatademonstratehat the propensityof
introducingundetectederrorsis 60%to 500%timeslower
whenusing Devil ratherthanusingC only. It canalsobe
obsenredthaterrorsin theDevil partof thedriverarenearly
alwaysdetected.

Theseresultscan be further improved as the specifica-
tions and the compiler usedin the experimentrely on an
earlierversionof Devil which doesnotexploit all of its fea-
tures.

0 ,
100 -2 undetected/sn% 6
8073 65
60 -
40 37 26 32
20 1 7 10] |
Busmouse Ethernet IDE

Figure 2. Percentage of undetected errors/site

E c Il peil [] G,

undetected

250 -

200 -

150 A

100

50':|
Busmouse Ethernet IDE

Figure 3. Number of undetected errors

6. Relatedwork

Our work on device drivers startedwith a study of
graphicdisplayadaptordor a X11 sener. We developeda
languagecalledGAL, aimedatspecifyingdevice driversin
thiscontext [25]. Althoughsuccessfuhsaproofof concept,
GAL coveredavery restricteddomain. It is this restriction
which allowedusto modelthe domainwith asingleDSL.

TheUDI project aimedatmakingdevicedriverssource-
portable acrossOS platforms. To do so, it normalizes
the API betweenthe OS and the lower part of device
drivers[19]. This interfaceis beingimplementedasa li-
brary. Besidesshawving thetimelinessof our work, UDI is
complementaryo Devil. FurthermoreJDI is agoodbasis
for thedevelopmenbf ourfuture DSLsfor theupperlayers

8TheUDI (Uniform Driver Interface)projectis theresultof acontritu-
tion of several computercompaniesncludingCompagHP andIBM.

of adriversincethislibrary alreadyidentifiesthefundamen-
tal operation®of theselayers.

Windows-specificdriver generatordik e BlueWater Sys-
tem’s WinDK [4] and NuMega’s DriverWorks [6] offer
GUIs aimedat specifyingthe mainfeaturesof the driverto
be generated They producea driver skeletonthat consists
of invocationsof coarse-grainedibrary functions. To our
knowledge,no existing driver generatorgoverthecommu-
nicationwith thedevice.

Languagedor specifying digital circuits and systems
have existedfor awhile. A standardanguagewidely used
in this domain,is VHDL [14]. A VHDL specificationde-
scribesthe low-level logic andelectronicfunctionalitiesof
adevice. Devil differsfrom VHDL in thatit concentrates
on communicationwith the device, not the device’s inner
workings. The interfacedescribedoy a Devil specification
cannotbededucedy a VHDL specification.

7. Conclusion

Although devices are rapidly evolving and requirefast
releaseof drivers, driver developmenthasreceved little
attentionfrom the researchcommunity This situationis
surprisingwhenconsideringthe level of safetythatdrivers
shouldoffer to guaranteg¢heintegrity of their hostsystem.

In this paper we have presentedhe following results.
We have analyzedthe domainof low-level device drivers
andlisted obstacledo fastproductionof safedrivers. We
have pointedout thatdevice driversform a programfamily
that could be describedusing domain-specifidanguages.
Basedon our domain analysis,we have designeda lan-
guage,namedDevil, aimedat specifyingthe communica-
tion layerwith a device, providing atyped,functionalinter-
face. Besidesstrongtyping, this languageallows the con-
sisteny of domain-specifiqropertiesto be automatically
checled. Errorsarethusdetecteckarly in the development
processaandsafetyis improved. This approactsharplycon-
trastswith the useof a general-purposknguagenhich re-
quireswriting tediousanderror-proneassembly-leel code
andwhich doesnot permitarny usefulvalidation.

To assesour approach,we have shavn that Devil is
expressve enoughto specifythe interfaceof a large spec-
trumof differentPCdevicesincludingEthernetyideo,disk,
sound,interrupt, DMA and mousecontrollers. Implemen-
tationsgeneratedrom suchspecificationsave not shavn
ary significantperformancdoss. To evaluatethe effective-
nessof strongtyping and consisteng checking,we have
performeda mutation testing experiment, comparingthe
staticerrordetectionof bothapproaches.

Devil improves productivity by providing domain-
specificabstractionghat contribute to make programming
easierIncreasegroductiity alsocomesrom reducingun-
detecteckrrors,asillustratedby our mutationanalysisvhen

usingDevil ratherthanC alone. More generally a specifi-
cationwrittenin Devil improvesproductvity by abstracting
the device interfacein an OS independentvay, allowing

systematigeuse.

Following our approachto driver development,our fu-
ture work aimsat designingDSLs to modelthe upperlay-
ersof drivers. TheseDSLswill malke it possibleto verify
driversfrom the device interfaceto the operatingsystem.

Availability. Devil specificationsswell asanimplemen-
tationof acompiler/checkrareavailablefrom
http://ww. irisa.fr/conpose/devil.

Acknowledgment. TheauthorghankAnne-FranoiselLe
Meur and Julia Lawall for their commentson earlier ver-
sionsof this paperandRobinHanserwhowrote partof the
Devil compilet

References

(1]

(2]

(3]

(4]
(5]

(6]
(7]

(8]

(9]

H. Agrawal, R. Demillo, R. Hathavay, W. Hsu, W. Hsu,
E. Krauser R. J. Martin, A. Mathur and E. Spaford.
Design of mutant operatorsfor the C programminglan-
guage. TechnicalReport SERC-TR-41-PSoftware Engi-
neeringResearckCentre PurdudJniversity WestLafayette,
Indiana,Mar. 1989.

B. Arnold, A. vanDeursenandM. Res.An algebraicspeci-
ficationof alanguagedescribinginancialproducts.In IEEE
Workshopon Formal MethodsApplicationin Softwae En-
gineering pages$—13,Apr. 1995.

E. Bjarnason. Applab: a laboratoryfor applicationlan-
guages.In L. Bendix,K. Ngrmark,andK. @sterby editors,
Nordic Workshopon ProgrammingEnvironmentReseath,
Aalbomg. TechnicalReportR-96-2019,Aalborg University,
May 1996.

BlueWater Systems,Inc. WInDK Users Manual
www.bluevatersystems.com.

S. Chandraand J. Larus. Experiencewith a languagefor

writing coherenceprotocols. In Proceedingsof the 1st
USENIXConfeenceon Domain-Specifit anguaes Santa
BarbaraCalifornia,Oct. 1997.

Compuvare NuMega. DriverWorks User's Guide URL:

Www.numega.com.

C. ConselandR. Marlet. Architecturingsoftware usinga

methodologyfor languagedevelopment.In C. Palamidessi,
H. Glaser andK. Meinke, editors,Proceedingf the 10t

InternationalSymposiunon ProgrammingLanguae Imple-
mentationand Logic Programming number1490in Lec-

tureNotesin ComputerSciencepagesl 70—-194 Pisa,ltaly,

Sept.1998.

E. N. Dekker and J. M. Newcomer DevelopingWindows
NT device drivers : A programmers handbook Addison-
Weslgy, first edition,Mar. 1999.

R. A. Demillo and A. P. Mathur On the use of software
artifactsto evaluatethe effectivenessof mutationanalysis

URL:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

for detectingerrorsin productionsoftware. TechnicalRe-
port SERC-TR-92-PSoftware EngineeringResearctCen-
tre, PurdueUniversity WestLafayette Indiana,Feb 1991.
R. Draves,M. JonesandM. Thompson.MIG - TheMACH
InterfaceGenentor. Schoolof ComputeiScienceCarngjie
Mellon University, July 1989.

E. Eide, K. Frei, B. Ford, J. Lepreau,and G. Lindstrom.
Flick: A flexible, optimizingIDL compiler In Proceedings
oftheACM SIGPLAN97 ConfeenceonProgrammingLan-
guage DesignandIimplementationpagest4-56,LasVegas,
NV, USA, Junel5-18,1997.

C. Elliott. Modelinginteractve 3D andmultimediaanima-
tion with anembeddedanguage.In Proceeding®f the 1st
USENIXConfeenceon Domain-Specifitanguayes Santa
BarbaraCalifornia,Oct. 1997.

N. Gupta, L. J. Jagadeesark. E. Koutsofios,and D. M.
Weiss. Auditdrawv: Generatingauditsthe fastway. In Pro-
ceeding®ftheThird IEEE Symposiunan Requiement€En-
gineering pagesl88-197Jan.1997.

IEEE Standards1076-1993tandad VHDL Languae Ref-
erenceManual 1994.

URL: standards.ieee @r

S. Kamin and D. Hyatt. A special-purposéanguagefor
picture-draving. In Proceedingsf the 1st USENIXCon-
ferenceon Domain-Specifitanguaes SantaBarbaraCal-
ifornia, Oct. 1997.

D. E. Knuth. The errorsof TgX. Softwae Practice and
Experiencel19(7):607-685July 1989.

D. Ladd and C. Ramming. Two applicationlanguagesn
software production. In USENIXSymposiunon Very High
LevelLanguayes New Mexico, Oct. 1994.

D. Parnas.Onthedesignanddevelopmentof programfam-
ilies. IEEE Transactionson Softwae Engineering 2:1-9,
mar1976.

ProjectUDI. UDI Specifications\ersion 1.0, September
1999. URL: www.project-udi.og.

C. Pu, A. Black, C. Cowan, J. Walpole, and C. Consel.
Microlanguagegor operatingsystemspecialization.In 1st
ACM-SIGPLANWbrkshopon Domain-Specifit. anguaes
Paris, France,Jan.1997. ComputerScienceTechnicalRe-
port, University of lllinois at Urbana-Champaign.

A. Rubini. Linux Device Drivers. O'Reilly, first edition,
Feh 1998.

L. Réwillere, F. Mérillon, C. Consel, R. Marlet, and
G. Muller. The Devil language. ResearchReport1319,
IRISA, RennesFrance May 2000.

S.Thibault,C. ConselandG. Muller. Safeandefficientac-
tive network programmingln 17thIEEE Symposiunon Re-
liable Distributed Systemspagesl 35-143 WestLafayette,
Indiana,Oct. 1998.

S. Thibault, R. Marlet, and C. Consel. A domain-specific
languagédor videodevice driver: from designto implemen-
tation. In Proceedingsof the 1st USENIX Confeenceon
Domain-Specifitanguayes SantaBarbaraCalifornia,Oct.
1997.

S. Thibault, R. Marlet, and C. Consel. Domain-specific
languagesfrom designto implementation- applicationto
videodevice driversgeneration|EEE Transaction®n Soft-
ware Engineering 25(3):363-377 May—Junel999. Ex-
tentedversionof [24].

