
HAL Id: hal-00350228
https://hal.science/hal-00350228

Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards robust OSes for appliances: A new approach
based on Domain-Specific Languages

Gilles Muller, Charles Consel, Renaud Marlet, L. P. Barreto, Fabrice Mérillon,
Laurent Réveillère

To cite this version:
Gilles Muller, Charles Consel, Renaud Marlet, L. P. Barreto, Fabrice Mérillon, et al.. Towards robust
OSes for appliances: A new approach based on Domain-Specific Languages. SIGOPS European
Workshop, 2000, France. �hal-00350228�

https://hal.science/hal-00350228
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1327

TOWARDS ROBUST OSES FOR APPLIANCES: A NEW
APPROACH BASED ON DOMAIN-SPECIFIC LANGUAGES

GILLES MULLER, CHARLES CONSEL, RENAUD
MARLET, LUCIANO PORTO BARRETO, FABRICE

MÉRILLON, LAURENT RÉVEILLÈRE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Towards Robust OSes for Appliances: A New ApproachBased on Domain-Speci�c LanguagesGilles Muller, Charles Consel, Renaud Marlet, Luciano Porto Barreto,Fabrice M�erillon, Laurent R�eveill�ereTh�eme 2 | G�enie logicielet calcul symboliqueProjet COMPOSEPublication interne n�1327 | Mai 2000 | 10 pages
Abstract: Appliances represent a quickly growing domain that induces an increaseddemand for safety and rapid operating system design and development. In this paper,existing operating system approaches are assessed with respect to the requirements raisedby appliances. Their limitations are analyzed and used as a basis to propose a new approachto designing and structuring OSes for appliances. This approach is based on Domain-Speci�cLanguages (DSLs), and o�ers rapid development of robust OSes. Our proposal is assessedand illustrated by concrete examples.Key-words: Domain Speci�c Languages, Embedded systems, Appliances, Operating sys-tem kernels

(R�esum�e : tsvp)This research is supported in part by France Telecom and RNRT under the Phenix contract
Centre National de la Recherche Scientifique Institut National de Recherche en Informatique

(UPRESSA 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

R�esum�e : Les syst�emes embarqu�es repr�esentent un domaine de l'informatique en rapideexpansion et induisent des exigences accrues en ce qui concerne la sûret�e et la rapidit�ede la conception et du d�eveloppement des syst�emes d'exploitation. Dans cet article, nous�evaluons les approches existantes �a la conception de syst�emes d'exploitation. Nous analysonsles limitations de ces approches dans le cadre des syst�emes embarqu�es. �A partir de cettesynth�ese, nous proposons une nouvelle approche pour la conception et la structuration desyst�emes d'exploitation pour les syst�emes embarqu�es. Cette approche repose sur l'utilisationde langages d�edi�es, et permet un d�eveloppement rapide de syst�emes d'exploitation robustes.Nous illustrons notre proposition par des examples concrets d'utilisation de langages d�edi�eslors de la conception de syst�emes.Mots cl�es : Langage d�edi�es, syst�eme embarqu�es, noyaux de syst�emes d'exploitation

Towards Robust OSes for Appliances 31 IntroductionAppliances represent a quickly growing domain that raises new challenges in OS designand development. First, new products appear at a rapid pace to satisfy emerging needs.Second, the nature of these markets makes these needs unpredictable. Lastly, given thecompetitiveness of such markets, there exists tremendous pressure to deliver new productsand gain market share.The embedded nature of appliances makes upgrading and �xing bugs di�cult (and some-times impossible) to achieve. Consequently, there must be a high level of con�dence in thesoftware. Additionally, innovation is a requirement in emerging markets to gain commercialsuccess. Regarding the OS, this situation requires rapid development so as to match everchanging needs of new appliances.To ful�ll these needs, OS design and implementation must rely on a number of criteria.To o�er con�dence, software must be highly robust. That is, for a given type of appliance,critical behavioral properties must be determined and guaranteed (e.g., power managementmust ensure that data are not lost). Robustness can be provided by mechanisms and/ortools. The ideal approach takes the form of certi�cation tools aimed at statically verifyingcritical properties. Such tools avoid the need for a laborious and error-prone testing process.To be �rst in a market requires not only that the testing process be shortened, but thedevelopment time as well. To achieve this goal, three key strategies are needed: re-use ofcode to rapidly produce a new product by assembling existing building blocks, factorizationof expertise to capitalize on domain-speci�c experience, and open-endedness of softwaresystems to match evolving functionalities and hardware features.In this paper, existing OS approaches are assessed with respect to the requirements raisedby appliances. Their limitations are analyzed and used as a basis to propose a new approachto designing and structuring OSes for appliances. This approach is based on Domain-Speci�cLanguages (DSLs), and o�ers rapid development of robust OSes. Our proposal is assessedand illustrated by concrete examples.2 Existing OS ApproachesAn OS (or an OS sub-system) conventionally consists of two levels: mechanisms and policies.Mechanisms can take the form of libraries [7] or abstract machines [8]. Policies correspondto algorithms based on mechanisms. Ideally, a policy should be implemented as code gluingtogether mechanisms. In practice, the separation between these two levels is not systemati-cally achieved. This lack of separation makes it di�cult to understand and reason about thebehavior of the OS, which, in turn, compromises robustness. Furthermore, such a blurredseparation makes it hard to identify building blocks which causes poor code re-use. Also,because building blocks are not clearly exposed, code expertise cannot be fully exploited.Factorizing expertise is made even harder by the use of a general-purpose, usually low-level,programming language which does not make domain-speci�c knowledge explicit.
PI n�1327

4 G. Muller, C. Consel, R. Marlet, L. Barreto, F. M�erillon, L. R�eveill�ereThis situation puts limitations on robustness, code re-use, and OS expertise. Let usexamine each of these limitations in turn.2.1 Limited RobustnessOS designers have traditionally limited their view of robustness to isolation of system compo-nents. In this view, a component may consist of both a policy and its associated mechanisms,or it may represent a single policy in isolation, or a set of related mechanisms. Compo-nent isolation is implemented by boundary protection relying on hardware capabilities (e.g.,MMU) or code instrumentation [22]. Another approach consists of using high-level, type-safe languages which guarantee correct memory access; examples include Modula-3 used inSpin [3] and ML for the Fox Net [9]. However, the compilation technology for such languagesis at a level where the performance of generated code does not yet compare to the code pro-duced by a C compiler. Furthermore, developing an OS requires low-level expressiveness,not covered by a high-level language (e.g., manipulation of raw data). This situation oftennecessitates additional work in programming languages to develop various extensions [9].Recently, a static approach aimed at verifying prede�ned safety rules of binary code hasbeen proposed by Necula and Lee [14, 15]. In addition to being static, their approach goesbeyond memory isolation. For example, it enables one to verify the quantity of resourcesused by a program. Its main limitation is that it assumes that programs are written in ageneral-purpose language; consequently, some properties of interest may be undecidable ingeneral. To circumvent this problem, programmer assistance is required at various stages.Microsoft has proposed a tool to improve driver quality which combines static and dy-namic strategies to expose driver errors. These strategies include allocation fault injectionand parameter veri�cation [1].The common limitation of the above approaches is that they do not assume a softwarearchitecture where separation between mechanisms and policies is explicit; as a result, nospeci�c reasoning strategy can be applied to either layer.2.2 Limited Code Re-UseThe software architecture of a system also plays a key role in code re-use. Structuring asoftware system in terms of components is now a well-recognized strategy to achieve codereuse. Notably, in the OS �eld, this structuring technique has lead to micro-kernel archi-tectures [2, 17, 12]. In this OS architecture, each component (or server) corresponds to adomain boundary. However, communication across this boundary introduces overhead. Be-cause the software components are directly mapped into protected entities, their granularityimpacts system performance. The OS architect thus faces the dilemma between de�ningsmall components to expose code re-use opportunities and introducing coarse-grain com-ponents to optimize performance. As demonstrated by the Workplace project at IBM, acompromise cannot necessarily be reached [6].Recently, several research projects have aimed at developing extensible OSes [3, 5]. SuchOSes do not rely on hardware protection boundaries; instead, they use either strongly typedIrisa

Towards Robust OSes for Appliances 5languages [10] or software-fault isolation [22]. Extensible kernels consist of �ne-grain com-ponents which enable low-level functionalities to be exposed. This system architecture dras-tically improve code re-use. Although extensible OSes provide an e�ective solution to codere-use, they do not address expertise re-use. In fact, low-level kernel mechanisms requiredetailed expertise, which does not necessarily correspond to the skills of the industry pro-grammer.2.3 Limited Expertise Re-UseEven when mechanisms have been de�ned at an appropriate level and granularity, expertiseis still required to implement policies. Indeed, kernel mechanisms are often highly parameter-ized to cover a large set of needs, and are also poorly documented. Any incorrect invocationlikely leads to unexpected behavior. Furthermore, combining several mechanisms must fol-low precise rules which are rarely explicitly documented. For example, no requirements onresource allocations are made explicit such that resource leaks can be prevented.This situation requires the policy programmer to master the kernel mechanisms. Thisexpertise can, unfortunately, only be gained by careful examination of the source code andlaborious debugging. In fact, few programmers reach a su�cient level of expertise so as torapidly develop correct kernel code. In the context of appliances, the variety of productsincreases the demand for such experts. Finally, the lack of tools to assist developers inverifying mechanism usage makes the demand for experts even more critical.2.4 Limited ExtensibilityAppliances typically form a family of products that evolve over time. Even when expertisehas been gained during a product's development, turn-over is so high in the computerindustry that this expertise may not be retained. As a result, new product generations mayrequire expertise to be re-acquired.Besides expertise, extensibility critically depends on the OS architecture. Speci�cally,if the building blocks have not been clearly staged, policies and mechanisms may be inter-twined. As a result, it becomes di�cult to extend either mechanisms or policies. Finally,existing approaches to extending OSes enable new components to be added via modulesor servers [3, 17]. However, other than memory protection, they do not o�er any guaran-tees regarding the behavior of these new components. This limitation can have disastrousconsequences considering the widespread nature of appliances.3 A New Approach Based on Domain-Speci�c LanguagesThe common thread of our approach to designing OSes is domain-speci�c languages (DSLs) [11].In this approach, a DSL is developed for each family of sub-systems.
PI n�1327

6 G. Muller, C. Consel, R. Marlet, L. Barreto, F. M�erillon, L. R�eveill�ereAn overview of our approach. A DSL consists of two distinct parts: an abstract ma-chine and a compiler from the DSL to the abstract machine. This structure enforces atwo-level design: policies are written in the DSL, while the abstract machine is directlymapped into mechanisms. The two-level approach forces the designer to stage the designissues: the �rst step is aimed at characterizing the policies needed for the target sub-systemfamily; the second step consists of determining the mechanisms which are common to thesepolicies. The library of mechanisms is then used to de�ne the abstract machine.This policy characterization de�nes the program patterns needed to express the policies ofinterest. In addition, properties which are critical to the family of sub-systems are identi�ed(e.g., termination, resource allocation, . . .). Both program patterns and properties are usedto design a language dedicated to writing the target policies. Program patterns suggestspeci�c syntactic abstractions, while properties lead to speci�c language restrictions whichmake them decidable. The latter feature contrasts with General-Purpose Languages (GPLs)where expressiveness is traded for veri�cation. Importantly, the development of a new DSLrarely means the introduction of a brand new syntax. Rather, this process usually consistsof restricting an existing language and adding domain-speci�c constructs and values.Besides improving robustness, a DSL can also be used to expose information which cantrigger domain-speci�c optimizations. For example, a parameter passed across layers maynot be copied if the language guarantees that a policy only reads it; such optimizationsare performed by the Flick IDL compiler [4]. Finally, our experience has shown that therestricted nature of DSLs drastically improves the development time of compilers, reducesthe number of concepts to treat, and enables the production of high-quality code.Our DSLs. Our approach has been carried out in practice on two families of sub-systems:device drivers and active networks. The device driver study has lead to the design andimplementation of two languages GAL [21] and Devil [13].GAL targets graphics cards, and generates a complete device driver from a high-levelspeci�cation. Devil covers all types of devices, and generates an interface to the devicefunctionalities; Devil can be seen as an IDL for hardware. These DSLs o�er high-levelabstractions to overcome the intricacies of hardware interaction, like error-prone bit ma-nipulations. Both DSLs enable critical properties, like correct device register access, to beveri�ed. Also, they drastically improve productivity; for example, a GAL speci�cation is10 times smaller than the corresponding X11 C driver. Finally, both GAL and Devil havedemonstrated that DSLs can compete with equivalent C code [21].Our study of active networks [23] has lead to the development of a DSL called PLAN-P [19, 20]. This DSL allows application-speci�c protocols to be written and dynamicallydeployed on both routers and terminal equipment such as appliances. A network infras-tructure is a shared resource, therefore application-speci�c protocols must be well-behaved.Consequently, PLAN-P has been designed such that properties guaranteeing the networksafety be preserved (e.g., termination, linear packet duplication, . . .). In practice, protocolimplementations in PLAN-P have been shown to be 3 times smaller than and as e�cient asthe equivalent C code [19, 20].
Irisa

Towards Robust OSes for Appliances 7Let us now examine in detail in what ways a DSL-based approach improves robustness,code re-use, and OS expertise.3.1 Improved RobustnessThe explicit separation between mechanisms and policies enforced by the DSL approachenables a speci�c reasoning about each level. Indeed, unlike GPLs, the expressiveness of aDSL is de�ned such that only well-behaved policies can be written. Compilation of policiesaddress both static and dynamic veri�cation of mechanism usage (i.e., abstract machineusage). Statically, the compiler ensures that mechanisms are invoked with proper param-eters and follow precise usage rules. If the DSL designer considers that a particular staticveri�cation places too large a burden on the language's expressiveness, dynamic checks canbe emitted by the compiler.As a result, since the veri�cation of DSL programs is intrinsic to the language design,the robustness of policies can be certi�ed. Robustness has been clearly demonstrated byour DSLs, which allow kernel-level programs to be rapidly developed with con�dence. OurDSLs have been successfully used by non kernel-expert students. In fact, these guaranteesmake DSLs a key technology for an innovation-intensive domain such as appliances.3.2 Improved Code Re-UseCode re-use is also intrinsic to our approach since a DSL, and its associated abstract machine,target a speci�c family of sub-systems. The common building blocks are clearly identi�ed,and their use in implementing a policy is guaranteed by the DSL compiler. This processensures full re-use of code, in contrast with libraries where re-use depends on programmerknowledge.In traditional OS, improving re-use consists of opening mechanisms at a low level toenable a large variety of policies to be de�ned. As the mechanisms expose lower levelfunctionalities, the programmer needs to introduce more glue code to set up the appropriateinvocation context. In the context of DSLs, the level at which mechanisms are exposed isnot an issue anymore, because it is the compiler which generates the code to set up theinvocation context.3.3 Improved Expertise Re-UseAs we have discussed previously, expertise on low-level mechanisms can be gained as ap-pliances are developed. However, this expertise is not made explicit and can be lost asprogrammers change assignments. In our approach, expertise, in the form of implementa-tion knowledge and safety rules is captured by the DSL compiler. Furthermore, programmersare not required to be domain experts because expertise is centralized in the DSL compiler.In practice, the DSL compiler corresponds to an expertise repository.The DSL approach represents a framework for policy development: it enables the pro-grammer to focus on a policy algorithm and abstracts away implementation details. As aPI n�1327

8 G. Muller, C. Consel, R. Marlet, L. Barreto, F. M�erillon, L. R�eveill�ereresult, more attention is devoted to the functionalities of policies. In addition, experimentingwith policies and tuning them become easier.3.4 Improved ExtensibilityThe two-level design enforced by the DSL approach allows extensions to be made at twoconceptual levels: policies and mechanisms. Extensions at the policy level are characterizedby the DSL syntax and property veri�cation. Extensions at the mechanism level can beachieved by changing the abstract machine implementation.Active networks represent an outstanding example of an extensible system: protocolsare dynamically deployed on a heterogeneous infrastructure (e.g., routers, workstations,and appliances). Our work on PLAN-P not only enables protocols to be introduced aspolicies, but it also allows di�erent abstract machine implementations to be developed onvarious hardware platforms.4 ConclusionWe have proposed a methodology to design and implement a new generation of OSes forquickly evolving domains such as appliances. Developing OSes for such domains puts tremen-dous stresses on robustness, code re-use, expertise re-use and extensibility. We showed howthe DSL approach represents a new solution to these issues. Our DSL approach has beenvalidated on various families of sub-systems. These DSLs have successfully addressed theseissues without a loss in e�ciency.Our goal is to systematize the use of DSLs to design and develop an embedded OS fromscratch. In this new OS, each service will be captured by a DSL. We are currently analyzingfamilies of sub-systems to determine the critical properties of each domain. In a future stage,we plan to conduct comparative studies with existing embedded OSes to assess the bene�tsand drawbacks of our approach.References[1] Using driver veri�er to expose driver errors.http://www.microsoft.com/hwdev/driver/driververify.htm.[2] M. Acetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.Mach: a new kernel foundation for unix development. In 1986 Summer Usenix Confer-ence, pages 93{112, 1986.[3] B.N. Bershad, S. Savage, P. Pardyak, E. G�un Sirer, M.E. Fiuczynski, D. Becker,C. Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN oper-ating system. In SOSP'95 [18], pages 267{283.
Irisa

Towards Robust OSes for Appliances 9[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick: A
exible, optimizingIDL compiler. In Proceedings of the ACM SIGPLAN '97 Conference on ProgrammingLanguage Design and Implementation, pages 44{56, Las Vegas, Nevada, June 15{18,1997.[5] D.R. Engler, M.F. Kaashoek, and J.W. O'Toole. Exokernel: An operating systemarchitecture for application-level resource management. In SOSP'95 [18], pages 251{266.[6] B.D. Fleisch. The failure of personalities to generalize. In 6th Workshop on Hot Topicsin Operating Systems, pages 8{13, Cape Cod, Ma, May 1997. IEEE Computer Society.[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The Flux OSKit: Asubstrate for kernel and language research. In Proceedings of the 1997 ACM Symposiumon Operating Systems Principles, pages 38{51, St-Malo, France, October 1997.[8] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Clawson. Microkernelsmeet recursive virtual machines. In OSDI'96 [16], pages 137{151.[9] Robert Harper, Peter Lee, and Frank Pfenning. The Fox project: Advanced languagetechnology for extensible systems. Technical Report CMU-CS-98-107, School of Com-puter Science, Carnegie Mellon University, Pittsburgh, PA, January 1998. (Also pub-lished as Fox Memorandum CMU-CS-FOX-98-02).[10] W.C. Hsieh, Fiuczynski M.E., Garrett C., Savage S., Becker D., and Bershad B.N.Language support for extensible operating systems. In Workshop Record of WCSSS'96{ The Inaugural Workshop on Compiler Support for Systems Software, pages 127{133,Tucson, AZ, USA, February 1996.[11] D.A. Ladd and J.C. Ramming. Programming the Web: An application-oriented lan-guage for hypermedia service programming. In Fourth International World Wide WebConference, Boston, Massachusetts, December 1995.[12] J. Liedtke. On �-kernel construction. In SOSP'95 [18], pages 237{250.[13] F. M�erillon, L. R�eveill�ere, C. Consel, R. Marlet, and G. Muller. Towards veri�abledevice drivers: An approach based on domain-speci�c languages. Research Report3809, INRIA, Rennes, France, November 1999.[14] G. Necula. Proof-carrying code. In Conference Record of the 24th Annual ACMSIGPLAN-SIGACT Symposium on Principles Of Programming Languages, pages 106{116, Paris, France, January 1997. ACM Press.[15] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In OSDI'96[16], pages 229{243.
PI n�1327

10 G. Muller, C. Consel, R. Marlet, L. Barreto, F. M�erillon, L. R�eveill�ere[16] Proceedings of the Second Symposium on Operating Systems Design and Implementa-tion, Seattle, Washington, October 1996.[17] V. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,C. Kaiser, S. Langlois, P. L�eonard, and W. Neuhauser. Overview of the Chorus dis-tributed operating system. In USENIX - Workshop Proceedings - Micro-kernels andOther Kernel Architectures, pages 39{70, Seattle, WA, USA, April 1992.[18] Proceedings of the 1995 ACM Symposium on Operating Systems Principles, CopperMountain Resort, CO, USA, December 1995. ACM Operating Systems Reviews, 29(5),ACM Press.[19] S. Thibault, C. Consel, and G. Muller. Safe and e�cient active network program-ming. In 17th IEEE Symposium on Reliable Distributed Systems, pages 135{143, WestLafayette, Indiana, October 1998.[20] S. Thibault, J. Marant, and G. Muller. Adapting distributed applications using ex-tensible networks. In Proceedings of the 19th International Conference on DistributedComputing Systems, pages 234{243, Austin, Texas, May 1999. IEEE Computer SocietyPress.[21] S. Thibault, R. Marlet, and C. Consel. Domain-speci�c languages: from design toimplementation { application to video device drivers generation. IEEE Transactionson Software Engineering, 25(3):363{377, May{June 1999.[22] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. E�cient software-based faultisolation. In Proceedings of the 1993 ACM Symposium on Operating Systems Principles,pages 203{216, Asheville, NC, USA, December 1993. ACM Operating Systems Reviews,27(5), ACM Press.[23] D.J Wetherall. Active network vision and reality: lessons from a capsule-based system.In Proceedings of the 1999 ACM Symposium on Operating Systems Principles, KiawahIsland, SC, December 1999.

Irisa

