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Spin-Foam Models and the Physical Scalar Product

This paper aims at clarifying the link between Loop Quantum Gravity and Spin-Foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl(Γ), where Γ is the 4-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of Spin-Foam models. The Spin-Foam models we are considering are the topological model, the Barrett-Crane model and the Engle-Pereira-Rovelli model. The operator P is usually called the "projector" into physical states and its matrix elements gives the physical scalar product. Therefore, we relate the physical scalar product of Loop Quantum Gravity to vertex amplitudes of some Spin-Foam models. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.

Introduction

Finding the physical scalar product is certainly one of the most important question of Loop Quantum Gravity [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Rovelli | Knot theory and quantum gravity[END_REF]. This is somehow equivalent to the problem of finding solutions of the remaining scalar constraint which is, so far, still an open issue. Two main and very active directions have been followed to tackle the problem: (i) formulating consistently the scalar constraint as a well-defined operator acting on the kinematical Hilbert space; (ii) making sense of the covariant quantization to compute physical transitions amplitudes between states of quantum geometry. The former has been explored mainly by Thiemann [START_REF] Thiemann | Anomaly-free formulation of non-perturbative, four-dimensional lorentzian quantum gravity[END_REF] and collaborators: very tricky and very nice regularizations of the scalar constraints have been found; the important question is now to extract physical solutions out of it. The master constraint program [START_REF] Thiemann | The Phoenix project: Master constraint programme for loop quantum gravity[END_REF] has been considered to that aim. Spin-Foam models [START_REF] Reisenberger | Sum over Surfaces form of Loop Quantum Gravity[END_REF] are the covariant alternative attempt to solve the problem: they propose a way to "compute" the path integral of gravity where space-time appears as a combinatorial foam which can be understood as a covariant generalization of the notion of spin-networks. Then a spin-foam is somehow interpreted as the structure which encodes the "time evolution" of a state of quantum gravity. Spin-Foam models have been studied intensively these last years to answer some fundamental questions they have raised, two of the most important being the following: What is the precise link between Spin-Foam models and the path integral of quantum gravity? Can we establish an explicit link between Spin-Foam models and Loop Quantum Gravity as in the three dimensional case [START_REF] Noui | Three Dimensional Loop Quantum Gravity: Spin-Foam models and the Physical Scalar Product[END_REF] ?

To understand the meanning of the first question, it is worth recalling that Spin-Foam models are only ansatz for the path integral of quantum gravity. The ansatz is based on the Plebanski formulation of general relativity [START_REF] Plebanski | On the separation between Einsteinien substuctures[END_REF] where gravity appears as a topological BF theory supplemented with simplicity constraints on the B field. The path integral of a (Euclidean) BF theory is a topological invariant which can be reformulated "exactly" as a Spin-Foam model which is called, in a more mathematical language, a state sum model. The natural idea is to try to impose the simplicity constraints at the level of the path integral to get a Spin-Foam model for gravity. Barrett and Crane (BC) [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF] proposed a first model: it was studied a lot but recently it was shown not to reproduce expected behavior at the semi-classical limit [START_REF] Alesci | The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex[END_REF] while computing the 2-points functions of gravity in the context of LQG propagator calculations [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF]. It was then realized that the way Barrett and Crane had imposed the simplicity constraints at the level of the Spin-Foam would have been, in a sense, too strong. Engle, Pereira and Rovelli (EPR) have proposed a new model [START_REF] Engle | The loop-quantum-gravity vertex amplitude[END_REF] which seems a more promising candidate: in a subsequent paper with Livine [START_REF] Engle | LQG vertex with finite Immirzi parameter[END_REF], they have proposed a way to impose the simplicity constraints using the "master constraint" techniques introduced in the context of canonical quantization by Thiemann. One can incorporate the Immirzi parameter in the new model and it is possible to extend it to the Lorenzian case [START_REF] Pereira | Lorentzian LQG vertex amplitude[END_REF]. In the meanwhile another model from Freidel and Krasnov (FK) [START_REF] Freidel | A New Spin Foam Model for 4d Gravity[END_REF] has appeared. The FK model instead imposes the constraints using the coherent states techniques introduced by Livine and Speziale [START_REF] Livine | A New spinfoam vertex for quantum gravity[END_REF]. All these new models are under study at this moment [START_REF] Conrady | Path integral representation of spin foam models of 4d gravity[END_REF] in order to see, in particular, if they behave correctly in the classical and semi-classical limits [START_REF] Magliaro | Numerical indications on the semiclassical limit of the flipped vertex[END_REF].

The second question concerning the link between canonical and covariant quantizations of gravity has been quite problematic for a long time: the Lorentzian BC model seemed incompatible with Loop Quantum Gravity because it is known that the spectra of the area operator are not identical in the two approaches. Covariant Loop Quantum Gravity [START_REF] Alexandrov | SU(2) loop quantum gravity seen from covariant theory[END_REF] was introduced to repair this problem modifying (in a covariant way) the canonical quantization: the obtained theory is unfortunately too cumbersome to be useful for the moment. Instead of modifying the canonical quantization, one could consider standard Loop Quantm Gravity as the good framework for the canonical quantization of gravity and think about finding a Spin-Foam model consistent with this approach. This is exactly what the new EPR model is doing: the projected states of the new model are the standard spin-network states; the spectrum of the area operators in the covariant quantization is the same as the one in the canonical quantization. Therefore, the EPR model seems to be a good candidate to test if Spin-Foam models can explicitely realize a "projection" (in the sense of Loop Quantum Gravity) into physical states. Indeed, we expect the physical scalar product between two spin-network states to be given by the Spin-Foam amplitude associated to a graph whose boundaries are the two given spin-networks.

This article aims at clarifying this relation with a simple example. We consider Euclidean Spin-Foam models associated to the group G = SU (2) × SU [START_REF] Rovelli | Knot theory and quantum gravity[END_REF]. It is characterized by its vertex amplitude V : the vertex amplitude is the weight associated to a 4-simplex; it is therefore a function V (I ij , ω i ) of the G-representations I ij coloring the 10 faces of the 4-simplex and of the G-intertwiners ω i associated to the 5 tetrahedra of the 4-simplex. The index i runs from 1 to 5 and labels the five tetrahedra in the boundary of the 4-simplex. We want to interpret this vertex amplitude V as the physical scalar product between two spin-network states: the 1-tetrahedron state τ 1 and the 4-tetrahedra state τ 4 associated to spin-networks respectively dual to one tetrahedron and to four tetrahedra as illustrated in the figure [START_REF] Rovelli | Quantum Gravity[END_REF]. The free ends of these spin-networks coincinde and therefore τ 1 and τ 4 are particular cylindrical functions of the same graph, denoted Γ, as illustrated in the figure [START_REF] Alesci | The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex[END_REF] in the core of the paper. The graph Γ is the union of the 4-simplex graph Γ with four free edges and it was introduced to take into account the free ends of the states τ 1 and τ 4 .

More precisely, we construct on operator P acting on the space of cylindrical functions Cyl( Γ) such that its matrix elements are related to the vertex amplitude of Spin-Foam models as follows:

τ 4 , P τ 1 = N V (I ij , ω i ) ( 1 
)
where N is an eventual normalization factor. In that sense, the matrix element τ 4 , P τ 1 would be the physical scalar product between the kinematical states τ 1 and τ 4 . In fact, the bra-ket notation for the physical scalar product might be misleading because mathematically P is a linear form on the space Cyl( Γ), i.e. P ∈ Cyl( Γ) * , abusively called a "projector", and the physical scalar product is τ 4 , P τ 1 = P (τ 4 τ 1 ). In the context of Gelfand-Naimark-Segal theory (see the Ashtekar-Lewandowski review [START_REF] Rovelli | Quantum Gravity[END_REF] and references therein), P , if it satisfies some additional properties, would be a state and would allow to construct the whole physical Hilbert space in principle.
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We find a solution for the projector P for different Spin-Foam models: the topological SU (2) BF model whose vertex V BF is the 15j symbol of SU (2) (this system has no physical relevence); the BC model whose vertex V BC is the well-known 10j symbol; the new model whose vertex V EP R has been defined recently and also the FK model whose vertex construction is a direct extension of the EPR one (in this paper we concentrate only on the vertex amplitude without discussing the measure factors associated to the FK model, see [START_REF] Freidel | A New Spin Foam Model for 4d Gravity[END_REF]). The projector P BF associated to the topological model is a multiplicative operator which acts only on the edges of the spin-networks and imposes that the connection is flat. The projectors P BC and P EP R respectively associated to the BC and the EPR models act both on the vertices (as derivative operators, in the sense that it involves left and right invariant derivatives) and on the edges of spin-networks. Note that we construct one solution of P and we do not precisely address the question of the unicity in this article.

The plan of this article is the following. In Section 1, we propose a simple and general integral formula of the vertex amplitudes of Euclidean 4 dimensional Spin-Foam models. It is quite an universal formula for it contains as particular cases the vertices of all the known models as the topological, the BC and the EPR models. In Section 2, we make use of this formula to construct physical operators for each model in a way similar to the 3 dimensional case. More precisely, we find a solution to the equation [START_REF] Rovelli | Quantum Gravity[END_REF] for each model and we discuss the properties of these solutions. We conclude with some perspectives.

The vertex of a Spin-Foam model

In this Section, we present some properties concerning the vertex amplitude of several Spin-Foam models. The notion of vertex amplitude is defined in the first part where we give a very brief introduction on Spin-Foam models. In a second part, we propose a general and rather simple integral formula for the vertex amplitude which will be useful in the next Section to make a link with the canonical quantization. In the last part of this Section, we illustrate this formula in the particular models we are interested in, namely the topological, the BC and the EPR models. Furthermore, we underline that the BC and the EPR models are particular cases of a large class of Spin-Foam models. We present the construction of this class of Spin-Foam models and we show that their vertex amplitude admits an integral formulation of the same type.

A brief introduction on Spin-Foam models

A Spin-Foam model is basicly the assignment of a complex amplitude A(T ) to any triangulation T of a given four dimensional manifold M. The triangulation consists in the union ∪ 4 i=2 T i of the set of its faces T 2 , the set of its tetrahedra T 3 and the set of its 4-simplices T 4 . The amplitude A is constructed from the representation theory of a given Lie group G that we assume compact for simplicity. To do so, one first colors each face f ∈ T 2 with an unitary irreducible representation (UIR) j f of G and each tetrahedron t ∈ T 3 with intertwiners ι t between representations coloring its four faces. Then, one associates an amplitude A 2 (j f ) to each face f , an amplitude A 3 (ω t , j ft ) to each tetrahedron t which depends on the intertwiner ω t and on the representations coloring its 4 faces f t , and an amplitude V (ω ts , j fs ) to each 4-simplex s which depends on the representations j fs and ω ts coloring its 10 faces f s and 5 tetrahedra t s . Finally, the spin-foam amplitude is formally defined by the series

A(T ) ≡ {j f },{ωt} f ∈T2 A 2 (j f ) t∈T3 A 3 (ω t , j ft ) s∈T4 V (ω ts , j fs ) (2)
where the sum runs into a certain subset of UIR and intertwiners of G. The sum is a priori infinite and therefore the amplitude is only defined formally at this stage unless it is convergent. Notice that in all the models that have been studied in the literature, the amplitude A 3 is assumed to depends on the intertwiners ω t only. The function V is precisely the vertex amplitude of the Spin-Foam model. To finish with this brief introduction of Spin-Foam models, let us mention that the previous construction could be generalized to the case where G is non-compact and to the case where G is replaced by a quantum group. Spin-Foam models can also be defined for any dimensional manifold M.

In this paper, we consider exclusively the case where M is 4-dimensional and we study some properties of the vertex amplitude V only. Therefore, we will not mention the amplitudes A 2 and A 3 when we discuss the Spin-Foam models in the sequel; as a result, we will omit any discussion concerning the amplitude A and a fortiori the question of its convergence. We hope to study these aspects in the future. Furthermore, we will consider Euclidean Spin-Foam models only which are associated to the compact Lie groups G = SU (2) (for the topological model) or G = SU (2)×SU ( 2) (for the BC and EPR models). Letters I, J, • • • label unitary irreducible representations of the group G and the associated vector spaces are denoted U I , U J , • • • . When G = SU (2), I is a half-interger whereas it is a couple of half-integers when G = SU (2)×SU [START_REF] Rovelli | Knot theory and quantum gravity[END_REF]. Due to the compactness of G, each representation I is finite dimensional and associates to any g ∈ G a finite dimensional matrix which will be denoted R I (g) when G = SU (2) × SU (2) and D I (g) in the other case. To a representation I is associated a contragredient (or a dual) representation I * such that R I * (g) = t R I (g -1 ) and the same for the SU (2) representations D I * ; it is common to identify U * I ≡ U I * to U I . More precision concerning the representation theory of the groups G will be given later.

The vertex V (I ij , ω i ) is then a function of the 5 intertwiners ω i coloring the 5 tetrahedra (which are ordered and labelled by i ∈ {1, 5}) of a 4-simplex and of the 10 representations (I ij ) i<j of G coloring the 10 faces at the intersections of the tetrahedra i and j; ω i : ⊗ j>i U Iij → ⊗ j<i U Iji is an intertwiner between the representations I ij "meeting" at the tetrahedron i. In the next part, we are going to show that the vertex amplitude of all the models we consider can be written as an integral over 10 copies of the 3-sphere S 3 as follows:

V (I ij , ω i ) = i<j dx ij C(x ij ) V(I ij , ω i ; x ij ) (3) 
where C(x ij ) is a universal function, in the sense that it is model independent, which reads

C(x ij ) ≡ 5 i=1 dx i δ(x -1 ij x i x -1 j ) . (4) 
V is a model dependent function of the variables x ij . As we will see in the next Section, such a formula will be crucial to link Spin-Foam models with Loop Quantum Gravity.

A General expression of the vertex

There exists many equivalent ways to define the vertex amplitude of a Spin-Foam models. For our purposes, it is convenient to view the vertex amplitude as a "Feynman graph" evaluation of a closed oriented graph which is dual to a 4-simplex. The dual of a 4-simplex Γ is in fact topologically equivalent to a 4-simplex and then consists in a set of 5 vertices linked by 10 edges: we endow the set of vertices with a linear ordering such that the vertices are labelled with an integer i ∈ {1, 5}; this ordering induces a natural orientation on the links, indeed the link ℓ ij between the edges i and j is oriented from i to j if i < j. One associates a complex amplitude to this graph using the following "Feynman" rules: each oriented link ℓ ij , with i < j, is associated to a UIR of G denoted I ij (the opposite link ℓ ji is associated to the contragredient representation denoted for simplicity

I ji = I * ij ); each vertex i is associated to an intertwiner ω i : ⊗ j>i U Iij → ⊗ j<i U Iji .
As a result, the "Feynman evaluation" of such a graph is the scalar obtained by contracting the 10 propagators with the 5 intertwiners and gives the vertex amplitude which formally reads:

V (I ij , ω i ) = 5 i=1 ω i ≡ {eij } 5 i=1 j<i e ji |ω i | j>i e ij (5) 
where e ij runs over the finite set of a given orthonormal basis of U Iij and we have used the standard bra-ket notation to denote the vectors |e ij of U Iij and the dual vectors e ij |. In the language of Loop Quantum Gravity, we would say that V (I ij , ω i ) is simply the evaluation of the spin-network associated to the colored graph (Γ, {I ij , ω i }) when the connection is flat.

In order to have a more useful formula, it will be convenient to trivially identify ω i with an element of Hom(⊗ j =i U Iij , C) and then to notice that ω i is completely caracterized by a vector

v i ∈ ⊗ j =i U * Iij .
These vectors can be written in the form

v i = (aij ) α (aij ) i ⊗ j =i v aij where (a ij ) j =i is a set whose elements label vectors v aij ∈ U Iij , α (aij ) i 
are complex numbers and the sum is finite. The explicit relation between ω i and v i is the following:

ω i = v i | dg j =i R Iij (g) ∈ Hom( j =i U Iij , C) (6) 
where we have used the SU (2) × SU (2) notations for the representations and dg is the Haar measure of G. As a result, the vertex amplitude can be reformulated as a multi-integral over G according to the formula:

V (I ij , ω i ) = (aij ) 5 i=1 α (aij ) i ( 5 i=1 dg i ) ⊗ i<j v aij | i<j R Iij (g i g -1 j )| ⊗ i>j v aij (7) 
which can be written in the following more compact well-known form

V (I ij , ω i ) = ( 5 i=1 dg i ) (⊗ 5 i=1 v i ) • ( i<j R Iij (g i g -1 j )) (8) 
where the dot • denotes the appropriate contraction between the vectors v i and the matrices of the representations. This vertex amplitude is in fact rather general and caracterizes partially a large class of Spin-Foam models. It is general because we have for the moment a total freedom in the choice of the representations and the intertwiners; it is nonetheless only partial because we do not consider the amplitudes associated to faces and tetrahedra. To go further in the study of this amplitude, we need to recall some basic results on the representation theory of SU (2) × SU (2).

Representation theory of G: basic results

Let us start with the group SU (2): its representations are labelled by a half-integer, the spin I; they are finite dimensional of dimension d I = 2I + 1 and we denote by |I, i with i ∈ [-I, I] the vector of an orthonormal basis of U I . The group G = SU (2) × SU (2) is the double cover of SO( 4); it is also known as the spin group Spin(4). Any of its elements g can be written as a couple (g L , g R ) of two SU (2) group elements. Its Unitary Irreducible Representations (UIR) are labelled by a couple of (integers or half-integers) spins (I, J): they are finite dimensional and the vector space U IJ = U I ⊗ U J of the representation (I, J) is the tensor product of the two SU (2) representations vector spaces U I and U J . Therefore, the family of vectors (|I, i ⊗ |J, j ) IJij form an orthonormal basis of U IJ . The action of g ∈ G in this basis is simply given by:

R IJ (g)|I, i ⊗ |J, j = R IJ (g L , g R )|I, i ⊗ |J, j = D I (g L )|I, i ⊗ D J (g R )|J, j . (9) 
The SU (2) matrix elements I, i|D I |I, j are the Wigner functions.

The space U IJ admits another natural basis which will be useful in the sequel. This other basis is constructed from the remark that the vector space U IJ decomposes into SU (2) UIR vector spaces U K as follows:

U IJ ≃ I+J K=|I-J| U K . ( 10 
)
This decomposition provides indeed another orthonormal basis of U IJ , given by the family of vectors (|K, k ) Kk where K ∈ [|I -J|, I + J] and k ∈ [-K, K] as usual. The changing basis formulae are given in terms of the Clebsch-Gordan coefficients Kk|IiJj as follows:

|Ii ⊗ |Jj = K,k Kk|IiJi |Kk and |Kk = IJij Kk|IiJi |Ii ⊗ |Jj . ( 11 
)
To write the action of G on the basis elements |Kk , it is convenient to find the subgroup H ⊂ G which leaves the subspaces U K of the decomposition [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF] invariant and then to identify G with the space G ≃ H × (G/H). In fact, it is immediate to see that H ≃ SU (2), the coset G/H is isomorphic to the sphere S 3 and then we identify G with SU (2) × S 3 . Notice that the identification we have just mentionned is not canonical because G admits many SU (2) subgroups; therefore, to make this identification well defined, one has to precise which SU (2) subgroup one is talking about.

In our case, the SU (2) subgroup is the diagonal one, i.e. it is the group of the elements (g L , g R ) where g L = g R . As a result, the explicit mapping between G and SU (2) × S 3 is:

G -→ SU (2) × S 3 (g L , g R ) = (u, ux) -→ (u, x) = (g L , g -1 L g R ) . ( 12 
)
This mapping is of course invertible and its inverse is trivially given by:

SU (2) × S 3 -→ G (u, x) -→ (u, ux) . (13) 
The multiplication law (g

L , g R )(g ′ L , g ′ R ) = (g L g ′ L , g R g ′ R ) induces the multiplication rule (u, x)(u ′ , x ′ ) = (uu ′ , u ′-1 xu ′ x ′ ) (14)
in the SU (2) × S 3 representation of G. In particular, the inverse of the element (u, x) is given by

(u, x) -1 = (u -1 , ux -1 u -1
). The diagonal terms u ≡ (u, 1) and the pure spherical terms x ≡ (1, x) will be relevant in the following construction.

Let us now come back to the action of G on the the vectors |K, k of the vector space U IJ ; this action is best written and simpler using the factorization SU (2) × S 3 of G. Indeed, a simple calculation shows that

R IJ KkLℓ (u) = R IJ KkLℓ (u, u) = m1,m2 Kk|Im 1 Jm 2 D I m1,n1 (g L )D J m2,n2 (u) In 1 Jn 2 |Lℓ = δ K,L D K kℓ (u) R IJ KkLℓ (x) = R IJ KkLℓ (1, x) = ijj ′ Kk|IiJj IiJj ′ |Lℓ D J jj ′ (x) . ( 15 
)
where we have introduced the notation R IJ KkLℓ (g) ≡ Kk|R IJ (g)|Lℓ for the SU (2) × SU (2) matrix elements. As expected, we see that u ∈ SU (2) leaves any SU (2) representation spaces U K of the decomposition [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF] invariant whereas x moves the vectors from one SU (2) representation space to another. This closes the brief review on SU (2) × SU (2) representations theory. and the single lines in the pair colored with (I, J) are colored by I and J separately. Furthermore, the single lines are endowed with bullets that represent the insertion of SU (2) group elements: the small ones are associated to diagonal elements u i ∈ SU (2) whereas the big ones are associated to spherical elements x i x -1 j ∈ S 3 . The vectors v i are represented by boxes and they are contracted with the free ends of the graph.
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The vertex amplitude as an integral over several copies of S 3

We make use of the basic properties on representations theory recalled above to write the general formula of the vertex amplitude [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF] in the form (3). To do so, one splits the integrations over the group variables g i ∈ G in the formula ( 8) into integrations over the x i ∈ S 3 variables and integrations over the u i ∈ SU (2) variables using the isomorphism [START_REF] Engle | LQG vertex with finite Immirzi parameter[END_REF] and one obtains:

V (I ij , ω i ) = ( 5 i=1 dx i )( 5 i=1 du i ) (⊗ 5 i=1 v i ) • ( i<j R Iij (u i )R Iij (x i x -1 j )R Iij (u -1 j )) ( 16 
)
where

R I (u) ≡ R I (u, 1) (resp. R I (u, u)) and R I (x) ≡ R I (1, x) (resp. R I (1, x)) are the matrices of SU (2) × SU (2) representations I in the SU (2) × S 3 (resp. SU (2) × SU (2)
) formulations. To have a "geometrical" intuition of this formula, we give a graphical representation of the integrand in the figure [START_REF] Rovelli | Knot theory and quantum gravity[END_REF] below. In the models we are going to consider explicitely in the sequel, we can perform the integrations over the u i variables; therefore we formally perform the integration over the u i 's in the general formula [START_REF] Conrady | Path integral representation of spin foam models of 4d gravity[END_REF] and we obtain a formula for the vertex amplitude as an integral over 5 copies of S 3 only:

V (I ij , ω i ) = ( 5 i=1 dx i ) (⊗ 5 i=1 ν i ) • ( i<j R Iij (x i x -1 j )) . ( 17 
)
The integrations over the five SU (2) variables u i have been hidden in the following definition of the vectors ν i ∈ ⊗ j =i U * Iij :

ν i ≡ (aij ) α (aij ) i du (⊗ j>i v aij |R Iij (u i )) ⊗ (⊗ j<i R Iji (u) -1 |v aij ) ( 18 
)
where we have used the explicit decomposition of the vectors v i ∈ ⊗ j =i U * Iij given in the introductive part of Section 1.2. This formula will be much more explicit when we consider the particular Spin-Foam models we are interested in. For the moment, for pedagogical purposes, we propose a picturial representation in the figure [START_REF] Thiemann | Anomaly-free formulation of non-perturbative, four-dimensional lorentzian quantum gravity[END_REF] of the argument of the previous integral ( 18) when i = 1. variables u i or S 3 variables x i x -1 j . Notice that, in the SU (2) × SU (2) formulation, each pair of lines is associated to the element (g L , g R ), g L corresponding to the left line and g R to the right one.
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Before considering specific examples, let us add one more important remark. The vertex amplitude can be trivially reformulated as an integral over 10 copies of G as follows:

V (I ij , ω i ) = ( i<j dx ij ) C(x ij ) (⊗ 5 i=1 ν i ) • ( i<j R Iij (x ij )) (19) 
where the contraint C(x ij ) is a distribution which imposes, rougthly speaking, x ij to be a "coboundary", i.e. of the form x i x -1 j . An explicit formula for C(x ij ) is simply given by the integral:

C(x ij ) = ( 5 i=1 dx i ) i =j δ(x -1 ij x i x -1 j ) ( 20 
)
where δ is the SU (2) delta distribution. It is possible to perform the above integration whose result is simply given by the product of five delta distributions:

C(x ij ) = δ(x 123 ) δ(x 234 ) δ(x 345 ) δ(x 451 ) δ(x 512 ) (21) 
where x ijk = x ij x jk x ki and, by convention,

x ij = x -1
ji . The interpretation of the constraint C(x ij ) will become clear in the last Section where we make the link with the canonical quantization. To conclude, we underline that we have finally found the desired formula (3) for the vertex amplitude with the anounced expression of the distribution C(x ij ) and the model dependent function

V(I ij , ω i ; x ij ) = (⊗ 5 i=1 ν i ) • ( i<j R Iij (x ij )
) is a particular contraction of five SU (2) matrices.

Vertices of particular models

This part is devoted to study some aspects of the vertex amplitude ( 17) for the topological model, the BC model and the EPR model. In fact, these models differ only by the choice of the intertwiners ω i or equivalently the vectors v i which are their building blocks. Thus, to understand the construction of these models and their differences, one has to understand the definition of their associated intertwiners. For that purpose, let us start by recalling basic properties of intertwiners. First of all, in Spin-Foam models, we are interested in 4-valent intertwiners only. The 4-valent intertwiners between four given representations form a (normed) vector space of finite dimension. In the case where G = SU (2), one can exhibit three canonical (natural) orthogonal basis (labelled by an index ǫ ∈ {+, -, 0} that indicates the "coupling channel") presented in the figure [START_REF] Thiemann | The Phoenix project: Master constraint programme for loop quantum gravity[END_REF]. Whatever the basis we choose, any of its element is completely characterized by the representation appearing in the intermediate channel in the tensor product decomposition. Therefore, one often identifies the element of each basis with a representation. We will use the notations ι ǫ (α) to denote the SU (2) intertwiner in the basis ǫ with intermediate representation α. One can make used of these results to construct basis of SU (2) × SU (2) 4-valent intertwiners. In particular, one can naturally exhibit nine "tensor product" basis labelled by a couple (ǫ, ǫ ′ ). However, we will consider in the sequel only the three basis of the type (ǫ, ǫ) which will be labelled by a single ǫ for simplicity: elements of the basis ǫ are denoted ι ǫ (α) as in the SU (2) case but with the difference that α is now a couple of SU (2) representations.

PSfrag replacements Now, we are ready to define the intertwiner ω i for the model we are interested in. Afterwards, we are going to make the general abstract formula of the vertex amplitude more concrete and more useful for studying its properties.

ι + (α) ι -(α) ι 0 (α)

The topological model

We start with the simplest, certainly the more mathematically precise but non-physical model. The topological model is closely related to BF theory with gauge group SU (2). More precisely, given a triangulation T of a 4-dimensional manifold M, one can discretize the BF action to be well-defined on this triangulation and the path integral Z BF (T ) of the discretized action can be formulated as a state sum or equivalently a Spin-Foam model:

Z BF (T ) = {j f },{ωt} f ∈T 2 dim(j f ) t∈T 3 dim(ω t ) -1 s∈T 4 V BF (ω ts , j fs ) ( 22 
)
where we have used notations of (2); we have identified the intertwiners ω t with the associated representation and V BF is the vertex amplitude completely defined by the graph ( 5). This amplitude is known as a 15j symbol and can be formulated as a finite sum of products of 6j symbols The 6j symbols are the totally symmetrized 6j symbols defined, for example, in the chapter 6 of the book [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF]. Note that the sum is finite and then the vertex amplitude is well-defined. However, the state sum is generally divergent; it can be made convergent by gauge fixing or by turning classical groups into quantum groups. The state sum is a (formal) PL invariant, i.e. invariant under homeomorphisms. We have voluntarily not given neither the interwiners ω BF i nor the vectors v i defining the model according to the previous Section. Indeed, such a formulation is not very useful for the topological model and the description of the previous Section is naturally adpated for SU (2) × SU (2) Spin-Foam models and not really for SU (2) Spin-Foam models.

V BF (I ij , ω i ) = K 1 d ω1 d ω5 d 2

The Barrett-Crane model

The Barrett-Crane model has been constructed as a step towards the covariant quantization of four dimensional pure Euclidean or Lorentzian gravity à la Plebanski. Here, we consider exclusively the Euclidean case. The BC model is then a state sum associated to a triangulation T of a 4-manifold M which is supposed to reproduce the path integral Z P l (T ) of a discretized version of the Plebanski action. However, the link between the BC model and gravity is somehow misleading. Indeed, the BC state sum has been constructed heuristically as a modification of the SU (2)×SU ( 2) topological state sum according to the following rules: representations coloring the faces of the 4-simplex are supposed to be simple, i.e. of the form (I ij , I ij ); the intertwiners ω BC i associated to the tetrahedra are also called simple or BC intertwiners we will recall the definition in the sequel; the vertex amplitude V BC associated to the 4-simplices are the so-called 10j symbols whose definition will also be recalled later. The BC model does not say anything concerning the amplitudes A 2 and A 3 associated to the faces and the tetrahedra of the triangulation. However, many arguments lead to certain expressions of A 2 and A 3 and the corresponding state sums have been numerically tested [START_REF] Baez | Positivity of spin foam amplitudes[END_REF]. Anyway, we will not consider these amplitudes in this paper.

Let us concentrate on the construction of the vertex amplitude V BC whose basic ingredient is the simple intertwiner. A simple n-valent intertwiner is such that any of its decompositions into 3-valent intertwiners introduce only simple representations in the intermediate channel. The simple intertwiner has been studied intensively in the literature; in particular it was shown to be unique up to a global normalization [START_REF] Reisenberger | On Relativistic Spin Network Vertices[END_REF]. This property makes clear that the vertex amplitude of the BC model is a function V (I ij , ω BC i ) of only 10 representations and it is called a 10j symbol. To precisely define the simple intertwiner ω BC i , it is more convenient to start with the formula ( 6) which shows that ω BC i is completely determined by the choice of a "simple" vector

v BC i ∈ ⊗ j =i U * Iij Jij where (I ij , J ij ) is a SU (2) × SU (2) UIR . If (I ij , J ij
) is a simple representation, i.e. I ij = J ij , then the associated vector space admits an unique normalized (diagonal) SU (2) invariant vector w (or |w ) which we identify with its dual w| ∈ V * Iij . In that case, indeed, the decomposition [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF] of U Iij Jij into SU (2) representations contains the space U 0 which is the one dimensional space of diagonal SU (2) invariant states. The simple vector is in fact the tensor product of these invariant vectors: ω BC i = w ⊗4 . As a result, the expression of the simple intertwiner in the tensor product basis reads:

ω BC i = 1 j =i d Iij α d α ι ǫ (α) ( 24 
)
where the sum runs over simple representations α ≡ (α, α) only and is finite. An important property is that the previous sum is independent on the choice of the basis ǫ. Using this formula of the simple intertwiner, one finds immediately the vertex amplitude of the BC model

V BC (I ij , ω BC i ) = 1 i =j d Iij α d α V (I ij , α) 2 (25) 
as a sum of BF amplitudes V BF which are SU (2) 15j symbols. The sum runs over simple representations only and is independent on the choice of the intertwiners defining the 15j symbol. Such a formula is too cumbersome to be useful and one prefers to use the integral formulation [START_REF] Edmonds | Angular Momentum in Quantum Mechanics[END_REF] of the amplitude to study its physical properties. This integral formula simplifies indeed drastically because the SU (2) integral defining ν i (18) becomes trivial due to the SU (2) invariance of the vectors v i , and reads

V BC (I ij , ω i ) = ( 5 i=1 dx i ) w ⊗10 | i<j R Iij (1, x i x -1 j ) |w ⊗10 . (26) 
Using the second equations in [START_REF] Livine | A New spinfoam vertex for quantum gravity[END_REF], one obtains the following integral formula for the 10j symbol:

V BC (I ij , ω BC i ) = i =j dx ij χ Iij (x ij ) d Iij C(x ij ) = 5 i=1 dx i i<j χ Iij (x i x -1 j ) d Iij ( 27 
)
where χ I (x) is the SU (2) character of x in the representation I. Up to some normalization factors, the previous formula coincides with the Euclidean 10j symbols. This integral formulation was very useful to study the classical behavior of the Euclidean BC model. Let us finish this brief presentation of the BC model with two important remarks.

Remark 1. The previous calculation can be done in a completely graphical way. Indeed, the "black" boxes representing the vectors v BC i in (2) reduce to the following form

v BC i = I ij I ik I ij I ik I il I il I im I im I ij I ik I ij I ik I il I il I im I im 0 0 0 0 ( 28 
)
where the dashed lines represent spin 0 representation. We see explicitely that v BC i project into diagonal SU (2) invariant vectors. Furthermore, the 3j vectors involving a spin 0 representation are proportional to the "identity" according to the following pictorial rule = d Iij .

I ij I ij 0 I ij I ij (29) 
As a result, one immediately obtains the pictorial representation of the BC vertex amplitude which is given by the product of the normalization factor i<j d -1

Iij and the graph in Figure [START_REF] Noui | Three Dimensional Loop Quantum Gravity: Spin-Foam models and the Physical Scalar Product[END_REF]. The graph consists in 10 disconnected loops colored by representations I ij which makes obvious that the vertex amplitude integrand is, up to a normalization, the product of 10 characters χ Iij (x ij ).
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x 1 x -1 4
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x 2 x -1 5 Iij . The graph is made of 10 disconnected unknots colored with representations I ij . In each loop is inserted a S 3 element of the form x i x -1 j .
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Remark 2. There is another equivalent expression for the vertex amplitude which was very useful to study the classical behavior of the vertex amplitude found by Freidel and Louapre [21]. This formula will not be used in this paper but it is still interesting to mention it at least to ask the question whether a similar formula exists for the EPR model. This formula is based on the simple fact that the character χ I (x) depends only on the conjugacy class θ ∈ [0, π] of x = Λh(θ)Λ -1 : Λ ∈ SU (2)/U (1) and h(θ) is in the Cartan torus of SU (2). This fact leads after some calculations to an expression of the vertex amplitude as an integral over the conjugacy classes:

V BC (I ij , ω BC i ) = ( i =j dθ ij sin(d Iij θ ij ) d Iij ) C(θ ij ) . ( 30 
)
The notation C holds for the "Fourier transform" of the distribution C; it is a distribution as well given by:

C(θ ij ) ≡ 2 10 π 10 ( i<j sin θ ij dΛ ij ) C(Λ ij h(θ ij )Λ -1 ij ) = δ(G[cos(θ ij )]) (31) 
where G holds for the Gramm matrix. Such a relation is in fact a particular example of a much more general duality relation [START_REF] Freidel | 6J symbols duality relations[END_REF].

The Engle-Pereira-Rovelli model

The BC model has been considered as the most promising Spin-Foam model for a long time: its definition is simple, it has a quite appealing physical interpretation and admits the good classical limit [START_REF] Barrett | The asymptotics of an amplitude for the 4-simplex[END_REF][START_REF] Baez | Positivity of spin foam amplitudes[END_REF][START_REF] Bianchi | The perturbative Regge-calculus regime of Loop Quantum Gravity[END_REF] in the sense that the associated vertex amplitude tends to the Regge action in the classical limit, apart from a term due to degenerate contributions, and it was also successful in reproducing the correct asymptotic behavior of the diagonal components of the graviton propagator [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF][START_REF] Christensen | Numerical evidence of regularized correlations in spin foam gravity[END_REF]. Nevertheless, it has been recently realized that the model does not satisfy the required properties to reproduce at the semi-classical limit the non-diagonal components of the propagator [START_REF] Alesci | The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex[END_REF]. The reasons of this failure have been deeply investigated and a quest for a new model have been started. Recent researches have led to the so-called EPR model which has been argued to be a serious candidate. This Section is devoted to recall the basis of this model in the Euclidean sector with no Immirzi-Barbero parameter γ = 0. As in the BC framework, Engle, Pereira and Rovelli have proposed a formula for the vertex amplitude V EP R only. To construct V EP R , one starts by coloring the faces of the 4-simplex by simple representations and the tetrahedra i by specific intertwiners denoted ω EP R i . We propose to define ω EP R i throught its associated vector v EP R i according to the formula [START_REF] Noui | Three Dimensional Loop Quantum Gravity: Spin-Foam models and the Physical Scalar Product[END_REF]. To do so, to each simple representation (I ij , I ij ), we associate the projector I 2Iij : U Iij Iij → U 2Iij from the SU (2) × SU (2) representation's vector space U Iij Iij into the vector space of the SO(3) representation of spin 2I ij . In the standard bra-ket notation, the projector reads

I 2Iij = m |m 2I ij m 2I ij |;
it is clear that it can be trivially identified to its dual I * 2Iij = I 2Iji . Then, the vector v i is constructed from this projector as follows:

v EP R i ≡ ι ǫ (α i ) ( j =i I 2Iij ) ( 32 
)
where ι ǫ (α i ) is a SO(3) intertwiner, viewed as an element of the tensor product ⊗ j =i V 2Iij * , caracterized by ǫ ∈ {0, +, -} and the SO( 3) representation α i as illustrated in the figure [START_REF] Thiemann | The Phoenix project: Master constraint programme for loop quantum gravity[END_REF]. As the vector v EP R i is totally determined by a SO(3) representation α i and a choice of basis ǫ, we will identify in the sequel the vector v EP R i with the couple (α i , ǫ). The pictorial representation of v i is the following:

v EP R i = I ij I ik I ij I ik I il I il I im I im I ij I ik I ij I ik I il I il I im I im 2I im 2I il 2I ij 2I ik α i (33) 
Note that we made a particular choice for ǫ to draw the picture; another choice would lead to a different contraction of the four edges colored by the representations 2I ij . Contrary to the BC model, the EPR intertwiner between four given representations I ij is not unique for it depends on α i and ε, both belonging to a finite set. Now, it is possible to decompose the EPR intertwiner in any tensor product basis of the space of 4-valent SU (2) × SU (2) intertwiners. We are interested in its decomposition in the basis of the type (ǫ, ǫ) whose elements are denoted ι ǫ (α) After some simple calculation, we recover the following expression of the EPR intertwiner given in the literature:

ω EP R i = α f (ω i , I ij , ι ǫ (α)) ι ǫ (α) (34)
where the coefficient f is graphically "represented" in the Figure [START_REF] Plebanski | On the separation between Einsteinien substuctures[END_REF] and the sum is finite and runs over SU (2) × SU (2) representations α with a fixed chosen basis ǫ. In the notation of Engle-Pereira-Rovelli, α is denoted (i + , i -) and the representation defining ω i is denoted i. Note that the sum (34) is not restricted to simple representations. Now, we have all the ingredients to compute the vertex amplitude

V EP R (I ij , ω EP R i
) for the EP R model. ¿From the expression (34), we show immediately that:

V EP R (I ij , ω EP R i ) = α=(i+,i-) f (ω i , I ij , ι ǫ (i + , i -)) V BF (I ij , i + ) V BF (I ij , i -) ( 35 
)
where V BF (I ij , i ± ) are the SU (2) 15j symbols which depends on the representations I ij and α but also on the choice of the basis ǫ which has not been explicitely written. The sums runs over SU (2)×SU ( 2) representations α with a fixed ǫ. Such a formula is rather complicated and one might prefer working instead with an integral formula of the form [START_REF] Reisenberger | Sum over Surfaces form of Loop Quantum Gravity[END_REF]. To obtain such a formula, one has to separate in the integral ( 8) the variables u i from the variables x i as in ( 16) and then to perform the integration over the variables u i These last integrations are very simple to compute: the integration over u 3 is trivial and those over the remaining variables u i give a simple normalisation factor for I ij = {j 1 , j 2 , j 3 , j 4 }, ω i is caracterized by i (and some ǫ) and α = (i + , i -).

N = (d 2I12 d 2I45 d ω1 d ω5 ) -1 . i i + i - 2j 1 2j 2 2j 3 2j 4 j 1 j 2 j 2 j 1 j 3 j 4 j 4 j 3
Afterwards, the vertex amplitude reduces to the formula:

V EP R (I ij , ω i ) = N i =j dx ij C(x ij ) V(I ij , ω i ; x ij ) (36)
where the amplitude V is a function of the 10 variables x ij and is graphically represented in the Figure [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF]. This formula is the EPR counterpart of the formula ( 27) for the BC model. It will appear very useful in the next Section to make a contact with Loop Quantum Gravity. It might also be useful to study the classical and semi-classical properties of the EPR model as it is the case for the BC model.

A direct generalization: the Freidel-Krasnov models

This Section is devoted to present a very direct generalization of the EPR model. This generalization leads to a large class of Spin-Foam models to which belong both the EPR and the BC models.

To motivate the construction of FK models, let us recall that the vector v EP R i , necessary to define the EPR intertwiner ω EP R i , has been constructed making use of a projector I 2Iij from the vector space of the SU (2) × SU (2) simple representation (I ij , I ij ) into the SO(3) vector space representation U 2Iij . A direct generalization would be to define a vector v gen i using instead, at each vertex i, projectors

I K i j from V Iij Iij into the SO(3) representation U K i j for any representation K i j ∈ [0, 2I ij ].
The formal expression of the general vector is then the following:

v gen i ≡ ι ǫ (α i ) ( j =i K i j ) . ( 37 
)
The vector v gen i so defined depends on the choice of the intertwiner ι ǫ (α i ) and on the representations K i j . It is represented by the following diagram

v gen i = J ij J ik J ij J ik J il J il J im J im J ij J ik J ij J ik J il J il J im J im K i m K i l K i j K i k α i (38) x 1 x -1 2 x 1 x -1 3 x 1 x -1 4 
x 1 x -1 5

x 2 x -1 5 This leads to a vertex amplitude very similar to the EPR one. In particular, its integral formula takes the same form of (36) where the normalization factor is changed into N = (d I 1 2 d I 4 5 d ω1 d ω1 ) -1 and the function V is represented by the same graph drawn in the Figure [START_REF] Barrett | Relativistic spin networks and quantum gravity[END_REF] with different spin labels.

x 2 x -1 4 x 2 x -1 3 x 3 x -1 4 x 3 x -1 5 x 4 x -1 5
As a consequence, we get a large class of Spin-Foam models vertex amplitudes V gen i which depends not only on the 10 representations I ij coloring the faces of the 4-simplex but also depends on 5 other representations per tetrahedron i which have been denoted α i , K i j . Up to now, only special cases of such models have been studied: the BC model where K i j = α i = 0, the EPR model where K i j = K j i = 2I ij and α i is a free parameter. Thus, either we choose to project into the trivial representation either into the hightest representation. The FK model consists in another choice of the representations K i j and α i . Many arguments lead to the fact that the EPR intertwiners define the good physical model, namely the one which should reproduce the discretized path integral of the Euclidean Plebanski theory.

The vertex and the physical scalar product

In this Section we are proposing a link between (covariant) Spin-Foam models and (canonical) Loop Quantum Gravity. To explain our strategy, we start by recalling some needed basic results of LQG. One of the main points of LQG is the assumption that physical states can be constructed from the so-called kinematical Hilbert space H kin which consists in the space of cylindrical functions endowed with the kinematical scalar product , defined from the SU (2) Haar measure. The Spin-network states form an orthonormal basis of H kin . Then, the idea is basicly to impose the constraints of gravity to extract physical states out of the kinematical space. So far, we know how to impose the Gauss constraint and the space-diffeomorphisms constraints and this leads to the construction of the the diffeomorphism invariant states: they form the space H dif f which is endowed with the Ashtekar-Lewandowski measure [START_REF] Ashtekar | Projective techniques and functional integration[END_REF]. The physical Hilbert space H phys is still unknown but expected to be constructed from the Ashtekar-Lewandowski measure. Up to now, we do not how to solve the remaining Hamiltonian constraint. Spin-Foam models have been introduced as an alternative to find physical states and the physical scalar product in the sense that the amplitude of a Spin-Foam models should reproduce the physical scalar product between the states at the boundary of the Spin-Foam. This Section aims precisely at clarifying this last point in a simple case.

More precisely, we consider the Spin-Foam associated to the 4-simplex graph denoted Γ. Its amplitude is given, up to some eventual irrelevant normalization factors, by the vertex amplitude V . From the general boundary (covariant) formulation point of view, Γ is viewed as a graph interpolating between two kinematical boundary states which are τ 1 and τ 4 as schematically depicted in the figure [START_REF] Alesci | The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex[END_REF]. In fact, as shown in the figure [START_REF] Alesci | The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex[END_REF], τ 1 and τ 4 belong to the space Cyl( Γ) where Γ is the union of Γ with four free ends. These free ends have been added for technical purposes only. Notice that Γ can be equivalently interpreted as the graph interpolating between two different graphs that would be denoted τ 2 (with two vertices) and τ 3 (with three vertices). For that, one would need to introduce also some free ends at the graph Γ. From the canonical point of
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x 25 view, the states τ 1 and τ 4 are considered schematically as cylindrical functions on the graph Γ. Therefore, one naturally asks the question whether it exists a "physical projector" P acting on the space Cyl( Γ) such that its matrix element τ 4 , P τ 1 constructed from the kinematical scalar product gives the vertex amplitude. The notation τ 4 , P τ 1 can be misleading because P has in fact to be viewed as a state in the sense of Gelfand-Naimark-Segal (GNS), i.e. P is a linear form on Cyl( Γ) and the physical scalar product reads τ 4 , P τ 1 = P (τ 4 τ 1 ). We abusively use the same notation for the projector viewed as a " matricial operator" or a linear form. To be interpreted as a GNS state, P has to satisfy additional properties, like the positivity, that we will not discuss here. We show that it is possible to construct explicitely such an operator P for the topological, the BC and the EPR models. The "projector" for the FK model can also be obtained immediately generalizing the construction in the EPR case. We will use the obvious notations P BF , P BC and P EP R to denote the physical "projector" in the different cases.

There are two important points to clarify. The first one is the issue of uniqueness of the solution: we find one (class of) solution(s) for P in each model but we do not know if it is unique (in some precise sense of course). Second we work in the kinematical Hilbert space and we expect P to behave correctly with respect to diffeomorphisms invariance in order to extend it to H dif f . We hope to address these important mathematical issues in the future.

The topological model

The topological model is the simplest case to consider. Even if it is not of a great physical interest, it is a good toy model to test the possibility of constructing a "physical projector" P . Furthermore, we will see that this construction will be useful to study the other more physical cases. Let us emphasize that the construction of P BF is very similar to the construction of the projector into physical states in three dimensions as expected from the topological nature of the model.

As we said in the introduction of this Section, the boundary states τ 1 and τ 4 are elements of Cyl( Γ): τ 1 is a function of the eight group variables y h , z k , with k = 1, • • • , 4 and h = 2, • • • , 5, as shown in the figure [START_REF] Modesto | Particle scattering in loop quantum gravity[END_REF]; τ 4 is a function of fourteen group variables, ten of them are denoted x ij with i, j = 1, • • • , 5 and i = j, and the four remaining are the z k variables as shown in the figure 10. Note that the z k group variables are those associated to the free ends of Γ which are common to the spin-network graphs associated to τ 1 and τ 5 . x 21
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Figure 10: Pictorial representation of the graph associated to τ 1 and τ 4 separately. The free edges are oriented from the vertices to the free ends; the internal edges are oriented according to the order on the vertices. The variables associated to the free ends are denoted z k for the two graphs; those associated to the internal edges of τ 4 are denoted x ij with i, j = 2, • • • , 5; those associated to the internal edges of τ 1 are denoted y h .

We now address the concrete question of finding the projector P BC such that τ 4 , P BC τ 1 is, up to some eventual irrelevant normalization factors, the vertex amplitude V BF . Of course, we have implicitely assumed that τ 1 and τ 4 are spin-network states i.e. there are associated to a colorating of the edges and the vertices of their associated graphs. Concerning τ 1 , its vertex is colored with an intertwiner denoted ω 1 and each edge associated to the variables y k are colored with a representation denoted J k . Concerning τ 4 , its vertices i are colored with intertwiners ω i and each edge associated to the variables x ij are colored with representations I ij .

The operator P BC has to be a discretization of the flatness condition on the connection: it is a cylindrical distribution on Γ which imposes that the holonomies around the closed faces of Γ are trivial. One candidate which realizes such a requirement is given by:

P BC = δ(x 123 )δ(x 234 )δ(x 345 )δ(x 451 )δ(x 512 ) (39)
with the notation of [START_REF] Barrett | The asymptotics of an amplitude for the 4-simplex[END_REF]. We need only five delta distributions to impose the flatness condition on the ten faces of the 4-simplex. Furthermore, we see that P BC is nothing but the distribution C(x ij ) we have previously introduced [START_REF] Barrett | The asymptotics of an amplitude for the 4-simplex[END_REF]. To show that this operator is indeed a solution of our problem, let us compute its matrix element between the states τ 1 and τ 4 making use of the kinematical scalar product:

τ 4 , P BF τ 1 = ( 5 i =j dx ij ) ( 5 k=2 dy k ) ( 4 ℓ=1 dz ℓ ) τ 4 (x, z ℓ ) C(x, y)τ 1 (y, z) = 4 k=1 δ J k ,I 1k d I 1k ( i =j dx ij ) C(x ij ) τ 5 (x ij ) (40) 
where τ 5 (x ij ) is the spin-network state associated to the 4-simplex graph. To obtain this result, we have performed the integration over the z variables first, then we have absorbed the y variables using the invariance of the Haar measure to get as a final result an integral involving only the variables x ij . At this point, it is immediate to see that the previous integral simplifies and we have:

τ 4 , P BF τ 1 = 4 k=1 δ J k ,I 1k d I 1k V BF (I ij , ω i ) . (41) 
Up to a renormalization factor, the physical scalar product gives exactly the desired vertex amplitude of the topological model. Therefore, we found a projector P into the physical states of the topological model.

Let us finish the study of this case with some remarks. First, the construction of P BC can be easily generalized to the space of all cylindrical functions: we only have to impose the flatness condition aroung the closed loops of the spin-netwoks but taking into account the fact that one has to avoid redundant delta distributions in order to have a finite amplitude. Second, as we have already said, the projector P BC has a clear physical interpretation in the sense that it is a discretization of the first class constraints of the BF theory. For that reason, one can suppose that the solution we found is unique. As a final remark, let us emphasize that, even if the topological model is not physically interesting, it will appear very useful to understand the gravitational models, namely the BC and the EPR models. Indeed, the three models admit the same kinematical Hilbert space and, as we will see, the operators P BC and P EP R are constructed from the operator P BF we have just constructed. In other words, the physical scalar products of the gravitational models are obtained from the physical scalar product of the topological model. This aspect will be precisely described in next Section.

The Barrett-Crane model

This Section is devoted to the construction of the operator P BC . For that purpose, we use the same notations as in the previous Section concerning the space of cylindrical functions Cyl( Γ), in particular concerning the states τ 1 and τ 4 . This makes sense because the topological and the BC models possess the same kinematical Hilbert space. Thus, we look for an operator P BC acting on the space of cylindrical functions Cyl( Γ) such that

τ 4 , P BC τ 1 = N 4 k=1 δ J k ,I 1k V BC (I ij , ω BC ) ( 42 
)
where N is an eventual normalization factor. We propose a solution where the projector is the product P BC = P BF PBC of the projector P BF = C(x ij ) of the topological model and another operator PBC we are going to define. First, PBC has a non-trivial action on Cyl(Γ) but can be trivially extended to the space Cyl( Γ). Then, its action on any function F ∈ Cyl(Γ) is explicitely given by:

( PBC F )(x ij ) = ( i<j dv ij ) F (v ij x ij v -1 ij ) (43) 
where we used the obvious notation x ij for the group variable associated to the oriented edge (ij) of Γ. Thus, PBC acts non-trivially on the internal edges of Γ; this action can be graphically represented as follows:

x ij P = x ij dv ij v -1 ij v ij = d -1 Iij . x ij (44) 
Let us now see that P BC reproduces the physical scalar product in the sense of the equation ( 42). Indeed, an immediate calculation leads to the result:

τ 4 , P BC τ 1 = 4 k=1 δ J k ,I 1k d I 1k ( i<j dx ij ) (P BC τ 5 )(x ij ) (45) = 4 k=1 δ J k ,I 1k d I 1k τ 5 (1) ( i =j dx ij ) χ Iij (x ij ) d Iij C(x ij ) (46) 
where τ 5 (1) is the spin-network τ 5 evaluated at the identity x ij = 1, then it is the vertex amplitude of the topological model, i.e. a SU (2) 15j symbol. Thus, the previous equation can recasted the as follows:

τ 4 , P BC τ 1 τ 4 , P BF τ 1 = 4 k=1 δ J k ,I 1k d I 1k V BC (I ij , ω BC i ) . (47) 
Up to some normalization factor, the operator P BC reproduces the vertex amplitude of the BC model. Thus, P BC can be interpreted as a projection into physical states of the BC model. The construction we are proposing rises many important remarks.

Remark 1. The operators P BF and PBC do not commute and therefore the order of their product clearly matters. The operator P BF is a multiplicative operator that impose the discrete analoguous of the flatness of the Ashtekar connection and then it can be interpreted as a projector into space-diffeomorphism invariant states. This interpretation is based on the fact that, in three dimensions, the flatness constraint on the connection generates diffeomorphisms. The operator PBC is a kind of "derivative" operator for its action involves SU (2) right and left derivatives. Its physical interpretation is not clear.

Remark 2. If one believes that the BC model is related to gravity, then it is clear that P BF is the projection into H dif f and PBC should contain the projection into the kernel of the Hamiltonian constraint. This is far from being obvious and that conjecture is even false if the BC model is not the one that discretizes gravity as it is suspected. Let us notice that, in our construction, PBC acts first and then acts P BC which is contrary to what one usually does in LQG where the projection into H dif f arises before the projection into the kernel of the Hamiltonian constraint.

Remark 3. The operator PBC : Cyl

(Γ) → C(SU (2)) ×10
Ad is in fact a projector from the space of cylindrical functions to ten copies of the space of functions on the conjugacy classes C(SU (2)) Ad of the group SU (2) where F ∈ C(SU (2)) Ad if and only if F (gxg -1 ) = F (x) for any x and g in SU [START_REF] Rovelli | Knot theory and quantum gravity[END_REF]. Its action on a τ 5 spin-network state is given by:

( PBC τ 5 )(x ij ) = τ 5 (1) i<j χ Iij (x ij ) d Iij (48) 
where I ij are the representations coloring the edges (ij) of the graph Γ. It is straightforward to check that P 2 BC = PBC . As a consequence, for the definition of P BC to make sense, one has to extend P BF as an operator acting on C(SU (2)) ×10

Ad which is trivial. Remark 4. In fact, the decomposition of P BC as the product of P BF and PBC is not canonical. Our construction provides an equivalent class of functions PBC according to the trivial relation PBC ∼ QBC if and only if P BF PBC = P BF QBC . Another natural choice for the derivative operator is QBC defined by its following action on τ 5 spin-network states:

( QBC τ 5 )(x ij ) ≡ τ 5 (x ij ) i<j χ Iij (x ij ) d Iij . ( 49 
)
This representative is clearly a multiplicative operator.

Remark 5. As a last remark, let us underline that the physical scalar product between two states in the BC model ( 47) can be viewed as the matrix element of the operator PBC with respect to the physical scalar product of the topological model up to the "norm" τ 4 , P BF τ 1 . In that sense, the BC model is very closely related to the topological model.

The Engle-Pereira-Rovelli model

In this Section, we propose an operator P EP R which reproduces the vertex amplitude of the EPR model. The construction of P EP R is very similar to the construction of P BC . As for the BC model, P EP R is the product of the non-commuting operators, P EP R = P BF R , one of them being the projetor of the topological model as well. The operator PEP R is defined by its action on spin-network states τ 5 (x ij ) explicitely given by:

( PEP R τ 5 )(x ij ) = ( i<j dv ij dv ji )   i<j χ Ĩij (v ij x ij v ji )χ Ĩij (v ij )χ Ĩij (v ji )   τ 5 (v ij x ij v ji ) (50) 
where we have introduced the notation Ĩij = I ij /2. As in the BC model, PEP R acts on each edge of the spin-network and this action can be pictured as follows:

x ij PEP R = x ij dv ij dv ji v ji v ij = x ij v ij v ij I ij I ij Iij 2 Iij 2 Iij 2 I ij Iij 2 I ij (51) 
In this figure, the closed loops represent SU (2) characters. The last equality has been obtained after integrating over the v ij variables. Using this pictorial representation, it is quite easy to compute the matrix elements of P EP R between the states τ 1 and τ 4 :

τ 4 , P EP R τ 1 = 4 k=1 δ J k ,I 1k d I 1k i<j dx ij (P EP R τ 5 )(x ij ) (52) = 4 k=1 δ J k ,I 1k d I 1k N -1 V EP R (I ij , ω EP R i ) ( 53 
)
where N is the normalization factor introduced in (36). As a consequence, we claim that the physical scalar product reproduces the vertex amplitude of the EPR model. Let us now finish this Section with some important remarks.

Remark 1. The previous remarks 1 and 2 concerning the BC model can be transposed to the EPR model. In particular, if the EPR model is a discretization of the path integral of gravity, PEP R should be closely related to the Hamiltonian constraint. If this is true, our formula could give some hints about the regularization of the Hamiltonian constraint. Furthermore, we can easily generalize the construction to any cylindrical functions with no restriction on the underlying graph.

Remark 2. The operator PEP R is constructed making use of an integration over 20 variables v ij with i = j because v ij = v ji in the formula (50). Contrary to the BC model, PEP R is not a projector neither an operator from Cyl(Γ) to the space of functions on the SU (2) conjugacy classes. The integral (50) can be reduced to an integral over only 10 variables v ij with i < j as follows:

( PEP R τ 5 )(x ij ) = ( i<j dv ij )   i<j χ Ĩij (v ij )χ Ĩij (x -1 ij v ij ) d Ĩij   τ 5 (v ij ) . ( 54 
)
To obtain such a formula, we have first integrated over the variables v ij with i > j and then we have performed some changing of variables.

Remark 3. Our construction can be generalized immediately to the FK models presented in Section 1.3.4. The resulting operator P F K would take exactly the same form as P EP R with some differences in the representations of the characters in the integrand of (50).

Remark 4. Concerning the unicity of PEP R , we can make the same remark 4 as in the BC model, namely our construction provides a certain equivalent class of solutions for PEP R and the decomposition of P EP R as a product of P BF and PEP R is not canonical.

Conclusions and perspectives

On the first hand, this article opens one way towards the understanding of an eventual link between Loop Quantum Gravity and Spin-Foam models. We have shown that the vertex amplitudes of some Spin-Foam models can be precisely interpreted as a "physical" scalar product between two spinnetworks. This makes a clear relation between the canonical and covariant quantizations of 4 dimensional Euclidean gravity. It is indeed possible to construct operators P acting on the space Cyl(Γ) of cylindrical functions on the (extended) 4-simplex graph Γ such that its matrix elements between spin-networks states gives, up to some eventual normalization, the vertex amplitudes for Spin-Foam models. In a formal language, we have shown that s, P s ′ = A(s, s ′ ) (55)

where , is the kinematical scalar product; s and s ′ belongs to Cyl( Γ) and A(s, s ′ ) is the Spin-Foam amplitude of a graph interpolating between s and s ′ which is, here, proportional to the vertex amplitude. The construction works for the topological model, the Barrett-Crane model, the Engle-Pereira-Rovelli model and their direct generalizations, namely the Freidel-Krasnov models.

On the other hand, the same article opens questions that certainly deserve to be investigated. The first one concerns the possibility to extend our construction to the case where the spin-networks s and s ′ (55) are any cylindrical functions and not restricted to Cyl( Γ) as this was the case in this article. It is clear that the action of the operators P we have constructed can be easily extended to any spin-networks with no assumption on the underlying graph defining the spin-networks. It would be very nice to first compute the matrix elements of P between these general states and to check if the result is related to a Spin-Foam amplitude associated to a graph interpolating between the two associated spin-network graphs. We hope to study this very exciting problem in the close future.

The second question concerns the link between the operators P we have constructed and the regularization of the Hamiltonian constraint à la Thiemann. Indeed, one would expect that, if the Spin-Foam models are a discretized version of the path integral of gravity, then P should be related to the Hamiltonian constraint. It is interesting to remark that the projector P EP R of the EP R model have some "similarities" with the Thiemann constraint: for example, it acts on the nodes of the spin-networks. It is nonetheless intriguing to notice an important difference between the ways the constraints are imposed in LQG and in the Spin-Foam models throught the operators P : indeed, in LQG, one imposes the vectorial constraint before imposing the scalar constraint whereas the operator P = P BF P is the non-commutative product of two operators, the second one P BC imposes clearly the space-diffeomorphisms invariance and "projects" into the vectorial constraint kernel. Of course, it is too early to conclude anything but its seems to have a quite important discrepencie between the two approaches. To understand more precisely these aspects, one could start by understanding the link between the projector P and the classical constraints of gravity.

The third question is more mathematical: is P a GNS state? Indeed, it is quite misleading to view P as an operator acting on cylindrical functions for it is a linear form on Cyl( Γ). Thus it seems that the GNS theory is the good mathematical framework to study P . But, if one wants to interpret P has a GNS state, one has to check that it satisfies all the required property, among other the positivity.

We finish this conclusion by mentionning the possibility that our work could give some hints to study the classical and semi-classical behaviors of the EPR model.
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 1 Figure 1: Illustration of the 1-tetrahedron state τ1 on the left and the 4-tetrahedron state τ4 on the right. Vertices, labelled by i ∈ {0, 5}, are colored with intertwiners ωi and edges ℓij with representations Iij . The 4 free ends are colored with representations I1i.

Figure 2 :

 2 Figure 2: This picture is a graphical representation of the integrand in the formula (16) defining the vertex amplitude. Each line are doubled because it carries a representation of SU (2) × SU (2)and the single lines in the pair colored with (I, J) are colored by I and J separately. Furthermore, the single lines are endowed with bullets that represent the insertion of SU (2) group elements: the small ones are associated to diagonal elements u i ∈ SU (2) whereas the big ones are associated to spherical elements x i x -1

Figure 3 :

 3 Figure 3: Structure of the node i = 1. Four pairs of edges are attached at each node of the graph: each edge are colored with a SU (2) representation. The bullets illustrate the inclusions of SU (2)variables u i or S 3 variables x i x -1 j . Notice that, in the SU (2) × SU (2) formulation, each pair of lines is associated to the element (g L , g R ), g L corresponding to the left line and g R to the right one.

Figure 4 :

 4 Figure 4: The three canonical basis of the space of 4-valent intertwiners. The intermediate channel is endowed with the representation α.
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 15 Figure 5: Pictorial representation of a 15j symbol: vertices are labelled by representations ωi and edges by representations Iij.

Figure 6 :

 6 Figure 6: Pictorial representation of the BC vertex integrant up to the normalization factor i<j d -1Iij . The graph is made of 10 disconnected unknots colored with representations I ij . In each loop is inserted a S 3 element of the form x i x -1 j .
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 7 Figure 7: EPR fusion coefficients. The edges are colored with SU (2) representations and the vertices with symmetric SU (2) 3j symbols. The picture illustrates the coefficient f (ω i , I ij , ι ǫ (α))for I ij = {j 1 , j 2 , j 3 , j 4 }, ω i is caracterized by i (and some ǫ) and α = (i + , i -).

Figure 8 :

 8 Figure 8: Picturial representation of the EPR argument in the integral formula: vertices are labelled by i = 1, • • • , 5 where i = 1 is the top vertex and the others are enumerated according to the anti-clockwise orientation; edges are then oriented and are labelled by (ij) with i < j. The doubled lines are colored with simple representations (I ij , I ij ). The lines (ij) in the same pair are linked to a line colored with the representation 2I ij . At each vertex, the four single lines are linked with a line of representation ω i .

4 Figure 9 :

 49 Figure 9: Representation of the graph Γ. The subgraphs associated to τ 1 and τ 4 have been underlined and the group variables associated to each edge have been emphasized.
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