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This paper introduces projective systems for topological and probabilistic event structures.

The projective formalism is used for studying the domain of configurations of a prime event

structure and its space of maximal elements. This is done from both a topological and a

probabilistic viewpoint. We give probability measure extension theorems in this framework.

1. Introduction

The study of concurrency models rests on a fundamental choice for the semantics of

processes. Processes are either seen as sequences (in the interleaving semantics) or as

partial orders of events (in the true-concurrency semantics). On the one hand, most

probabilistic concurrency models have been based until now on the interleaving semantics

(stochastic Petri nets, probabilistic process algebra, I/O probabilistic automata). On the

other hand, domain theory has brought tools from classical topology to the study of

partial order based models. This paper brings together elements for studying in a unified

fashion both topological and probabilistic aspects of concurrency models under their true-

concurrency semantics. It provides, in particular, measure theoretic foundations for recent

work on probabilistic true-concurrency models, such as Abbes and Benveniste (2006) and

Varacca et al. (2004).

Randomisation of processes is usually set up in two steps. We first construct probabilities

on partial runs, then use a measure theoretic extension argument to randomise full runs.

For Markov chains, this is the usual Kolmogorov extension theorem. Our study is basically

motivated by this extension step for true-concurrency models, where the measure theoretic

arguments are less standard.

We consider a prime event structure E. Two topological spaces are associated with E:

its domain of configurations L; and the space Ω of maximal points of the domain. We

introduce projective systems by considering L as a projective limit of finite sets. We

observe that the projective topology coincides with the Lawson topology on L. Consider

a probability measure � on Ω equipped with its Borel σ-algebra. The data (E,�) defines

a probabilistic event structure (Varacca et al. 2004; Abbes and Benveniste 2006). The

interpretation of � is that a finite configuration x has the probability �(ω ∈ Ω : ω ⊇ x)
to occur.
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The main contributions of this paper are representations as projective limits of the space

Ω of maximal configurations, together with an application to the extension of probabilities.

Compactness of Ω is a necessary and sufficient condition for its representation as

a projective limit of finite sets – a known general fact usually deduced from Stone

representation theory, and with a particular concrete representation in our case. However,

the event structures one may encounter in practical situations, such as those given by the

unfolding of a finite Petri net, may have a non-compact space Ω. Since this does not occur

in the sequential case (Ω is then the compact space of infinite paths in a regular, locally

finite tree), this can be interpreted as a particular feature of concurrency.

This motivates the introduction of the class of locally finite event structures, which is

a wide class of event structures with the compactness property for Ω. It also motivates

the introduction for general event structures of a projective decomposition of the space Ω

through possibly infinite state spaces. We show how this decomposition can be combined

with the Prokhorov extension theorem to construct probability measures on the space of

maximal configurations of event structures. This extension result amounts to an extension

of finite probabilities for locally finite event structures.

We obtain as byproducts new proofs of some known results. First, we easily obtain some

topological properties of the domain of configurations endowed with the Lawson topology:

metrisability, separability and compactness. Second, we obtain a new, direct proof of the

extension theorem for continuous valuations to Radon measures, a result that was first

given in Lawson (1982). This extension result is the basis of the connection established

in Varacca et al. (2004) between probabilistic event structures and the probabilistic

powerdomain of Jones and Plotkin (1989). As we show, the projective formalism also

provides us with tools for studying continuous valuations.

The measure extension results in this paper are used in Abbes and Benveniste (2006)

for the actual construction of probabilistic event structures based on the representation

by projective systems.

Organisation of the paper

Section 2 introduces topological and probabilistic projective systems. In Section 3, the

projective topology on the domain of configurations of an event structure is defined and

studied. Section 4 explores how we can represent the space of maximal configurations as

a projective limit of finite sets. As an alternative, we propose a projective representation

with possibly infinite state spaces. The particular class of locally finite event structures is

introduced. Section 5 deals with probabilistic event structures and probability extension

theorems.

2. Topological and probabilistic projective systems

In this section we recall some notions on projective systems – general references on

this topic are, for instance, Bourbaki (1961) and Gierz et al. (2003). We also recall the

definition of projective systems of probabilities and the Prokhorov extension theorem –

classical references on this topic are Bourbaki (1969) and Schwartz (1973).
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2.1. Partial orders and topological projective systems

We fix a poset (partially ordered set) (I,�), which we assume at most countable and

directed, that is, any two elements have an upper bound.

We use ∆ to denote the set of pairs (i, j) ∈ I × I such that i � j. Let (Ei)i∈I be a

collection of sets. A collection of mappings (πi,j)(i,j)∈∆ with πi,j : Ej → Ei for all (i, j) ∈ ∆

is said to be a projective system if πi,i = IdEi
for all i ∈ I and if

∀i, j, k ∈ I, i � j � k ⇒ πi,k = πi,j ◦ πj,k .

If each set Ei is equipped with a partial order (respectively, with a topology), the

collection (πi,j)i�j is said to be a partial orders projective system (respectively, a topological

projective system) if the mappings πi,j are non-decreasing (respectively, continuous).

An extension of the projective system (πi,j)i�j is a set E together with a collection of

mappings (pi)i∈I , with pi : E → Ei for each i ∈ I , such that pi = πi,j ◦ pj for all i � j. This

is represented by the following commutative diagram:

E
pj ��

pi ���
��

��
��

� Ej

πi,j

��
Ei

If the projective system is a partial orders projective system (respectively, a topological

projective system), the extension is said to be order preserving (respectively, topological)

if E is equipped with a partial order (respectively, with a topology) and if all pi : E → Ei
are order preserving (respectively, continuous).

Let (F, (qi)i∈I ) be another extension of (πi,j)i�j . An arrow of extensions from E to F

is a mapping f : E → F such that pi = qi ◦ f for all i ∈ I . The arrow is said to

be order preserving (respectively, continuous) if E is an order preserving (respectively,

a topological) extension, and if the mapping E → F is order preserving (respectively,

continuous). Finally, the arrow is said to be an isomorphism of extensions (respectively,

of order preserving extensions, of topological extensions) if the mapping f : E → F is

a bijection (respectively, an isomorphism of partial orders, a homeomorphism) and if

f−1 : F → E is an arrow of extensions.

A projective limit of a projective system (πi,j)i�j is an extension E such that for any

other extension F , there is a unique arrow of extensions F → E. If the projective

system is assumed to be a partial orders projective system (respectively, a topological

projective system), we require that the arrows between extensions are all order preserving

(respectively, continuous). If it exists, a projective limit is unique up to a unique extension

isomorphism.

2.2. Canonical projective limits

Let (Ei)i∈I , (πi,j)i�j be a projective system and X denote the product space X =
∏

i∈I Xi.

A projective limit of the projective system (πi,j)i�j is given by the extension E defined by

E = {(xi)i∈I ∈ X : ∀(i, j) ∈ ∆ xi = πi,j(xj)} ,
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with mappings pi : E → Ei defined as the restriction to E of the projection mappings

X → Ei. If the projective system is a partial orders projective system (respectively, a

topological projective system), the partial ordering (respectively, the topology) on E is

defined as the restriction to E of the product partial ordering (respectively, the product

topology) on the product space X.

We use the notation

E = lim←−Ei
to denote canonical projective limits.

For a topological projective system, any topological projective limit is Hausdorff,

separable or compact if and only if all Ei, i ∈ I are Hausdorff, separable or compact,

respectively.

2.3. Projective systems of probability measures

If (X, τ) is a topological space, we consider the associated Borel σ-algebra F, that is, the

σ-algebra generated by τ. A measure, or Borel measure, on the measurable space (X,F) is

a set function µ : F→ [0,+∞] satisfying µ(�) = 0 and countably additive on sequences

of pairwise disjoint measurable sets. We consider the class of bounded Radon measures:

µ is bounded if µ(X) < ∞, and a bounded measure µ is Radon if, for every measurable

subset A ∈ F, we have (Schwartz 1973, Definition R3, page 13):

µ(A) = sup{µ(K) : K ⊆ A, K compact} .

We say that µ is a probability measure if µ(X) = 1.

Let (X,F) and (X ′,F′) be two measurable spaces, and let f : X → X ′ be a measurable

mapping. If µ is a measure on (X,F), the image measure of µ under f is the measure

denoted by fµ, and defined by fµ(A) = µ
(
f−1(A)

)
for all A ∈ F′.

Let (Ei)i∈I , (πi,j)i�j be a topological projective system. For each i ∈ I , let Fi denote the

Borel σ-algebra on Ei, and assume that we are given for each i ∈ I a Radon probability

measure µi on (Ei,Fi). We say that (µi)i∈I is a projective system of probability measures if

we have (Schwartz 1973, Section 10, page 74; Bourbaki 1969, Definition 1, page 51)

∀i, j ∈ I, i � j ⇒ µi = πi,jµj .

Let E, (pi)i∈I be a topological extension of the projective system, F be the associated

Borel σ-algebra and µ be a Radon measure on (E,F). The pair (E, µ) is said to be a

measure extension of the projective system of probability measures (µi)i∈I if piµ = µi
for all i ∈ I . The following extension theorem is due to Prokhorov: see Schwartz (1973,

Theorem 22, page 74 and the Corollary on page 81), or Bourbaki (1969, Theorems 1 and 2,

pages 52–53).

Theorem 2.1 (Prokhorov). Let (Ei)i∈I , (πi,j)i�j be a topological projective system, where

all spaces Ei are Hausdorff, and let E be a topological projective limit of it. Let (µi)i∈I
be an associated projective system of Radon probability measures. Then there exists a



A projective formalism applied to topological and probabilistic event structures 823

unique Radon measure µ defined on the Borel σ-algebra of E and extension of (µi)i∈I .

This measure µ is a probability measure.

3. The domain of configurations of a prime event structure as a projective limit

3.1. Prime event structures

Recall from Nielsen et al. (1980) that a prime event structure is a triple (E,�,#), where

E is an at most countable set of events, (E,�) is a partial order, and # is an irreflexive

and symmetric binary relation on E called the conflict relation satisfying the inheritance

axiom: for all e1, e2, e3 ∈ E, if e1 � e2 and e2#e3, then e1#e3. We assume, moreover, that

for every event e ∈ E, the set ↓ e = {e′ ∈ E : e′ � e} is finite. Since in this paper we are

only concerned with prime event structures, we will just say event structure for short, but

always mean prime event structures. With a slight abuse of notation, we identify the set

E and the event structure (E,�,#).

Computation processes associated with E are represented by a particular class of subsets

of E, its configurations. We first define a prefix of E as a subset P ⊆ E such that ↓ e ⊆ P
for every e ∈ P . A configuration of E is a conflict-free prefix of E, that is, a prefix x such

that # ∩ (x× x) = �. We say that two configurations x and x′ are compatible if x ∪ x′ is
a configuration, otherwise we say that x and x′ are incompatible.

For each prefix P of E, (P ,� |P ,#|P ) is naturally an event structure, where � |P and

#|P are the restriction of � and of # to P .

Notations. We use P0 to denote the set of finite prefixes of E. Configurations are partially

ordered by inclusion; we use L to denote the poset of configurations of E. L is called

the domain of configurations of E. We use L0 to denote the poset of finite configurations

of E. For any event e ∈ E, ↓ e is the smallest configuration that contains e, and ↓ e is

finite by hypothesis. Finally, for each prefix P of E, we use LP to denote the domain of

configurations of P .

3.2. A natural projective system

Let P , P ′ be two prefixes of E such that P ⊆ P ′. It is obvious that if x is a configuration

of P ′, then x ∩ P is a configuration of P . This allows us to define the following two

collections of mappings. We use ∆ to denote the set of pairs (P , P ′) ∈ P0 ×P0 such

that P ⊆ P ′. We have:

∀(P , P ′) ∈ ∆, λP ,P ′ :LP ′ → LP , x ∈ LP ′ �→ λP ,P ′(x) = x ∩ P . (1)

∀P ∈ P0, λP :L→LP , x ∈ L �→ λP (x) = x ∩ P . (2)

We consider the directed poset of indices (P0,⊆). The family (LP )P∈P0
equipped with

the collection of mappings (πP ,P ′)P⊆P ′ obviously satisfies the axioms of a partial orders

projective system (Section 2.1). Moreover, the data
(
L, (λP )P∈P0

)
is an order preserving

extension of the projective system (λP ,P ′)P⊆P ′ . Actually, we have the following theorem.
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Theorem 3.1. The order preserving extension L is a projective limit of the projective

system (λP ,P ′)P⊆P ′ .

Proof. Let X be the canonical projective limit of (πP ,P ′)P⊆P ′ . X is defined as follows:

X = {(zP )P∈P0
: ∀(P , P ′) ∈ ∆, zP = λP ,P ′(zP ′ )} .

We show that Φ : L → X defined by Φ(x) = (xP )P∈P0
, with xP = λP (x) for each

P ∈ P0, is an isomorphism of order preserving extensions. Φ is clearly an order preserving

extension arrow.

Φ is a bijection. Indeed, the inverse mapping is given by

∀y ∈ X, with y = (yP )P∈P0
, Φ−1(y) =

⋃

P∈P0

yP .

Now Φ−1 is also an order preserving extension arrow, so Φ is an isomorphism of order

preserving extensions, as claimed.

3.3. The projective topology on the domain of configurations

Since each LP is finite for P ∈ P0, LP is equipped with the discrete topology, and any

projective limit is naturally endowed with the projective topology. In particular, since

L is a projective limit according to Theorem 3.1, we define by this way the projective

topology on the domain of configurationsL, making the canonical bijection Φ :L→ X a

homeomorphism. It follows from this definition that the projective topology is the weakest

topology on L that makes all the λP :L→LP continuous for P ranging over P0. A

basis of open sets of the projective topology on L is given by the collection of sets of the

form

λ−1
P (x) ,

with P ranging over P0 and x ranging over LP .

Remark. The convergence in the projective topology is addressed in a very intuitive way

as follows. Let (xn)n�0 be a sequence of L, and let x ∈ L. Then limn→∞ xn = x in the

projective topology if and only if

∀P ∈ P0 , ∃N � 0, ∀n integer, n � N =⇒ xn ∩ P = x ∩ P .

3.4. Other definitions of the projective topology

The metrics for infinite traces constructed for instance in Kwiatowska (1990) and

Katoen et al. (2001) are metrics for the projective topology. Indeed, the construction

reproduces the classical construction of a metric on a product space. Restricting the

metric obtained in this way to the projective limit defines the projective topology.

We shall also relate the projective topology to other topologies from domain theory.

See Gierz et al. (2003) for the standard definitions of a dcpo L (directed complete poset),

and of the Scott topology on a dcpo L. The lower topology is defined as the weakest



A projective formalism applied to topological and probabilistic event structures 825

topology such that the sets ↑ x = {y ∈ L : y � x} for x ranging over L are closed.

Finally, the Lawson topology is the join of the Scott and the lower topology. The domain

of configurationsL of an event structure is obviously a dcpo (the supremum of a directed

set of configurations is given by their union), so these definitions apply to L.

In order to relate them to the projective topology, we note the following. Recall that, if

X and Y are two partial orders, a pair (f, g) of mappings f : X → Y and g : Y → X is

called a projection embedding pair if they are order preserving and if, moreover, f◦g � IdY ,

and g ◦ f = IdX. In this case, one is determined by the other. Mapping f is called the

lower adjoint, and g is called the upper adjoint.

Here it is obvious that for P , P ′ ∈ P0 with P ⊆ P ′, we have λP ,P ′ : LP ′ → LP is the

upper adjoint of a projection embedding pair, whose lower adjoint iP ,P ′ : LP → LP ′

is defined by iP ,P ′(x) = x for all x ∈ LP . Therefore, the projective system (λP ,P ′ )P⊆P ′ is

said to be of finite type, and its projective limit is called a bifinite domain – see Gierz

et al. (2003) and Abbes and Keimel (2006). Hence, according to Theorem 3.1, the domain

of configurations L is a bifinite domain. It follows from the results of Abbes and

Keimel (2006) that the projective topology on L coincides with the Lawson topology. In

particular, this is an easy way to deduce that the Lawson topology makes L a compact,

separable and metrisable space.

3.5. Application: extension of continuous valuations

The notion of valuation goes back to Birkhoff (1940), which also refers to a 1900 paper by

Dedekind. Let (X, τ) be a topological space and ν : τ→ [0,+∞] be a function. Function

ν is said to be a valuation on (X, τ) if ν satisfies the following properties:

1 ν(�) = 0

2 ∀U,V ∈ τ, U ⊆ V ⇒ ν(U) � ν(V ) (monotony)

3 ∀U,V ∈ τ, ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ) (modularity).

A first problem is to extend ν to a finitely additive measure on the algebra of sets

generated by τ; this was solved in Horn and Tarski (1948). A second problem, assuming

that ν is also continuous (see below), is to extend ν from the algebra of sets to a

Borel measure on the Borel σ-algebra generated by τ. Several authors have studied this

problem: in particular, see Norberg and Verdaat (1997), Lawson (1982), Alvarez-Manilla

et al. (2000), Keimel and Lawson (2005) and Abbes and Keimel (2006).

A proof of the extension result from continuous valuations to Radon measures can

be achieved with projective systems in the case of bifinite domains as in Abbes and

Keimel (2006). Here the proof we present is even more direct for event structures.

A valuation ν on a topological space (X, τ) is said to be bounded by a if ν(X) � a, and

continuous (Lawson 1982) if for any subset D ⊆ τ directed with respect to the inclusion ⊆,

we have ν
(⋃

V∈D V
)

= supV∈D ν(V ).

Theorem 3.2. Let E be an event structure and L denote the domain of configurations

of E. For any continuous and bounded valuation ν defined on the Scott-open sets of L,

ν has a unique extension to a Radon measure defined on the σ-algebra S generated on

L by the Scott topology.
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We shall use the following result, which is cited in Alvarez-Manilla et al. (2000), and is

a direct consequence of the key results of Horn and Tarski (1948).

Lemma 3.3. A bounded valuation ν has a unique extension to a finitely additive and

bounded measure on the algebra of sets generated by the Scott topology.

Proof of Theorem 3.2. We use the notation ↑ x = {y ∈ L : y ⊇ x} for any

configuration x – recall that ↑ x is Scott open for any x ∈ L0. Let S denote the

σ-algebra generated by the Scott topology on L. Note first that S coincides with the

projective σ-algebra onL, say S′, generated by the projective topology onL. Indeed, we

have seen in Section 3.4 that the Lawson topology coincides with the projective topology.

In particular, Scott-open sets belong to S′, hence S ⊆ S′. For the converse inclusion, it

is enough to show that every subset with the form U = λ−1
P (x) with P ∈ P0 and x ∈ LP

belongs to S. This follows from the following form of U:

U = ↑ x \
⋃

y∈LP , y⊇x, y �=x
↑ y . (3)

Now consider the extension µ of ν given by Lemma 3.3 on the algebra of sets A
generated by the Scott topology. For each finite prefix P ∈ P0, and for each element

x ∈ LP , it follows from (3) that λ−1
P (x) ∈ A. We may thus define a finite measure µP on

LP as follows:

∀x ∈ LP , µP (x) = µ
(
λ−1
P (x)

)
.

It follows from the identity λP = λP ,Q ◦ λQ for P ,Q ∈ P0 with P ⊆ Q that (µP )P∈P0
is a

projective system of measures on (LP )P∈P0
, which is trivially bounded and Radon. Since,

according to Theorem 3.1,L is canonically homeomorphic to the projective limit lim←−LP ,

the Prokhorov theorem (Theorem 2.1) insures the existence of a measure µ on S such

that λPµ = µP for every P ∈ P0. To show that µ extends ν as expected, we first show that

µ(↑ x) = ν(↑ x) for every finite configuration x. Indeed, let x ∈ L0, and let P be the finite

prefix P = x. Then we have ↑ x = λ−1
P (x), which is a Scott-open set, from which we get

µ(↑ x) = µ
(
λ−1
P (x)

)
= µP (x) = ν

(
λ−1
P (x)

)
= ν(↑ x) ,

as claimed. By induction, and using the modularity of both the valuation ν and the

measure µ, this implies that for every finite union ↑ x1 ∪ · · · ∪ ↑ xn, we also have

µ
(
↑ x1 ∪ · · · ∪ ↑ xn

)
= ν

(
↑ x1 ∪ · · · ∪ ↑ xn

)
. (4)

Now let U be a non-void Scott-open set. Choose (Pk)k�0 to be a non-decreasing sequence

of finite prefixes of E such that
⋃
k Pk = E, and for every k � 0 set

Jk = U ∩LPk , Vk =
⋃

x∈Jk

↑ x .

By (4) we have ν(Vk) = µ(Vk) for every k � 0. Since U is Scott-open, we have that⋃
k Vk = U. The union is non-decreasing, so we apply the continuities of both the valuation

ν and the measure µ to obtain

µ(U) = lim
k→∞

µ(Vk) = lim
k→∞

ν(Vk) = ν(U) .
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This shows the existence of the extension µ. The uniqueness follows from uniqueness in

the Prokhorov theorem and in Lemma 3.3.

4. The space of maximal configurations

We now study the space Ω of maximal configurations of an event structure E. This space

is of great interest in particular because of its probabilistic interpretation, which we will

investigate in Section 5. We relate the concurrency properties of E with the topological

properties of Ω. In particular, we exhibit the class of locally finite event structures.

4.1. The topological space of maximal configurations

We consider, as above, an event structure E, and we use L to denote the domain of

configurations of E. We say that a configuration ω ∈ L is maximal if ω is a maximal

element of (L,⊆), that is, ∀x ∈ L, x ⊇ ω ⇒ x = ω. We use Ω to denote the set of

maximal configurations of E, and equip Ω with the restriction of the projective topology

on L.

Recall that L0 denotes the poset of finite configurations of E.

Definition 4.1 (Shadows and finite shadows). For any x ∈ L, we define the shadow of x,

denoted by S(x), as the following subset of Ω:

S(x) = {ω ∈ Ω : ω ⊇ x} .

We say that S(x) is a finite shadow if x is finite (although S(x) is not finite in general).

Applying Zorn’s lemma, one sees that every shadow is non-empty, and, in particular,

Ω =S(�) is non-empty.

Lemma 4.2. The collection of finite shadows S(x), with x ranging over L0, is a basis, at

most countable, of open sets of Ω.

Proof. Observe first that for any two shadows S1 and S2, the intersection S1 ∩ S2 is

either empty or is a shadow itself. Moreover, any finite shadow S(x) can be written

S(x) = Ω ∩ λ−1
P (x), where P = x, hence every finite shadow is open in Ω. Therefore, it

is enough to prove that any elementary neighbourhood U of some point ω0 ∈ Ω of the

form U = λ−1
P (u) ∩ Ω with P ∈ P0 and u ∈ LP contains a neighbourhood of ω0 of the

form S(x), with x ∈ L0.

We fix such an ω0 and U = λ−1
P (u) ∩ Ω with ω0 ∈ U. For each event e ∈ P \ u, e is in

conflict with at least one event of ω0, say fe, otherwise ω0∪ ↓ e would be a configuration

strictly containing ω0, and thus ω0 would not be maximal. Since P is finite, we consider

a finite prefix Q that contains both P and all event fe, for e ranging over P \ u, and

the finite configuration x = ω0 ∩ Q. Then we claim that we have ω0 ∈ S(x) ⊆ U. Indeed,

ω0 ∈ S(x) comes from the construction of x. Let ω ∈ S(x). Then ω ⊇ u since x ⊇ u, and

thus λP (ω) ⊇ u. Finally, assume that λP (ω) ⊆ u does not hold. Then there is an event

e ∈ P \ u such that ω � e. But then, ω contains both events e and fe, although they

are in conflict, which contradicts the assumption that ω is conflict-free, and shows that
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Figure 1. The diagram on the right shows a Petri net unfolding to the event structure depicted on

the left. The associated space Ω is non-compact.

λP (ω) = u. Finally, we have shown that ω0 ∈ S(x) ⊆ U, as we claimed, and the proof is

complete.

4.2. A non-compact example

Before we investigate the representations of Ω as a projective limit in detail, we will analyse

a simple example to make the problems encountered more concrete. The examples we will

look at use the notion of the unfolding of a Petri net to an event structure – see Nielsen

et al. (1980).

Consider the event structure E depicted on the left of Figure 1. The event structure E is

the unfolding of the Petri net depicted on the right. The space Ω of maximal configurations

of E consists of the following elements:

ω∞ = {g, e1, e2, . . . }, ωn = {e1, . . . , en, fn}, ∀n � 0 .

Clearly, every finite and maximal configuration ω is isolated in Ω (that is, {ω} is an open

set). Hence all ωn are isolated. We have {ω∞} =S
(
{g}

)
, so ω∞ also is isolated. An infinite

set whose elements are all isolated cannot be compact. Hence Ω is not compact. In other

words, the element ω∞ is not the Alexandrov point at infinity of the sequence {ωn, n � 0}.
As a consequence, Ω cannot be described as a projective limit of finite sets.

4.3. Using finite projective systems for Ω

This subsection investigates the topological conditions insuring that ‘Ω is the projective

limit of its traces in finite prefixes ’. For a finite prefix P ∈ P0, we define the following

subset of LP :

ΓP = {ω ∩ P : ω ∈ Ω} .

Note that ΓP does not necessarily identify with the set ΩP of maximal configurations

of P . We will return to this question in Section 4.4. We use πP and πP ,P ′ , with P , P ′ ∈ P0
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and P ⊆ P ′, to denote the mappings

πP : Ω→ ΓP and πP ,P ′ : ΓP ′ → ΓP

defined by πP (ω) = ω ∩ P and πP ,P ′(x) = x∩ P . Notice that πP and πP ,P ′ are nothing but

the restrictions of the mappings λP and λP ,P ′ (cf. Section 3.2):

πP = λP |Ω, πP ,P ′ = λP ,P ′ |ΓP ′ .

From this it follows, on the one hand, that the collection (πP ,P ′)P⊆P ′ is a projective

system of finite sets, which is trivially topological when equipping the sets ΓP with the

discrete topologies; we use Γ = lim←−ΓP to denote the canonical projective limit. On the

other hand, Ω is a topological extension of (πP ,P ′)P⊆P ′ , from which we get an arrow of

topological extensions Ω → Γ. There is, moreover, a continuous injection Γ ↪→ X, where

X = lim←−LP , conjugated to the continuous injection Ω ↪→ L according to the following

commutative diagram:

L Φ �� X

Ω
��

��

�� Γ
��

��

However, Ω might not be the projective limit of (ΓP )P∈P0
, as shown by Theorem 4.4

below together with the example of Section 4.2.

Lemma 4.3. Let Ω denote the topological closure of Ω in L. The arrow of topological

extensions Ω→ Γ extends uniquely to an isomorphism of extensions Ω→ Γ.

Proof. Let Φ :L→ X denote the canonical homeomorphism of Theorem 3.1, with

X = lim←−LP . We first show that Φ−1(Γ) = Ω. As an intersection of closed subsets of X,

Γ =
⋂

P∈P0

λ−1
P (ΓP ) ,

with the continuous mappings λP : L → LP , Γ is a closed subset of X. Since Φ is

continuous, and with Φ(Ω) ⊆ Γ, this implies Φ(Ω) ⊆ Γ and thus Ω ⊆ Φ−1(Γ).

To show the converse inclusion, we pick an element x ∈ Φ−1(Γ) and show that

U ∩ Ω �= � for any elementary neighbourhood U of x in L. Since Φ(x) ∈ Γ, there

is an element (xP )P∈P0
∈ Γ such that x ∩ P = xP for all P ∈ P0. For each P ∈ P0,

we pick ωP ∈ Ω such that ωP ∩ P = xP . Let U be an elementary neighbourhood of x

in L; U has the form U = λ−1
Q (z) where Q is a finite prefix and z ∈ LQ. We then have

λQ(x) = z = xQ = ωQ ∩ Q = λQ(ωQ). Hence ωQ ∈ U, which shows that U ∩ Ω �= �. Since

this holds for any U, we get that x ∈ Ω. So far we have shown that Ω = Φ−1(Γ), as

claimed.

Thus the restriction of Φ to Ω defines a continuous extension Φ|Ω : Ω → Γ. Since Ω

is compact as a closed subset of the Hausdorff compact space L, the mapping Φ|Ω is

actually a homeomorphism that extends the topological extension Ω → Γ. Uniqueness is

obvious.
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Theorem 4.4. The space Ω is compact if and only if the arrow of extensions Ω→ Γ is an

isomorphism of topological extensions.

Proof. If the arrow Ω → Γ is an isomorphism, it is a homeomorphism, and thus Ω is

compact. Conversely, if Ω is compact, it is closed in L, and thus Ω = Ω. By Lemma 4.3,

we then have an isomorphism of topological extensions Ω→ Γ.

4.4. Stopping prefixes: a general projective representation for Ω

Since Ω cannot be in all cases the projective limit of finite sets, as shown by the example of

Section 4.2, we are brought to introduce an alternative to finite prefixes and the associated

sets ΓP . For each prefix P , we use ΩP to denote the set of maximal configurations

of P . Although we clearly have ΩP ⊆ ΓP , nothing guarantees that the converse inclusion

holds. Indeed, consider the following simple example: E = {a, b}, with a#b, and P = {a},
ω = {b}. Then ω ∩ P = � ∈ ΓP , but � is not maximal in P , which leads us to the

following definition.

Definition 4.5 (Intrinsic prefixes and stopping prefixes). Let P be a prefix of an event

structure E. We use ΩP to denote the set of maximal configurations of P . We say that P

is intrinsic to E if ΩP = ΓP .

We recall that the minimal conflict relation on E, denoted by #µ , is defined by

∀(e1, e2) ∈ E × E, e1#µ e2 ⇔ (↓ e1× ↓ e2) ∩ # = {(e1, e2), (e2, e1)} .

We say that a prefix B is a stopping prefix if B is #µ -closed, that is, if it satisfies

∀e1 ∈ B, ∀e2 ∈ E, e1#µ e2 ⇒ e2 ∈ B .

Lemma 4.6.

1 If x, x′ are two incompatible configurations, there are events e ∈ x and e′ ∈ x′ such

that e#µ e
′.

2 Any stopping prefix of E is intrinsic to E.

Proof.

1 This part is an easy proof based on the finiteness of the predecessors.

2 Let B be a stopping prefix of E, let ω ∈ Ω and let ωB = ω ∩B. Assume that ωB is not

maximal in B. Then there is an event e in B satisfying e /∈ ωB, (ωB∪ ↓ e) ∈ L. In

particular, e /∈ ω, and since ω is maximal, this implies that ↓ e and ω are incompatible.

According to Point 1 above, there are events e1 ∈↓ e and e2 ∈ ω such that e1#µ e2. Since

e1 ∈↓ e, and since e belongs to prefix B, e1 also belongs to B. Since B is #µ-closed,

and since e1#µ e2, this implies that e2 ∈ B, and thus e2 ∈ ωB . But then configuration

ωB∪ ↓ e contains the conflict e1#e2, which is a contradiction.

Clearly, stopping prefixes form a complete lattice. Therefore, and since E is a stopping

prefix, for every event e ∈ E, there is a unique smallest stopping prefix that contains e,

which we denote by B(e), and introduce the following definition.
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Definition 4.7. A stopping prefix B is said to be elementary if B is a finite union (may be

empty) of stopping prefixes with the form B(e). We use D to denote the directed poset of

elementary stopping prefixes.

For each B ∈ D, ΩB is equipped with the restriction of the projective topology on L
to ΩB . Applying Lemma 4.2 to any B ∈ D seen as an event structure, the topology on ΩB

is generated by the collection

{ξ ∈ ΩB : ξ ⊇ x} , (5)

for x ranging over the finite configurations of B. According to Lemma 4.6, every B ∈ D is

intrinsic, from which we get a mapping πB : Ω→ ΩB . For the same reason, we also have

for each pair B,B′ ∈ D with B ⊆ B′, a mapping πB,B′ : ΩB′ → ΩB , ξ ∈ ΩB′ �→ ξ ∩ B ∈ ΩB .

Clearly, the family (ΩB)B∈D forms a topological projective system with respect to the

collection of mappings (πB,B′)B⊆B′ , for B,B′ ∈ D – continuity of mappings πB,B′ is easily

seen, for instance, by using the basis of open sets given by (5). For the same reasons,(
Ω, (πB)B∈D

)
is a topological extension of the projective system.

Theorem 4.8. The topological extension
(
Ω, (πB)B∈D

)
is a projective limit of the topological

projective system (ΩB)B∈D.

Proof. Set Λ = lim←−(ΩB)B∈D, the canonical projective limit, and consider the arrow of

extensions φ : Ω → Λ given by φ(ω) =
(
πB(ω)

)
B∈D for ω ∈ Ω. We show that φ is an

isomorphism of topological extensions.

We first describe the inverse mapping of φ. For (zB)B∈D an element of Λ, define

z =
⋃
B∈D zB . Then z is clearly a configuration of E. We show that z is maximal. If z

is not maximal, there is an event e such that e /∈ z and z ∪ {e} is a configuration. Let

B = B(e). Then B ∈ D, so there is an element ξ ∈ Ω such that ξ ∩ B = zB . Then zB is

compatible with ↓ e, and it follows from Lemma 4.6 Point 2 that zB is maximal in B.

Therefore e ∈ zB , which contradicts the assumption that e /∈ z. Hence z ∈ Ω as claimed.

This defines a mapping ψ : Λ → Ω, which is obviously an arrow of extensions, inverse

of φ.

The arrow of extensions φ is continuous, by virtue of the universal property of the

projective limit Λ, since all mappings πB : Ω→ ΩB are continuous.

It remains only to show that φ−1 is continuous, that is, that φ(V ) is open for every

open set V ⊆ Ω. According to Lemma 4.2, there is no loss of generality if we restrict V

to be of the form V = S(x) with x a finite configuration of E. Consider the following

elementary stopping prefix:

C =
⋃

e∈x
B(e) .

Then we have φ(V ) = {z = (zB)B∈D : zC ⊇ x}, which shows that φ(V ) is open, as claimed.

This completes the proof.

Remark. At the cost of introducing possibly infinite state spaces, we have given a

projective representation of Ω. The particularity of concurrency is that, even for unfoldings

of finite state machine such as finite Petri nets, we may have to consider these infinite

state spaces. See Section 5.4 for an example.
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4.5. Locally finite and confusion-free event structures

A case of particular interest is when the directed poset D of elementary stopping prefixes

coincides with the lattice of finite stopping prefixes, which leads us to the following

definition.

Definition 4.9 (Locally finite event structures). An event structure E is said to be locally

finite if, for every event e ∈ E, there is a finite stopping prefix B that contains e.

Proposition 4.10. If E is locally finite, then Ω is compact.

Proof. If E is locally finite, the decomposition of Theorem 4.8 only involves finite sets.

The compactness of Ω is then immediate.

Remark. The compactness of Ω for locally finite event structures can be shown directly,

without using Theorem 4.8. Indeed, we have the following result: if every event e belongs

to a finite intrinsic prefix of E, then Ω is compact (this is left as an exercise: hint, show that

Ω is closed in the domain L). Using Lemma 4.6 Point 2, this implies that Ω is compact

if E is locally finite.

The following definition has a clear computational meaning.

Definition 4.11 (Preregular event structures). We say an event structure E is preregular if

for each finite configuration x of E there are finitely many events enabled at x, that is,

events e such that e �∈ x and x ∪ {e} ∈ L0 .

As a particular kind of locally finite event structures, we find the class of confusion-

free and preregular event structures (Nielsen et al. 1980), which are analogous to the

concrete domains of Kahn and Plotkin (1978). We leave the reader to prove that if E is a

confusion-free event structure, the following conditions are equivalent:

(a) E is locally finite,

(b) Ω is compact,

(c) E is preregular.

On the other hand, the examples shown in Figures 2 and 3 show that for general

event structures compactness of Ω does not imply the local finiteness of E, even if E is

preregular (hint for the compactness of Ω in both examples: Ω is closed in L).

5. Extension of probability measures

We now apply the previous results to the theory of probabilistic event structures.

5.1. Probabilistic event structures

Definition 5.1 (Projective σ-algebra and probabilistic event structures). Let E be an event

structure. The projective σ-algebra on Ω is the smallest σ-algebra on Ω that contains all

the finite shadows. A probabilistic event structure is a pair (E,�), where E is an event

structure and � is a probability measure on the measurable space (Ω,F), where F is the

projective σ-algebra on Ω.
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Figure 2. A pre-regular event structure that is non-locally finite with Ω still compact.

Figure 3. A non-locally finite event structure with Ω still compact.

It follows from Lemma 4.2 that the projective σ-algebra of Definition 5.1 coincides with

the Borel σ-algebra on Ω generated by the induced Scott topology, and with the Borel

σ-algebra generated by the projective topology.

5.2. A first approach to the extension of probabilities through finite probabilities

In this section we stick to the idea of giving an extension result to define a probability � on

Ω from finite probabilities. Let (µP )P∈P0
be a projective system of measures defined on the

projective system (ΓP )P∈P0
(see Section 4.3). Since the ΓP are finite, the probabilities µP

are trivially Radon, and thus extend to a Radon probability measure � on the projective

limit Γ = lim←−ΓP . According to Lemma 4.3, there is a homeomorphism Ω→ Γ. We identify

Γ and Ω so that � is defined on Ω. Finally, we consider the set ∂Ω defined by ∂Ω = Ω\Ω.

With this notation, we have the following result.
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Theorem 5.2. Let E be an event structure, let (µP )P∈P0
be a projective system of probability

measures on (ΓP )P∈P0
and let � be the projective limit of (µP )P∈P0

on Ω. A necessary and

sufficient condition for the existence of a probability Radon measure � on Ω such that

∀P ∈ P0, πP� = µP (6)

is that �(∂Ω) = 0. In this case � is unique, and given by the restriction of � to Ω.

Proof. Assume there is a Radon probability � on Ω satisfying (6). Then for any compact

subset A of Ω, we have

A =
⋂

P∈P0

π−1
P

(
πP (A)

)
,

which is a countable filtered intersection. Therefore, and using (6), we get

�(A) = inf
P∈P0

µP
(
πP (A)

)
= �(A) .

Since this holds for any compact subset of Ω, and since both � and � are Radon, this

implies that � coincides with the restriction �|Ω. But both � and � are probability

measures. Therefore �(∂Ω) = 1−�(Ω) = 1− �(Ω) = 0.

Conversely, if �(∂Ω) = 0, it is clear that � defined as the restriction � = �|Ω is a

Radon probability satisfying (6). The fact that � is unique follows the same argument as

above.

5.3. Extensions of probabilities for general event structures: second approach, using infinite

state spaces

If we allow possibly infinite state spaces, a simpler extension result can be formulated.

Applications of the following theorem are given in Abbes and Benveniste (2006) for

locally finite event structures.

Theorem 5.3. Let (µB)B∈D be a projective system of Radon probability measures defined

on the projective system (ΩB)B∈D. Then there is a unique Radon probability measure �
on (Ω,F) such that

∀B ∈ D, πB� = µB .

In particular, if E is locally finite, every projective system of (finite) probabilities on

(ΩB)B∈D extends to a unique Radon probability measure on Ω.

Proof. Since D admits a cofinal sequence, this is an immediate consequence of The-

orem 4.8 and of the Prokhorov theorem (Theorem 2.1).

5.4. An example

Theorem 5.2 suffers from two defects when it comes to practical applications. First, it is

formulated through the use of the sets ΓP , which are the trace of Ω in a finite prefix P .

Determining ΓP might not be easy since ΓP depends on both P and the surrounding

event structure E. Second, it is not easy to check the condition �(∂Ω) = 0 either.
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Figure 4. The top diagram shows a Petri netN: the ‘live double loop’. The bottom diagram shows

an (infinite) elementary stopping prefix B of the unfolding of N. The middle diagrams show two

Petri nets whose synchronisation product unfolds to B.

So Theorem 5.3 appears more practical, although it works with possibly infinite spaces,

as shown in the following example. Consider the ‘live double loop’ N shown at the top

of Figure 4. The unfolding of N is obtained as follows: start from the event structure

B shown at the bottom of Figure 4. After each event labelled by c, add a fresh copy

of B, whose minimal nodes are �-related to the latter c event; then repeat the process
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infinitely. The unfolding E is thus a regular tree with basis B, which is an elementary

(infinite) stopping prefix. Theorem 5.3 reduces the construction of a probability � on Ω

to the construction of a probability �B on ΩB .

Note that in this example the space Ω of maximal configurations is not locally compact

since no element of Ω has a compact neighbourhood.

6. Conclusion

This paper has introduced projective systems for studying the true-concurrency model of

event structures from a topological point of view and with probabilistic applications. We

have underlined the role of compactness for the space Ω of maximal configurations as a

necessary and sufficient condition for Ω to be a projective limit of finite sets. Alternatively,

Ω can always be described as the projective limit of its traces in elementary stopping

prefixes. The Prokhorov extension theorem applies, and provides extension theorems for

probabilistic event structures.

The extension theorem for locally finite event structures was shown in Abbes and

Benveniste (2006) to be operational as a basis for the construction of true-concurrent

random processes. In the case of infinite state spaces, the construction of atomic

probabilities seems to be connected with the construction of synchronous products of

event structures and Petri nets. For a general theory of random true-concurrent processes

with communicating channels, such results certainly need to be explored deeply.
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