N

HAL

open science

Spidle: A DSL approach to specifying streaming
application

Charles Consel, Hedi Hamdi, Laurent Réveillere, Lenin Singaravelu, Haiyan
Yu, Calton Pu

» To cite this version:

Charles Consel, Hedi Hamdi, Laurent Réveillere, Lenin Singaravelu, Haiyan Yu, et al.. Spidle: A DSL
approach to specifying streaming application. International Conference on Generative Programming
and Component Engineering, 2003, Germany. pp.1-17. hal-00350193

HAL Id: hal-00350193
https://hal.science/hal-00350193
Submitted on 6 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00350193
https://hal.archives-ouvertes.fr

Spidle: A DSL Approach to Specifying Streaming
Applications

Charles Consel!, Hedi Hamdi', Laurent Réveillére!

Lenin Singaravelu?, Haiyan Yu'", and Calton Pu?

! INRIA/LaBRI
ENSEIRB 1, avenue du docteur Albert Schweitzer,
Domaine universitaire - BP 99, F-33402 Talence Cedex, France
{consel,hamdi,reveillere}@labri.fr,
WWW home page: http://compose.labri.fr

%2 College of Computing, Georgia Institute of Technology
801 Atlantic Drive, NW, Atlanta, GA 30332-0280, USA
{calton,lenin}@cc.gatech.edu,

WWW home page: http://www.cc.gatech.edu

Abstract. Multimedia stream processing is a rapidly evolving domain
which requires much software development and expects high perfor-
mance. Developing a streaming application often involves low-level pro-
gramming, critical memory management, and finely tuned scheduling
of processing steps.

To address these problems, we present a domain-specific language (DSL)
named Spidle, for specifying streaming applications. Spidle offers high-
level and declarative constructs; compared to general-purpose languages
(GPL), it improves robustness by enabling a variety of verifications to
be performed.

To assess the expressiveness of Spidle in practice, we have used it to
specify a number of standardized and special-purpose streaming appli-
cations. These specifications are up to 2 times smaller than equivalent
programs written in a GPL such as C.

We have implemented a compiler for Spidle. Preliminary results show
that compiled Spidle programs are roughly as efficient as the compiled,
equivalent C programs.

1 Introduction

The development of multimedia streaming applications is becoming an increas-
ingly important software activity to account for frequently changing require-
ments. More and more new formats compete to structure the main media types,
creating an explosion in format converters. The need for continuous innovation

* Author’s current address: Institute of Computing Technology, Chinese Academy of
Sciences. P.O.Box 2704, 100080, Beijing, China. E-mail: yuhaiyan@ict.ac.cn

in the multimedia device industry has shifted an increasing part of stream pro-
cessing from hardware to software, to shorten the time-to-market [12].

Fortunately, the development of streaming applications relies on well under-
stood libraries of operations for filtering, converting or degrading multimedia
streams (e.g., Sox [13]). Furthermore, to account for various application require-
ments, many implementation variants of common stream operations are often
available.

Yet, due to the lack of programming language support, the development of
streaming applications tends to be labor-intensive, cumbersome and error-prone:
it involves low-level manipulation to cope with bit-level data layout of stream
formats, complicated plumbing of components, critical memory management,
and meticulous scheduling of processing steps. These difficulties are compounded
by the performance critical nature of most streaming applications. As a result,
streaming programs are typically manually-optimized for time, and often for
space in the case of embedded systems.

This Paper

This paper introduces a domain-specific language (DSL) [1, 2] named Spidle, for
developing streaming applications. This language enables high-level and declara-
tive programming of streaming applications without performance loss. Domain-
specific verifications are performed on Spidle programs to enhance their robust-
ness.

Domain specific. The design and development of Spidle is based on a thorough
analysis of the domain of streaming applications. This analysis has included the
study of various specifications of standardized streaming applications [4,7] as
well as typical streaming programs.

High level. Spidle offers high-level constructs and data types that enable pro-
grammers to concisely express stream processing. Domain-specific data types and
attributes capture dedicated aspects of some values. Domain-specific constructs
abstract over common program patterns.

Declarative. A Spidle programmer need only specify the treatment of a given
stream; the compiler then maps the specification into an efficient implementa-
tion. Information required to trigger domain-specific optimizations is captured
in the Spidle program.

Robust. Spidle is safer than a general-purpose language because its syntax and
semantics enable domain-specific verifications. In particular, the Spidle compiler
checks the consistency of component composition and memory behavior.

The idea of a language dedicated to stream processing has already been dis-
cussed in existing literature. Nevertheless, existing approaches are either limited
to introducing a language for gluing components of a stream library [19], or
geared towards exploiting the features of a specific hardware platform [5, 6].

Contributions

This paper makes the following contributions:

— We have identified common aspects and key concepts used in the devel-
opment of streaming applications, based on a close examination of various
streaming programs as well as specifications of standardized streaming ap-
plications.

— We present the definition of Spidle, a high-level and declarative language
dedicated to the specification of streaming applications. The language is
strongly typed and enables various consistency checks. The resulting degree
of robustness of a Spidle program goes beyond what can be achieved with
an equivalent program written in a general-purpose language.

— We show that Spidle is highly expressive. It has been used to describe a wide
range of streaming applications (see our web site [14]), including traditional
ones like a GSM encoder, a GSM decoder, and an MPEG-1 audio encoder as
well as special-purpose streaming applications such as Earwax effect, which
adjusts CD-audio to headphones [3], and Audio Mixer, which mixes two
stereo audio streams into one mono stream [13].

— We demonstrate that Spidle is concise. Our Spidle programs are up to 2
times smaller than equivalent C programs.

— We have implemented a compiler for Spidle programs. The generated code
is as efficient as equivalent programs written in C.

Paper Overview

Section 2 presents the difficulties involved in developing a streaming applica-
tion. Section 3 introduces the Spidle language, focusing on the main language
abstractions. Section 4 gives an overview of the compilation process, and lists
the main verifications and optimizations performed on a Spidle program. Sec-
tion 5 assesses the approach. Section 6 presents the related work, and Section 7
concludes the paper and discusses future work.

2 Difficulties in Developing a Streaming Application

In this section, we discuss the issues involved in developing a streaming appli-
cation and illustrate them with two working examples, namely, GSM encoding
and usage of the Sox library. We first briefly introduce these examples.

2.1 Working Examples

GSM transcoding (the process of coding and decoding) enables speech to be
transmitted to a digital cellular telecommunication system. The speech signal is
compressed before its transmission, thus reducing the size of its digital repre-
sentation while keeping an acceptable quality of the decoded output. The GSM

coder works on a 13-bit uniform pulse-code modulation (PCM) speech input sig-
nal, sampled at 8KHz. The input is processed on a frame-by-frame basis, with
a frame duration of 20 ms (160 samples). The full rate encoder [4] presented in
this paper transforms a frame of 160 samples into a block of 260 bits, leading to
a bit rate of 13 Kbps.

Sox is a library of audio stream processing components. It offers a command
line interface that enables an audio file to be converted from one format to
another. Various effects and filters can be inserted in the conversion process. Ex-
amples include adding an echo, swapping channels, and band pass/reject filters.
Additionally, the command line interface enables audio files to be recorded and
played.

2.2 The Difficulty of Mapping a Streaming Specification into a
Program

A streaming application is often specified informally using a graph-like notation.
A node represents a stream filter which transforms particular parts of a stream
item. An edge defines the flow of the stream items. Although this notation is
convenient at a conceptual level, it can be complex to map such a specification
into an implementation. While a specification typically describes some stream
tasks as being performed in parallel, an implementation needs to invoke the
corresponding components sequentially. This mapping needs to take into account
implementation details of the stream tasks involved, such as the possibility of
side-effects to a global state. Individual stream tasks require specific data layouts,
which entail data conversion. Parts of a stream item may correspond to bit
fragments, which must be accessed using low-level bit operators.

Example. A simplified version of the standardized GSM full-rate speech en-
coding diagram [4] is depicted in Figure 1. The input speech frame is first pre-
processed to produce an offset-free signal, which is then subjected to a first
order pre-emphasis filter (“Preprocess” in the figure). The 160 samples obtained
are then analysed to determine the coefficients for the short term analysis filter
(LPC). These parameters are then used to filter the 160 samples. The result is
160 samples of the short term residual signal (STA). For the remaining opera-
tions, the speech frame is divided into 4 sub-frames each containing 40 samples
of the short term residual signal. Each sub-frame is processed by the subsequent
functional elements — we refer to these elements as “Sub-Frame Processing”.

Although this is a simplified view of the GSM encoding process, it shows the
tangled paths and stages involved in forming the 260-bit encoded block: stream
items need to be split, merged and shared across various stages. These intricacies
require special care to be mapped into an efficient implementation.

2.3 The Need to Manually Optimize a Streaming Program

The high volume of stream items to process and the stringent real-time con-
straints to satisfy translate into high-performance expectations when developing

Sub-Frame [—
Processing | M

]

Sub-Frame
Processing | 1

Preprocess LPC STA

]

Sub-Frame
Processing | 1

]

Sub-Frame
Processing

Fig. 1. GSM RPE-LTP Speech Encoding Diagram

a streaming program. As a result, the programmer has to manually perform a
number of optimizations, until the performance and resource usage goals are
attained. A streaming program not only requires local optimizations, such as
loop transformations, but it also relies on global optimizations mostly centered
around memory management.

Example. The implementation of GSM full-rate speech encoding, as provided
by Jutta and Carsten [8], contains a number of manual optimizations such as
code inlining.

2.4 The Need to Manually Optimize Memory Management

Streaming applications typically minimize data copying to reduce the cost of
memory management. To apply this strategy, two major aspects need to be
taken into account: (1) For efficiency reasons, an implementation of a stream
filter often performs side-effects and expects a specific data layout. (2) Most
streaming applications not only transform the contents of a stream item but
they also change its layout incrementally as it gets processed (e.g., the size of a
data fragment expands when it is decompressed).

Two strategies are commonly used to improve the memory usage of a stream-
ing application. One strategy is to schedule stream filters in a particular order
depending on their side-effects so as to minimize copying. The other strategy is
to allocate memory according to the output data layout, as early as possible in
the streaming process, to reduce temporary memory fragments.

Example. The implementation of the GSM encoder is optimized to minimize
copying, minimize allocation of temporary buffers and maximize data locality.

For example, consider the Sub-Frame Processing filter shown in Figure 1. The
components making up this filter are depicted in Figure 2. The 40-bit residual
signal calculated by the long term predictor (LTP) filter is fed to the regular
pulse excitation (RPE) filter as a 50-bit signal where the five highest and lowest
bits have been padded with zeroes. Memory usage is reduced by propagating the
need for a 50-bit buffer backward, to the filter that allocates the incoming 40-bit
buffer. This strategy eliminates one memory allocation and one memory copy.

STRS T—D——

| j RPE i

LTP

Fig. 2. Sub-Frame Processing

2.5 Error-Prone Re-Use of Stream Filter Implementations

The expected data layout of a stream filter may be incompatible with the one
at the current stream stage. This situation requires rewriting a portion of the
streaming program, or function wrapping of the stream filter. Although there
are many libraries of stream filters, the expertise required for their use often
goes beyond the synopsis provided by the library manual. The side-effects of a
filter need to be carefully studied to avoid an unexpected data modification at
a given streaming stage that corrupts subsequent processing.

Example. Sox filters can be classified based on the type of stream (stereo or
mono) they work on. Consider a configuration where the audio stream passes
exclusively through stereo filters. Adding a new filter that operates on a mono
stream requires a wrapper function that separates the left and right streams
before applying the filter and recomposes the stream once the filter is done.

2.6 The Difficulty of Managing Low-Level Code

The need to reduce memory usage implies that very compact data layouts are
typically used for stream items. Consequently, accessing individual fields of a
stream item often requires low-level bit operations. Such code is known to be
hard to develop and to maintain.

Example. Table 1 shows an excerpt of the structure of a 260-bit encoded block
generated by the GSM encoder. This description clearly illustrates that com-
pactness of data representation translates into bit-level data layout.

Parameter 1\;1;?:;? Bit n° Parameter 1\;1;1;)1:;? Bit n°
LARc[0] | 6 1.6 xmc[13] 3 | 110. 112
LARc[]] | 6 7.12 || xmc[14] | 3 |113. 115
LARc[2] | 5 13 .17 . 3 .
LARc[3] | 5 18..22 || xmc[25] 3 | 146 .. 148
LARcl4] | 4 23 .. 26 Ne[2] 7 | 149 . 155
LARc[5] | 4 27 .. 30 be[2] 2 |156..157
LARc[6] 3 31..33 Mc|2] 2 158 .. 159
LARc[7] 3 34..36 xmaxc|2] 6 160 .. 165

Ne[0] 7 37..43 || xmc[26] | 3 | 166 .. 168
be[0] 2 44 .45 || xmc[27] 3 |169 . 171
Mc[0] 2 46 .. 47 3

xmaxc[0] 6 48 .. 53 xmc|[38] 3 202 .. 204
xme[0] 3 54 .. 56 Ne[3] 7 |205. 211
xmc][1] 3 57 .. 59 bel3] 2 |212.213

. 3 . Mc[3] 2 |214.215
xmc[12] 3 90 .. 92 xmaxc[3] 6 216 .. 221
Ne[1] 7 93..99 || xmc[39] | 3 |222.224
be[1] 2 100 .. 101 xmc[40] 3 225 .. 227
Mel[1] 2 |102..103 3
xmaxc|1] 6 104 .. 109 | | xmc[51] 3 258 .. 260

Table 1. Data Layout of the Encoded Blocks of the GSM Encoder

3 The Spidle Language

Based on the domain analysis of stream processing, we have identified the fol-
lowing key requirements for a language dedicated to this domain. The language
should be flow-based to describe the paths through which stream items are prop-
agated and processed by stream tasks; it should include stream-specific decla-
rations to enable dedicated verifications and optimizations to be performed; it
should be module-based to enable a streaming application to be decomposed
into manageable components; it should include an interface language to enable
disciplined re-use of existing stream filter libraries.

3.1 An Overview of Spidle

A Spidle program essentially defines a network of stream tasks. Flow declarations
specify how stream items flow within stream tasks (nodes) and across stream
tasks (edges), as well as the types of these stream items.

A stream task can either be a connector or a filter. Connectors represent
common patterns of value propagation. Filters correspond to transducers; they
can either be primitive or compound. A primitive filter refers to an operation
implemented in some other programming language. This facility enables exist-
ing filter libraries to be re-used. A compound filter is defined as a composition
of stream filters and connectors. This composition is achieved by mapping the
output stream of a task to the input stream of another task.

Let us now present the abstractions offered by Spidle in detail.

3.2 Flow Declarations

Two abstractions address the flow aspects of a streaming application: a stream
specifies the flow aspects at the task level; a mapping specifies how stream items
flow across tasks.

Streams. A stream task declares streams using the type constructor stream.
A stream declaration defines what type of items flow in a stream and their
direction. The first aspect is addressed by an appropriate type language. The
second aspect defines how items flow. A stream task can declare a stream to
be an input stream, to be an output stream, or both. An input-only stream
contains values that flow in, but not out, of the stream task. An output-only
stream describes values that are created in the stream task. An input-output
stream contains values that are propagated through a stream task.
An example of a stream is displayed below.

stream inout int16[40] e;

This declaration is extracted from the Spidle definition of the filter RPE_Encoding
of the GSM encoder. It specifies that values of type int16[40] flow both in and
out of the filter RPE_Encoding.

The stream declarations of a stream task are grouped in a clause named
interface, as illustrated later in stream task examples.

Mappings. A mapping defines how stream items flow from one stream task to
another. Mapping declarations of a stream task are grouped into a clause called
map. A mapping can either be (1) one-one, (2) one-many or (3) many-one. The
first kind is the most common; it connects the output of one stream task to
the input of another one. An example of such a mapping is displayed below. It
specifies that the value of stream so is obtained by padding 5 zero-bits on both
sides of stream si.

map {
{0,0,0,0,0} # si # {0,0,0,0,0} -> so;
}

This map clause consists of a single mapping declaration. The left-hand side of the
“->” sign defines the source stream of the mapping; the right-hand side names the
destination stream. As shown in the example, the source stream is represented
by a stream expression, that is, an expression that constructs a stream value by
applying the concatenation operator “#” to constants and stream variables.

The one-many mapping is required when the processing of one item produces
many items, which are then processed sequentially. This situation is illustrated by
the MPEG-1 audio encoder shown in Figure 3. In this encoder, a buffer of PCM
samples is split into 24 blocks, each of which is processed by the SubbandBlock
filter.

A many-one mapping is used when a stream task needs a collection of
items before performing an operation. This situation is again exemplified by
the MPEG-1 audio encoder (see Figure 3) where the ScaleFactorCalculator
filter expects to receive all the samples produced by the SubbandBlock filter as
a single input stream item.

SubbandBlock

Samples Scale

PCM Subband
Samples Window Filter
— 1> 24 Subband Subband 24> 1 Factor

Calculator

Fig. 3. MPEG Subband Filter for Stereo Streams

We have not found any use for a many-many mapping, except in cases that
can be re-expressed using a one-one mapping.

3.3 Stream Tasks

A stream task can either be a connector or a filter. The difference between these
two kinds of tasks is that a connector propagates stream items in a fixed way
and is guaranteed not to modify their value, beyond what a stream expression
enables. These restrictions do not apply to filters.

Spidle offers a type constructor for connectors and one for filters. These type
constructors enable the programmer to define a task type. Instances of a new
task type can then be created throughout a Spidle program. To improve re-use,
a task type can be instantiated with respect to both compile-time and run-time
arguments. An example of such instantiation is presented in the filter section
below.

Connectors. There are two kinds of connectors: mergers and splitters. A merger
fuses independent input streams into a single output stream. A splitter performs

the opposite operation. Because a connector can only be used to link stream
tasks, a connector declaration only contains an interface clause and a map
clause. An example of a declaration of a merger from the GSM specification is
given below.

merger Frame_Merger {
interface {
stream in bit[7] nc;
stream in bit[2] bc;
stream in bit[2] Mc;
stream in bit[13][3] xMc;
stream in bit[6] xmaxc;
stream out bit[566] bits;
}
map {
nc # bc # Mc # xmaxc # xMc -> bits;
}
}

This connector merges input streams nc, bc, Mc, xMc and xmaxc into the single
output stream bits.

Filters. A filter can either be compound, when it combines a set of stream
tasks, or primitive, when it refers to an operation implemented in some foreign
programming language.

Compound filters. A compound filter defines a combination of other stream tasks.
As a result, besides the interface and map clauses, a compound filter consists
of an import clause referring to the Spidle files defining the needed stream tasks.
Since a compound filter imports task types, it also needs an instantiate clause
to define task instances with respect to a specific context. An example of a
declaration of a compound filter from the MPEG-1 audio encoder specification
follows.

filter SubbandBlock(int stereo) {
interface {
stream in int16[2] [384] buffer;
stream out float64[32] sample;
}
instantiate {
WindowSubband (stereo) ws;
FilterSubband fs;

1

map {
buffer -> ws.buffer;
ws.Z -> fs.Z;
fs.sb_sample -> sample;

}

This filter has a formal parameter, stereo, which is given a value at run time,
when the filter is instantiated. This value is also used to instantiate the filter
WindowSubband, as shown in the instantiate clause of SubbandBlock.

Primitive filters. A primitive filter enables existing library code to be imported
into Spidle. Like the compound filter, a primitive filter includes an import clause,
but this clause refers to files written in some other programming language. Both
functions and types can be imported, thus allowing Spidle to propagate foreign
values from one primitive filter to another one.

Because a primitive filter provides an interface to a foreign function, it does
not include an instantiate clause. Instead, it consists of a run clause that
invokes the foreign function.

The foreign function invoked in a primitive filter may also modify the contents
of the buffer attached to an input-only stream using, for example, previously
read locations as temporary storage. Spidle requires that the declaration of each
input-only stream that is passed to the foreign function specify the effects of this
function on the stream items. A stream can be declared to be read by the foreign
function (default behavior) or both read and written to by the foreign function.
This critical information is later used to optimize memory management.

Let us examine an example of a primitive filter from the GSM specification.

filter Weighting {
interface {
stream in bit[50] [16] e;
stream out bit[40] [16] x;

}
import {
func Weighting _filter from "rpe.c";
}
run {
Weighting_filter (e, x);
}

}

This filter only reads input stream e, and writes output stream x. These streams
are passed to the foreign function Weighting_filter defined in file rpe.c. Here,
the C programming language is assumed to be the foreign language used in the
run clause.

3.4 Advanced Features

A network of stream tasks may contain loopbacks (cycles) when a path connects
the output of one stream task to one of its inputs. Such a network has special
semantics since some items are unavailable as inputs when processing begins.
Spidle offers a built-in task type named delay for introducing loopbacks in
a network. This specific task simply propagates items from its input stream to
its output stream. Such a task type requires at least one compile-time argument
at the time of instantiation. This parameter enables the programmer to define

how many initial items have to be produced on the output stream before looking
for items on the input stream. In addition, a delay task can also be instantiated
with respect to appropriate values of the initial items.

delay(1)
m [j Sub—Framej
Preprocess LPC STA w Processing

-

Fig. 4. GSM Speech Encoding Diagram with Loopback

The GSM full-rate speech encoding diagram depicted in Figure 4 illustrates
the use of the built-in task delay. In this modified version of the GSM encoding
diagram shown in Figure 1, the 160 samples of the short term residual signal
are first split into 4 sub-frames before being processed sequentially by the Sub-
Frame Processing filter. One of the output streams of this filter is connected to
one of its input streams through a delay filter. This task has been instantiated
with the value 1 to indicate that it produces a value with a one-step delay. Since
no initial value has been defined for this delay task, the first item provided to the
Sub-Frame Processing filter is 0. Following items are obtained by looking at the
output stream of previous iterations. When all the required items are available,
they are merged to form the 260-bit encoded block.

4 Compilation

We now present a preliminary design of the Spidle compilation process. This
process consists of the following steps. First, dependencies between stream tasks
are collected and represented as a graph. Second, this graph is annotated with
effects and memory management information. Third, the resulting graph is used
to schedule stream tasks. Fourth, the memory layout of stream items at each
stage of the streaming process is computed. Lastly, code is generated.

Dependency graph. Given a Spidle program, the compiler computes the transitive
closure of the referred stream tasks by examining the instantiate and import
clauses. The resulting information is represented as a dependency graph.

Effects. This pass determines the effects of each compound filter based on the
effects of the primitive filters it references.

Memory management. This analysis annotates the graph of stream tasks with
information describing the lifetime of memory fragments. This information is
computed using the stream declarations. Specifically, for an output-only stream,
memory needs to be allocated to store the value of a stream item. Conversely,
for an input-only stream, the memory used for the stream item is not needed
beyond the execution of the stream task.

Task scheduling. Most Spidle programs have more than one possible schedule for
their stream tasks. In our current design, the scheduling strategy focuses on the
choice points represented by splitters. Spidle chooses a schedule that minimizes
memory copies, using effect information.

Memory layout. A streaming application often transforms values from one for-
mat to another. The transformation is carried out incrementally as the item
gets propagated through the various steps of the stream process. This situation
introduces temporary memory fragments. To remedy this potential source of in-
efficiency, our compiler attempts to allocate space eagerly. That is, when the size
of an item grows as it gets processed, its final size is used for the initial alloca-
tion. Of course this optimization cannot always be applied; for example, when
non-contiguous data from input streams are processed, replacing the allocated
buffers of input streams by the final buffer may not be allowed.

Currently, Spidle has only been interfaced with C and C++ languages. These
are the programming languages used by most stream libraries, mainly for effi-
ciency reasons.

4.1 Verifications

Because of its domain-specific nature, the Spidle compiler can perform a num-
ber of verifications that are beyond the reach of a compiler for a general-purpose
language. These verifications focus on the composition of stream tasks, the prop-
agation of stream items, and the usage of foreign libraries.

Composition of stream tasks. Stream declarations are checked to ensure that
types and directions of stream items are compatible when stream tasks are com-
bined. Inconsistent combinations of effects and directions are detected.

Propagation of stream items. Mappings are inspected to find unconnected streams
and input streams connected to more than one output stream. Also, omitted or
double definitions can be detected. For example, one and only one mapping
declaration must specify how the value of a bit of an output stream is obtained.

Usage of foreign libraries. External function declarations are analyzed to ensure
that the types of the actual parameters they accept are equivalent to types
specified in the stream declarations that use them.

4.2 Optimizations

In fact, most streaming applications are targeted for use in embedded systems.
Such systems usually have moderately powered processors, minimal amounts of
memory and limited battery. To stay within these limitations, streaming pro-
grams are typically optimized manually.

The domain-specific constructs of Spidle open up opportunities for various
optimizations that are not possible when using a general-purpose language. The
goals of these optimizations are to reduce the number of memory copy operations,
to reduce memory usage, to improve data and code locality, and to reduce the
size of the resulting code. The order of this list reflects roughly the order of the
significance of these optimizations, although it may vary considerably in certain
scenarios depending on their specific requirements.

For example, in embedded systems, it is often more desirable to keep memory
utilization below a certain threshold than to minimize it as much as possible.

In contrast with manual optimizations dedicated to a given architecture and a
specific streaming application, the Spidle compiler automatically performs global
optimizations that are not possible locally. Because the engine is parametrized,
optimizations are retargetable without any additional effort to a new system
that has different resource constraints, such as memory usage and cache sizes.

5 Assessment

The assessment our language is a crucial step of the DSL approach. In our expe-
rience [16-18,11,10], a DSL should be assessed with respect to three pragmatic
criteria: expressiveness, conciseness, and performance.

Expressiveness. Assessing the expressiveness of a DSL in practice requires to
use it for a variety of non-trivial applications. We have used Spidle to express a
GSM encoder, a GSM decoder and an MPEG-1 audio encoder. These applica-
tions must satisfy industrial-strength standards, and are commonly mentioned as
reference cases to assess work in the domain of stream processing (e.g., [19, 15]).
We have also specified other, more dedicated, streaming applications referenced
in various libraries, toolkits and middleware for stream processing.

Conciseness. Because Spidle offers domain specific abstractions and construc-
tions, it enables the programmer to concisely define a streaming application. We
found that Spidle programs are up to 2 times smaller than equivalent version
written in C.

Performance. Our performance measurements of the compiled code of Spidle
programs show that, at worst, there is a negligeable loss of performance (around
4%) compared with the equivalent C-compiled code written by an outside expert.
These results are preliminary and should improve as our compiler gets further
developed.

6 Related Work

Streamlt [19] is certainly the work most related to Spidle. It is a Java extension
that provides the programmer with constructs to assemble stream components.
While StreamlIt and Spidle share the same goals, their approaches vary consid-
erably. Streamlt is essentially a GPL that offers extensions corresponding to
common program patterns and an interface to library components. Because it is
a superset of Java, performance of compiled Streamlt code is as good as what
existing Java compilers produce, which is currently much slower than compiled
equivalent C code. Indeed, Java has some intrinsic overhead (e.g., memory man-
agement and object layout) that may not be easy to work around. Lastly, because
a Streamlt program is intertwined with Java code, verification is very local to
the domain-specific constructs, unlike what can be done in Spidle.

The Infopipes system [9] is a middleware abstraction for describing informa-
tion flow in the case of distributed streaming applications. The goal of Infopipes
is to expose the underlying communication layer to the application so that it can
adapt dynamically to changing network or processing conditions. The Infopipes
system offers distributed versions of our splitters, mergers and filters. In con-
trast, Spidle is limited to local stream processing, and focuses on performance
and verification.

Stream-C [5] and Sassy [6] are two stream-oriented languages used to de-
scribe hardware circuits. The aim of these languages is to represent circuits with
higher level abstractions like processes, streams and signals with the emphasis
on reducing the clock rate and the board area occupied by the generated circuit.
Spidle operates in a different domain. While it might be possible to write a com-
piler for Stream-C or Sassy dedicated to streaming applications, their constructs
are not well suited to this domain.

7 Conclusions and Future Work

Stream processing is a rapidly evolving field which requires much software de-
velopment with high-performance expectations. To address these requirements,
we have developed a domain-specific, high-level and declarative language named
Spidle, for specifying streaming applications.

We have used Spidle to write a variety of industry-standardized streaming
applications as well as special-purpose ones. These specifications have experi-
mentally validated the expressiveness of our language. Spidle programs were up
to 2 times smaller than equivalent programs written in C.

We have implemented a compiler for Spidle. Preliminary experiments show
that compiled Spidle programs have performance that is roughly comparable to
compiled equivalent C programs.

Our implementation of the Spidle compiler is preliminary, and there is a
number of optimizations that need to be explored. In particular, we plan to
optimize locality by taking into account processor features, such as data cache
and instruction cache, when determining a scheduling for stream tasks. We also

want to study the performance impact of buffering input stream items before
firing the stream process. These ideas are examples of highly domain-specific
optimizations that can be enabled by the presence of more explicit information
at the language level, and can be factorized into a compiler.

Another track of research aims to go beyond local stream processing to tackle
the distributed case. To do so, we are studying ways to integrate Spidle into
a middleware for distributed streaming. In particular, we are working on In-
fopipes [9], partly developed by one of the authors.

Finally, we are working on a graphical representation for Spidle. A visual
version of Spidle seems quite a natural step to take considering that the graph-
like notation is commonly used in the field. Toward this end, we first plan to
build a tool capable of visualizing Spidle programs as a graph of stream tasks.

Acknowledgment.

We thank Julia Lawall, Anne-Francoise Le Meur and the other members of the
Compose group for helpful comments and discussions on earlier versions of this
paper. We also thank the anonymous reviewers for their valuable inputs.

This research has been partially funded by Conseil Régional d’Aquitaine,
DARPA /IXO (PCES program), National Science Foundation grants numbered
CCR~9988452,ITR-0121643,1TR-0219902, and 0208953, and Georgia Tech Foun-
dation through the John P. Imlay, Jr. Chair endowment.

References

1. C. Consel and R. Marlet. Architecturing software using a methodology for language
development. In C. Palamidessi, H. Glaser, and K. Meinke, editors, Proceedings of
the 10" International Symposium on Programming Language Implementation and
Logic Programming, number 1490 in Lecture Notes in Computer Science, pages
170-194, Pisa, Italy, September 1998.

2. A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated

bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

Earwax effect. http://www.geocities.com/beinges/works.htm.

4. European Telecommunications Standards Institute, 650, route des Lucioles F-06921
Sophia-Antipolis Cedex — France. GSM full speech transcoding 06.10, Nov 2000.
REN/SMG-110610Q8R 1.

5. M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA
computing in the Streams-C high level language. In IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 49-59, Apr 2000.

6. J. P. Hammes, B. A. Draper, and A. P. Willem Boehm. Sassy: A language and
optimizing compiler for image processing on reconfigurable computing systems.
Lecture Notes in Computer Science, 1542:83-97, 1999.

7. International Organisation for Standardisation, 1, rue de Varembé, Case postale 56
CH-1211 Geneva 20, Switzerland. Moving Picture Ezperts Group (MPEG-1 audio)
Specifications, 1993. ISO/IEC 11172-3:1993.

8. D. Jutta and B. Carsten. C implementation of GSM 06.10 RPELTP coder and
decoder. http://kbs.cs.tu-berlin.de/ jutta/toast.html, Nov 1994.

w

10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

R. et al. Koster. Infopipes for composing distributed information flows. In Pro-
ceedings of the ACM Multimedia Workshop on Multimedia Middleware, Oct 2001.
F. Mérillon, L. Réveillére, C. Consel, R. Marlet, and G. Muller. Devil: An IDL
for Hardware Programming. In 4th Symposium on Operating Systems Design and
Implementation (OSDI 2000), pages 17-30, San Diego, California, October 2000.
L. Réveillére, F. Mérillon, C. Consel, R. Marlet, and G. Muller. A DSL approach
to improve productivity and safety in device drivers development. In Proceedings
of the 15" IEEE International Conference on Automated Software Engineering
(ASE 2000), pages 101-109, Grenoble, France, September 2000. IEEE Computer
Society Press.

L. Rizzo. On the feasibility of software FEC. Technical Report LR-970131, Dip.
di Ingegneria dell’Informzione, Universitd di Pisa, Jan 1997.

Sox sound exchange. http://www.spies.com/Sox.

Spidle home page. http://compose.labri.fr/prototypes/spidle.

R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491-541,
1997.

S. Thibault and C. Consel. A framework of application generator design. In
M. Harandi, editor, Proceedings of the Symposium on Software Reusability, pages
131-135, Boston, Massachusetts, USA, May 1997. Software Engineering Notes,
22(3).

S. Thibault, C. Consel, and G. Muller. Safe and efficient active network program-
ming. In 17th IEEE Symposium on Reliable Distributed Systems, pages 135-143,
West Lafayette, Indiana, October 1998.

S. Thibault, R. Marlet, and C. Consel. A domain-specific language for video device
driver: from design to implementation. In Proceedings of the 1st USENIX Confer-
ence on Domain-Specific Languages, Santa Barbara, California, October 1997.
W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A language for
streaming applications. In International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 179-196. Springer-Verlag, 2002.

