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We compute the weak * -dentability index of the spaces C(K) where K is a countable compact space. Namely Dz(C([0, ω ω α ])) = ω 1+α+1 , whenever 0 ≤ α < ω 1 . More generally, Dz(C(K)) = ω 1+α+1 if K is a scattered compact whose height η(K) satisfies ω α < η(K) ≤ ω α+1 with an α countable.

Introduction

The Szlenk index has been introduced in [START_REF] Szlenk | The non existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces[END_REF] in order to show that there is no universal space for the class of separable reflexive Banach spaces. The general idea of assigning an isomorphically invariant ordinal index to a class of Banach spaces proved to be extremely fruitful in many situations. We refer to [START_REF] Odell | Ordinal indices in Banach spaces[END_REF] for a survey with references. In the present note we will give an alternative geometrical description of the Szlenk index (equivalent to the original definition whenever X is a separable Banach space not containing any isomorphic copy of ℓ 1 [START_REF] Lancien | Dentability indices and locally uniformly convex renormings[END_REF]), which stresses its close relation to the weak * -dentability index. The later index proved to be very useful in renorming theory ( [START_REF] Lancien | Dentability indices and locally uniformly convex renormings[END_REF], [START_REF] Lancien | On uniformly convex and uniformly Kadec-Klee renormings[END_REF], [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]).

Let us proceed by giving the precise definitions. Consider a real Banach space X and K a weak * -compact subset of X * . For ε > 0 we let V be the set of all relatively weak * -open subsets V of K such that the norm diameter of V is less than ε and s ε K = K \ {V : V ∈ V}. Then we define inductively s α ε K for any ordinal α by s α+1 ε K = s ε (s α ε K) and s α ε K = β<α s β ε K if α is a limit ordinal. We denote by B X * the closed unit ball of X * . We then define Sz(X, ε) to be the least ordinal α so that s α ε B X * = ∅, if such an ordinal exists. Otherwise we write Sz(X, ε) = ∞. The Szlenk index of X is finally defined by Sz(X) = sup ε>0 Sz(X, ε). Next, we introduce the notion of weak * -dentability index. Denote H(x, t) = {x * ∈ K, x * (x) > t}, where x ∈ X and t ∈ R. Let K be again a weak * -compact. We introduce a weak * -slice of K to be any non empty set of the form H(x, t) ∩ K where x ∈ X and t ∈ R. Then we denote by S the set of all weak * -slices of K of norm diameter less than ε and d ε K = K \ {S : S ∈ S}. From this derivation, we define inductively

d α ε K for any ordinal α by d α+1 ε K = s ε (d α ε K) and d α ε K = β<α s β ε K if α is a limit ordinal.
We then define Dz(X, ε) to be the least ordinal α so that d α ε B X * = ∅, if such an ordinal exists. Otherwise we write Dz(X, ε) = ∞. The weak * -dentability index is defined by Dz(X) = sup ε>0 Dz(X, ε).

Let us now recall that it follows from the classical theory of Asplund spaces (see for instance [START_REF] Hájek | Biorthogonal systems in Banach spaces[END_REF], [START_REF] Hájek | Universality of Asplund spaces[END_REF], [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF] and references therein) that for a Banach space X, each of the following conditions: Dz(X) = ∞ and Sz(X) = ∞ is equivalent to X being an Asplund space. In particular, if X is a separable Banach space, each of the conditions Dz(X) < ω 1 and Sz(X) < ω 1 is equivalent to the separability of X * . In other words, both of these indices measure "quantitatively" the "Asplundness" of the space in question. Moreover, these indices are invariant under isomorphism.

It is immediate from the definition, that Dz(X) ≥ Sz(X) for every Banach space X. Relying on tools from descriptive set theory, Bossard (for the separable case, see [START_REF] Bossard | Codage des espaces de Banach séparables. Familles analytiques ou coanalytiques d'espaces de Banach[END_REF] and [START_REF] Bossard | Théorie descriptive des ensembles et géométrie des espaces de Banach[END_REF]) and the second named author ( [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]), proved non-constructively that there exists a universal function ψ : ω 1 → ω 1 , such that if X is an Asplund space with Sz(X) < ω 1 , then Dz(X) ≤ ψ(Sz(X)).

Recently, Raja [START_REF] Raja | Dentability indices with respect to measures of non-compactness[END_REF] has obtained a concrete example of such a ψ, by showing that Dz(X) ≤ ω Sz(X) for every Asplund space. This is a very satisfactory result, but it is not optimal, as we know from [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF] that the optimal value ψ(ω) = ω 2 . Further progress in this area depends on the exact knowledge of indices for concrete spaces. The Szlenk index has been precisely calculated for several classes of spaces, most notably for the class of C([0, α]), α countable (Samuel [START_REF] Samuel | Indice de Szlenk des C(K)[END_REF], see also [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF]). We have Sz(C([0, ω ω α ])) = ω α+1 , so it follows from the Bessaga-Pe lczyński ( [START_REF] Bessaga | Pe lczyński, Spaces of continuous functions (IV) (on isomorphical classification of spaces of continuous functions)[END_REF]) Theorem 1 below, that the value of the Szlenk index characterizes the isomorphism class ( [START_REF] Hájek | Biorthogonal systems in Banach spaces[END_REF]). Computations of the Szlenk index for other spaces may be found e.g. in [START_REF] Alspach | The Szlenk index and local ℓ 1 -indices[END_REF], [START_REF] Alspach | The dual of the Bourgain-Delbaen space[END_REF], [START_REF] Knaust | On asymptotic stucture, the Szlenk index and UKK properties in Banach spaces[END_REF]. On the other hand, the precise value of the weak * -dentability index is known only for superreflexive Banach spaces, where Dz(X) = ω ([13], [START_REF] Hájek | Biorthogonal systems in Banach spaces[END_REF]), and for spaces with an equivalent UKK * renorming ( [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF]). For a detailed background information on the Szlenk and dentability indices we refer the reader to [START_REF] Hájek | Biorthogonal systems in Banach spaces[END_REF], [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF], [START_REF] Odell | Ordinal indices in Banach spaces[END_REF], [START_REF] Rosenthal | The Banach spaces C(K), Handbook of the Geometry of Banach spaces[END_REF] and references therein.

The main result of our note, Theorem 2, is a precise evaluation of the w *dentability index for the class of C([0, α]), α countable. These spaces have been classified isomorphically by C. Bessaga and A. Pe lczyński [START_REF] Bessaga | Pe lczyński, Spaces of continuous functions (IV) (on isomorphical classification of spaces of continuous functions)[END_REF] in the following way.

Theorem 1. (Bessaga-Pe lczyński) Let ω ≤ α ≤ β < ω 1 . Then C([0, α]) is iso- morphic to C([0, β]
) if and only if β < α ω . Moreover, for every countable compact space K there exists a unique α < ω

1 such that C(K) is isomorphic to C([0, ω ω α ]).
It is also well-known and easy to show that for

α ≥ ω, C([0, α]) is isomorphic to C 0 ([0, α]) where C 0 ([0, α]) = {f ∈ C([0, α]) : f (α) = 0}
. The aim of this note is to prove the next theorem. Note, as a particular consequence, that the weak *dentability index gives a complete isomorphic characterization of a C(K) space, when K is a metrizable compact space (similarly to the case of the Szlenk index).

Theorem 2. Let 0 ≤ α < ω 1 . Then Dz(C([0, ω ω α ])) = ω 1+α+1 .
Proof. We start by proving the upper estimate

Dz(C([0, ω ω α ])) ≤ ω 1+α+1 , (1) 
The method of the proof is similar to [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF], where a short and direct computation of the Szlenk index of the spaces C([0, α]) is presented. Next lemma is a variant of Lemma 2.2. from [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF]. We omit the proof which requires only minor notational changes.

Lemma 3. Let X be a Banach space and α an ordinal. Assume that

∀ε > 0 ∃δ(ε) > 0 d α ε (B X * ) ⊂ (1 -δ(ε))B X * . Then Dz(X) ≤ α • ω.
We shall also use the following Lemma that can be found in [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF].

Lemma 4. Let X be a Banach space and L 2 (X) be the Bochner space

L 2 ([0, 1], X). Then Dz(X) ≤ Sz(L 2 (X)).
Thus, in order to obtain the desired upper bound we only need to prove the following.

Proposition 5. Let 0 ≤ α < ω 1 . Then Sz(L 2 (C([0, ω ω α ]))) ≤ ω 1+α+1 .
Proof. For a fixed α < ω 1 and γ < ω ω α , let us put Z = L 2 (ℓ 1 ([0, ω ω α ))), together with the weak * -topology induced by L 2 (C 0 ([0, ω ω α ])) and Z γ = L 2 (ℓ 1 ([0, γ])) with the weak * -topology induced by L 2 (C([0, γ])). We recall that for a Banach space X with separable dual, L 2 (X * ) is canonically isometric to (L 2 (X)) * .

Let P γ be the canonical projection from

ℓ 1 ([0, ω ω α )) onto ℓ 1 ([0, γ]). Then, for f ∈ Z and t ∈ [0, 1], we define (Π γ f )(t) = P γ (f (t)).
Clearly, Π γ is a norm one projection from Z onto Z γ (viewed as a subspace of Z). We also have that for any f ∈ Z, Π γ ff tends to 0 as γ tends to ω ω α .

Next is a variant of Lemma 3.3 in [START_REF] Hájek | Various slicing indices on Banach spaces[END_REF].

Lemma 6. Let α < ω 1 , γ < ω ω α , β < ω 1 and ε > 0. If z ∈ s β 3ε (B Z ) and Π γ z 2 > 1 -ε 2 , then Π γ z ∈ s β ε (B Zγ ).
Proof. We will proceed by transfinite induction in β. The cases β = 0 and β a limit ordinal are clear. Next we assume that β = µ+1 and the statement has been proved for all ordinals less than or equal to µ.

Consider f ∈ B Z with Π γ f 2 > 1 -ε 2 and Π γ f / ∈ s β ε (B Zγ ). Assuming f / ∈ s µ 3ε (B Z ) ⊃ s β 3ε (B Z
) finishes the proof, so we may suppose that f ∈ s µ 3ε (B Z ). By the inductive hypothesis, Π γ f ∈ s µ ε (B Zγ ). Thus there exists a weak * -neighborhood V of f such that the diameter of V ∩ s µ ε (B Zγ ) is less than ε. We may assume that V can be written

V = k i=1 H(ϕ i , a i ), where a i ∈ R and ϕ i ∈ L 2 (C([0, γ]))
. We may also assume, using Hahn-Banach theorem, that

V ∩ (1 -ε 2 ) 1/2 B Zγ = ∅. Define Φ i ∈ L 2 (C 0 ([0, ω ω α )) by Φ i (t)(σ) = ϕ i (t)(σ) if σ ≤ γ and Φ i (t)(σ) = 0 otherwise. Then define W = k i=1 H(Φ i , a i ). Note that for f in Z, f ∈ W if and only if Π γ f ∈ V .
In particular W is a weak * -neighborhood of f . Consider now g, g ′ ∈ W ∩ s µ 3ε (B Z ). Then Π γ g and Π γ g ′ belong to V and therefore they have norms greater than (1ε 2 ) 1/2 . It follows from the induction hypothesis that Π γ g, Π γ g ′ ∈ s µ ε (B Zγ ) thus Π γ g -Π γ g ′ ≤ ε. Since Π γ g 2 > 1ε 2 and g ≤ 1, we also have g -Π γ g < ε. The same is true for g ′ and therefore gg ′ < 3ε. This finishes the proof of the Lemma.

We are now in position to prove Proposition 5. For that purpose it is enough to show that for all α < ω 1 :

∀γ < ω ω α ∀ε > 0 s ω 1+α ε (B Zγ ) = ∅.
(2) We will prove this by transfinite induction on α < ω 1 .

For α = 0, γ is finite and the space Z γ is isomorphic to L 2 and therefore s ω ε (B Zγ ) is empty. So (2) is true for α = 0.

Assume that (2) holds for α < ω 1 . Let Z = L 2 (C 0 ([0, ω ω α ])). It follows from Lemma 6 and the fact that for all f ∈ Z Π γ ff tends to 0 as γ tends to

ω ω α , that ∀ε > 0 s ω 1+α ε (B Z ) ⊂ (1 -ε 2 ) 1/2 B Z .

From this and Lemma 3 it follows that

∀ε > 0 s ω 1+α+1 ε (B Z ) = ∅.
By Theorem 1 we know that the spaces C([0, γ]), C([0, ω ω α ]), and also C 0 ([0, ω ω α ]) are isomorphic, whenever ω ω α ≤ γ < ω ω α+1 . Thus s ω 1+α+1 ε (B Zγ ) = ∅ for any ε > 0 and γ < ω ω α+1 , i.e. (2) holds for α + 1.

Finally, the induction is clear for limit ordinals.

In the rest of the note, we will focus on proving the converse inequality. Note that it suffices to deal with the spaces C([0, ω ω α ]) where α < ω. Indeed, in case α ≥ ω, our inequality (1) implies that

Dz(C([0, ω ω α ])) = Sz(C([0, ω ω α ])) = ω α+1 .
Proposition 7. Let X, Z be Banach spaces and let Y ⊂ X * be a closed subspace. Let there be T ∈ B(X, Z) such that T * is an isometric isomorphism from Z * onto Y . Let ε > 0, α be an ordinal such that

B X * ∩ Y ⊂ d α ε (B X * ), and z ∈ Z * . If z ∈ d β ε (B Z * ), then T * z ∈ d α+β ε (B X * ).
Proof. By induction with respect to β. The cases when β = 0 or β is a limit ordinal are clear. Let β = µ + 1 and suppose that

T * z / ∈ d α+β ε (B X * ). If z / ∈ d µ ε (B Z * )
, then the proof is finished. So we proceed assuming that z ∈ d µ ε (B Z * ), which by the inductive hypothesis implies that

T * z ∈ d α+µ ε (B X * ). There exist x ∈ X, t > 0, such that T * z ∈ H(x, t) ∩ d α+µ ε (B X * ) = S and diam S < ε. Consider the slice S ′ = H(T x, t) ∩ d µ ε (B Z * ).
We have T x, z = x, T * z , so z ∈ S ′ . Also, diam S ′ ≤ diam S < ε as T * is an isometry. We conclude that z / ∈ d β ε (B Z * ), which finishes the argument.

Let us introduce a shift operator τ

m : ℓ 1 ([0, ω]) → ℓ 1 ([0, ω]), m ∈ N, by letting τ m h(n) = h(n -m) for n ≥ m, τ m h(n) = 0 for n < m and τ m h(ω) = h(ω). Corollary 8. Let h ∈ d α ε (B ℓ1([0,ω]) ). Then τ m h ∈ d α ε (B ℓ1([0,ω]) ) for every m ∈ N. Proof. Indeed, consider the mapping T : C([0, ω]) → C([0, ω]) defined as T ((x(0), x (1), . . . , x(ω))) = (x(1), x(2), . . . , x(ω) 
). Clearly, T * = τ 1 and the assertion for m = 1 follows by the previous proposition. For m > 1 one may use induction.

Definition 9. Let α be an ordinal and ε > 0. We will say that a subset M of X * is an ε-α-obstacle for f ∈ B X * if (i) dist(f, M ) ≥ ε, (ii) for every β < α and every w * -slice S of d β ε (B X * ) with f ∈ S we have S ∩M = ∅.

It follows by transfinite induction that if f has an

ε-α-obstacle, then f ∈ d α ε (B X * ). An (n, ε)-tree in a Banach space X is a finite sequence (x i ) 2 n+1 -1 i=0 ⊂ X such that x i = x 2i + x 2i+1 2 and x 2i -x 2i+1 ≥ ε for i = 0, . . . , 2 n -1. The element x 0 is called the root of the tree (x i ) 2 n+1 -1 i=0 . Note that if (h i ) 2 n+1 -1 i=0 ⊂ B X * is an (n, ε)-tree in X * , then h 0 ∈ d n ε (B X * ). Define f β ∈ ℓ 1 ([0, α]), for α ≥ β, by f β (ξ) = 1 if ξ = β and f β (ξ) = 0 otherwise. Lemma 10. f ω ∈ d ω 1/2 (B ℓ1([0,ω]) ) Proof. In [7, Exercise 9.20] a sequence is constructed of (n, 1)-trees in B ℓ1([0,ω]) with roots r n = ( 1 2 n , . . . , 1 2 n 2 n -times , 0, . . .)
whose elements belong to

P = h ∈ B ℓ1([0,ω]) : h 1 = 1, h(n) ≥ 0, h(ω) = 0 . We have r n ∈ d 2n 1/2 (B ℓ1([0,ω]
) ), and dist(f ω , P) = 2. Finally, for every h ∈ P, every x ∈ C([0, ω]) and every t ∈ R such that f ω ∈ H(x, t), there exists m ∈ N such that τ m h ∈ H(x, t). Therefore the set τ m r n : (m, n) ∈ N 2 is an 1 2 -ω-obstacle for f ω . Thus

f ω ∈ d ω 1/2 (B ℓ1([0,ω]) ).
Proposition 11. For every α < ω,

f ω ω α ∈ d ω 1+α 1/2 (B ℓ1([0,ω ω α ]) ) (3) 
Proof. The case α = 0 is contained in Lemma 10. Let us suppose that we have proved the assertion (3) for all ordinals (natural numbers, in fact) less than or equal to α. It is enough to show, for every n ∈ N, that

f (ω ω α ) n ∈ d ω 1+α n 1/2 (B ℓ1([0,(ω ω α ) n ]) ). (4) 
Indeed, (4) implies

f (ω ω α ) n ∈ d ω 1+α n 1/2 (B ℓ1([0,ω ω α+1 ]) ). Since f (ω ω α ) n w * -→ f ω ω α+1 and f (ω ω α ) n -f ω ω α+1 = 2, we see that {f (ω ω α ) n : n ∈ N} is an 1 2 -ω 1+α+1 -obstacle for f ω ω α+1
. That implies (3) for α + 1. In order to prove (4) we will proceed by induction. The case n = 1 follows from the inductive hypothesis as indicated above, so let us suppose that n = m + 1 and (4) holds for m. Define the mapping T : C([0, (ω

ω α ) n ]) → C([0, ω ω α ]) by (T x)(γ) = x((ω ω α ) m (1 + γ)), γ ≤ ω ω α
A simple computation shows that the dual map T * is given by

(T * g)(γ) = g(ξ), if γ = (ω ω α ) m (1 + ξ), ξ ≤ ω ω α 0 otherwise Clearly, T * is an isometric isomorphism of ℓ 1 ([0, ω ω α ]) onto rng T * . We claim that B ℓ1([0,(ω ω α ) n ]) ∩ rng T * ⊂ d ω 1+α m 1/2 (B ℓ1([0,(ω ω α ) n ]) ).
(5) Note that the set of extremal points of B ℓ1([0,(ω

ω α ) n ]) ∩ rng T * satisfies ext(B ℓ1([0,(ω ω α ) n ]) ∩ rng T * ) ⊂ {f γ , -f γ : γ = (ω ω α ) m (1 + ξ), ξ ≤ ω ω α }
By the inductive assumption and by symmetry, f (ω ω α ) m and -f (ω ω α ) m belong to

d ω 1+α m 1/2 (B ℓ1([0,(ω ω α ) n ]) ). It is easy to see that more generally, f γ and -f γ belong to d ω 1+α m 1/2 (B ℓ1([0,(ω ω α ) n ]) ), whenever γ = (ω ω α ) m (1 + ξ), ξ ≤ ω ω α . Thus we have verified that ext(B ℓ1([0,(ω ω α ) n ]) ∩ rng T * ) ⊂ d ω 1+α m 1/2 (B ℓ1([0,(ω ω α ) n ]) ),
and the claim (5) follows using the Krein-Milman theorem.

This together with the inductive assumption (3) allows us to apply Proposition 7 (with ℓ 1 ([0, (ω ω α ) n ]) as X * , C([0, ω ω α ]) as Z, and rng T * as Y ) to get

f (ω ω α ) n = T * f ω ω α ∈ d ω 1+α n 1/2 (B ℓ1([0,(ω ω α ) n ]) ).
To finish the proof of Theorem 2, we use that for every Asplund space X, Dz(X) = ω ξ for some ordinal ξ (see [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF]Proposition 3.3], [START_REF] Hájek | Biorthogonal systems in Banach spaces[END_REF]). Combining Proposition 11 with (1) we obtain Dz(C([0, ω ω α ])) = ω 1+α+1 for α < ω. For ω ≤ α < ω 1 , we use that ω 1+α+1 = ω α+1 = Sz(C([0, ω ω α ])) = Dz(C([0, ω ω α ])), which finishes the proof.

Our next proposition is a direct consequence of Theorem 2, Lemma 4 and Proposition 5.

Proposition 12. Let 0 ≤ α < ω 1 . Then Sz(L 2 (C([0, ω ω α ]))) = ω 1+α+1 .

Our main result can be extended to the non separable case as follows.

Theorem 13. Let 0 ≤ α < ω 1 . Let K be a compact space whose Cantor derived sets satisfy K ω α = ∅ and K ω α+1 = ∅. Then Dz(C(K)) = ω 1+α+1 .

Proof. The upper estimate follows from the separable determination of the weak *dentability index when it is countable and from Theorem 2 (the argument is identical to the one given for the computation of Sz(C(K)) in [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]).

On the other hand, since K ω α = ∅, we have that Sz(C(K)) ≥ ω α+1 (see [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF] or Proposition 7 in [START_REF] Lancien | A survey on the Szlenk index and some of its applications[END_REF]). Therefore there is a separable subspace X of C(K) such that Sz(X) ≥ ω α+1 . By considering the closed subalgebra of C(K) generated by X, we may as well assume that X is isometric to C(L), where L is a compact metrizable space. Since Sz(C(L)) ≥ ω α+1 , it follows from Theorem 2 that Dz(C(L)) ≥ ω 1+α+1 and finally that Dz(C(K)) ≥ ω 1+α+1 .