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INTRODUCTION

The Tip-timing technology consists in the use of sensors which are mounted on an engine casing around a rotating disc. They measure the times of arrival of each blade. Then these timings are used to estimate the vibratory motions.

This measure is cheaper than strain gauges, but its analysis is more difficult. Each sensor collects one time sample per revolution and per blade. For a blade which can have several oscillations per revolution, this sampling is very weak. Traditional Fourier methods are then useless to study this kind of signal. So previous authors developed methods of analysis based on mechanical assumptions.

For each nature of vibratory response (asynchronous or synchronous), a strategy was adopted. For example, the study of synchronous vibration is based on the determination of the Engine Order which excites a mode during a acceleration (or deceleration) ( [START_REF] Carrington | Development of blade tip timing data analysis techniques[END_REF]). They give good results if bladed disc's modes are clearly distinct in frequency domain. Asynchronous vibration is generally treated by an All-Blade-Spectrum method ( [START_REF] Zielinski | Noncontact vibration measurements on compressor rotor blades[END_REF]). It is designed for a perfectly tuned flutter mode : all the blades vibrate at the same frequency and with the same amplitude. It only works well on real tip-timing data if the bladed disc respect this assumption.

We prefer to choose a different way. Our main goal is to study asynchronous vibrations in the case of non-stationary phenomena, without making assumptions on the mechanical behavior of the system. So the spectral estimation was retained as the tool of identification for tip-timing data.

In this paper we propose a method based on the minimization of the variance of output signal for spectral estimation of aliased, non-uniform and irregular data. With this method it is not necessary to make hypothesis about the nature of the observed phenomena by tip-timing sensors.

We will see in a first part the tip-timing measurement. Several remarks about the sampling's nature of the signals will be detailed in order to clearly understand the interest of a spectral estimator described in a second part. In a third part, a bladed disc simulator will be described. It aims to generate signals close to those obtained from experiments. Finally, the spectral estimator will be used on simulated signals for a particular case of mistuned bladed disc and on real test data. Sensors are placed in an engine's casing in front of a disc (figure 1). They can be optical, capacitive or eddy-current. They measure the times of arrival of each blade (figure 2). Another sensor is mounted in front of the shaft and takes only one information per revolution. The data provided by this sensor are then used to estimate the rotor speed. If there were no vibration, we could exactly determine the time of arrival of each blade in front of each sensor. But blades vibrate, and their vibratory displacements change these times (figure 3). The differences between the measured times and the estimated times of arrival without vibration are approximately proportional to the angular displacements of the blades, and so to the vibratory motions [START_REF] Carrington | Development of blade tip timing data analysis techniques[END_REF].

TIP-TIMING MEASUREMENTS Process

Vibratory displacement and sampling

Let x k (t) be the angular deflection of the blade k and α k (t) its angular position. They are linked by the relation

α k (t) = t O 2πF r (u)du + x k (t) (1) 
with F r the rotation's frequency. For simplicity, F r should be assumed constant in the rest of the paragraph. So equation ( 1) becomes

α k (t) = α k0 + 2πF r t + x k (t) (2) 
with α k0 the initial angular position of the blade k. Let t kns be the time of arrival of the blade k in front of the probe s at the revolution index n and θ s the angular position of the probe s. The angular position α k (t kns ) is then given by

α k (t kns ) = α k0 + 2πF r t kns + x k (t kns ) (3) α k (t kns ) = (n -1)2π + θ s (4)
Equations ( 3) and ( 4) permit to calculate the fundamental relation of tip-timing sampling :

x kns (t kns ) = (n -1)2π + θ s -α k0 -2πF r t kns [START_REF] Raman | Perfect reconstruction formulas and bounds on aliasing error in sub-nyquist nonuniform sampling of multiband signals[END_REF] Several remarks should be made about equation [START_REF] Raman | Perfect reconstruction formulas and bounds on aliasing error in sub-nyquist nonuniform sampling of multiband signals[END_REF]. Firstly, the measured time t kns depends on the deflection x kns , so the sampling's time is a function of the observed object. It is called an implicit sampling.

Furthermore, the blade's deflection is the sum of the static and the dynamical displacements. The static displacement is due to centrifugal and temperature effects. The dynamical displacement is the vibratory displacement of the observed blade.

If we suppose that the excitation's force contains a random part due to noise, then the blade's dynamical displacement (and the deflection x k ) contains a random part too. As seen previously, the sampling depends on the deflection, so if the deflection is random, then the sampling is random too.

Another point is that sampling is not uniform. Of course, sensors can be equally spaced, and if rotor speed is constant, sampling can be supposed uniform. But on a test bench, it is very lucky if all sensors work well, and we have to suppose that one sensor can have a failure; then a spectral estimator based on regular sampling is irrelevant.

For a blade, the entire signal is formed from samples of all sensors. For example, on the figure 2, a blade's signal is composed of three samples per revolution. Often, they are not equally spaced in the casing, so a true Nyquist frequency cannot be defined. But an equivalent "Nyquist frequency" f Ny in the case of irregular sampling (see [START_REF] Stoica | Spectral analysis of irregularly-sampled data: Paralleling the regularly-sampled data approaches[END_REF]) can be defined by

f Ny = N s F r 2 (6)
with N s the number of sensors. Of course it is not the true mathematical Nyquist frequency, but it can give an idea of the undersampling of tip-timing data. Unfortunately, f Ny is generally very little compared to frequencies of interest. Data are then always undersampled. It is the main drawback of this technology.

SPECTRAL ANALYSIS ESTIMATOR

Knowledge of times of arrival permits to estimate vibratory displacements. Unfortunately, signals are severely undersampled. In addition, the sampling is nonuniform. In this section, the feasibility to study these signals is discussed and the choice of the spectral estimator is explained.

Sampling rate

For a real bandwidth signal x(t) whose maximal frequency is f max , let X( f ) be its Fourier transform. The minimal sampling rate is 2 f max (Nyquist theorem). A subset of this class is composed by multiband signals. They are distinguished by their spectral supports F s , defined as the set of frequencies over which the spectrum X( f ) of the signal is nonzero. On the figure 4, χ( f ) is the existence function of the Fourier transform X( f ) of a multiband signal. χ( f ) is defined by:

χ( f ) = 0 if X( f ) = 0 1 if X( f ) = 0
F s can contain several bands in the frequency domain. Landau showed ( [START_REF] Landau | Necessary density conditions for sampling and interpolation of certain entire functions[END_REF]) that the sampling rate of an irregular sampling for the class of multiband signals is lower-bounded by F La , defined by:

F La = P ∑ p=1
F p [START_REF] Cormac Herley | Minimum rate sampling and reconstruction of signals with arbitrary frequency support[END_REF] with P the number of frequency bands and F p the width of a frequency band. In practice, F La could be significantly smaller than the Nyquist rate. In our case, F s is unknown. But a bladed disc 

Choice and description of the spectral estimator

Experimental signals often contain a large part of randomness. Although they could not be periodic, spectral analysis can still be made by the use of the autocorrelation function. This probabilist tool measures the linear dependence of a process with itself and is directly linked to the Fourier transform of a random signal.

Several papers aim to estimate spectra for irregular and aliased data [START_REF] Raman | Perfect reconstruction formulas and bounds on aliasing error in sub-nyquist nonuniform sampling of multiband signals[END_REF][START_REF] Vandewalle | Super-resolution from unregistered and totally aliased signals using subspace methods[END_REF][START_REF] Cormac Herley | Minimum rate sampling and reconstruction of signals with arbitrary frequency support[END_REF]. A few of them are based on the estimate of the autocorrelation function [START_REF] Lo | A novel algorithm for computing autocorrelation of randomly sampled sequences[END_REF][START_REF] Greitans | Multiband signal processing by using nonuniform sampling and iterative updating of autocorrelation matrix[END_REF]. Among them, one was chosen because of its performance and its relative simplicity for nonspecialists in spectral estimation.

This method is presented by Greitans [START_REF] Greitans | Multiband signal processing by using nonuniform sampling and iterative updating of autocorrelation matrix[END_REF][START_REF] Greitans | Enhanced signal processing in time and frequency domains in the case of non-uniform sampling[END_REF][START_REF] Greitans | Advanced processing of nonuniformly sampled non-stationary signals[END_REF]. It belongs to Capon's family of spectral estimators and is based on properties of nonuniform sampling, filtering by minimization of the process output and an iterative algorithm on autocorrelation matrix. The main idea is to minimize the variance of the narrowband filter output signal. The frequency response of the filter adapts itself to the input signal spectral components on each frequency of interest. The variance of the output process is determined by ρ = a H Ra (see [START_REF] Kay | Modern spectral estimation[END_REF]), with a the vector of coefficients filter, H the conjugate transpose and R the signal autocorrelation matrix. Coefficients have to verify that, on each frequency f 0 , the gain of the filter response is one : e H ( f 0 )a = 1, with e i ( f 0 ) = e j2π f 0 t i . It means that a sinusoid at frequency f 0 passes trough the filter designed for it without distortion.

Filter's coefficients are given by :

a( f 0 ) = R -1 e( f 0 ) e H ( f 0 )R -1 e( f 0 ) . ( 8 
)
The spectral amplitude is obtained by s( f 0 ) = xa( f 0 ), with x the nonuniform undersampled signal.

According to equation ( 8), filter's coefficients depend on the signal autocorrelation matrix. The usual way to estimate it is based on the average of the mutual products of signal samples. If the sampling is not uniform, this approach is irrelevant. Greitans proposed to use the Wiener-Khintchin theorem which links the autocorrelation function and the power spectral density (PSD) :

r(τ) = +∞ -∞ P( f )e j2π f τ d f ( 9 
)
with P( f ) the PSD of the signal. The easiest way to obtain a first approximation of the PSD is to operate an nonuniform discrete Fourier transform :

P( f ) = 1 N 2 N ∑ k=1 x k e -j2π f t k 2 . ( 10 
)
Values of the autocorrelation signal matrix R computed by this first approximation of P( f ) are falsed by artifacts. An iterative updating algorithm described by Liepin'sh [START_REF] Liepin'sh | An algorithm for evaluating a discrete fourier transform for incomplete data[END_REF] improves results. The (i + 1)th order estimate of signal autocorrelation matrix is updated from the (i)th order estimate P(i) :

R(i+1) lk = M ∑ m=1 P(i) m exp( j2π f m (t k -t l )). (11) 
Then, using R(i+1) , the estimates Ŝ(i+1) and P(i+1) are calculated by

P(i+1) = E R(i+1)-1 x T diag(E R(i+1)-1 E H ) 2 (12) with E mn = exp(-j2π f m t n ).
This algorithm is very slow due to the nonuniform discrete Fourier transform used during the formation of the estimate autocorrelation matrix R. As a Fast Fourier Transform can't be used, the computational complexity is O(N 2 M). Approximate Nonuniform Fast Fourier Transform are used to improve the speed [START_REF] Potts | Modern Sampling Theory: Mathematics and Applications[END_REF] and the computational complexity reduces to O(N 2 * log(N) + log(1/ε)M), with ε the desired accuracy.

We choose a convergence's criterion based on the PSD :

Error = P(i+1) -P(i) P(i) * 100. ( 13 
)
The algorithm is stopped when the error is small enough. In practice, Error = 5 was chosen. If the algorithm does not converge, more sensors or data are required.

AEROMECHANICAL MODEL

Simulator's goal is to produce data close to those obtained on a test bench. It calculates the times of arrival of blades in front of sensors. Contrary to models previously made in the study of tip-timing [START_REF] Gallego-Garrido | Development of a multiple modes simulator of rotating bladed assemblies for blade tip-timing data analysis[END_REF][START_REF] Salhi | A subspace method for modal identifica-tion of bladed assemblies using blade tip-timing data[END_REF], this one aims to be able to simulate mistuned bladed discs and post-flutter behaviour. 

Cyclic model

A bladed disc is splitted into N sectors, with N the number of blades (figure 5). Each sector is constituted by one degree of freedom (dof) for the disc's part and two dofs for the blade. The disc's coupling is represented by the springs k i . When a bladed disc is manufactured, some variations of dimensions appear. The symmetry can not be perfect. Random variations are introduced in the springs k b and k c to modelize it.

The displacement vector for the whole assembly is x(t) = [x 1 (t) . . . x N (t)] T , with x i (t) the displacement vector for the sector i. The Lagrange's method gives the matrix equations :

M ẍ(t) + (C +C a (Ω)) ẋ(t) + K(Ω)x(t) = F(t) ( 14 
)
with M the mass matrix, C the damping matrix, C a the aerodynamic matrix, K the stiffness matrix, F(t) the excitation force vector and Ω the rotor speed. Equations are integrated in the time domain in order to obtain the temporal responses.

The system can become unstable because of energy transfer between fluid and structure : it is the flutter phenomena. For real machines, the vibratory grows until collapse or until a limit cycle is reached due to non linear effects. For a detailed review of aeroelastic methods, see the paper of Marshall [START_REF] Marshall | A review of aeroelasticity methods with emphasis on turbomachinery applications[END_REF].

Here we use a simple model : fluid-structure coupling is represented by an aerodynamic matrix C a multiplied by the speed vector ẋ(t). The N second-order differential equations are reduced to 2N first-order differential equations. A first-order state-space model is then obtained :

C +C a M M 0 ẋ ẍ = -K 0 0 M x ẋ + F(t) 0 ( 15 
)
U ẏ = Ay + g(t) (16) 
The stability of the system is then studied by evaluating the generalized eigenvalues of the system. The imaginary part of each eigenvalue is related to the frequency of the aeroelatic mode and the real part to the damping. If a real part is strictly positive, the considered mode is unstable.

Excitation model

Fluid goes upstream through a number of obstacles N Ob and takes a spatial shape of wakes. So each blade is harmonically excited by a traveling wave

F(t) = n+1 ∑ k=1 A k cos(kN Ob Ωt) + B k sin(kN Ob Ωt) (17) 
with n the number of harmonics. In our case, we choose B k = 0 for all k and n = 2 to simplify the model.

TESTS Simulated case : mistuned flutter

Flutter is an asynchronous vibration and is generally treated by an all-blade spectrum method [START_REF] Zielinski | Noncontact vibration measurements on compressor rotor blades[END_REF]. This method supposes that every blade vibrates at the same frequency and at the same amplitude. It works well for a quasi-perfectly tuned disc, but it is not suitable if mistuning causes vibratory energy localizations. Mistuning is sometimes used by industrials to suppress cases of flutter and unstable mistuned rotor analysis cannot be found in the litterature.

The simulated assembly has 25 blades. The mistuning's pattern is shown on the figure 6. We assume that its diameter is 440 mm and the rotor's speed is 18600 rpm. 5 sensors are disposed around the casing. Their positions are randomly chosen (0 • , 38 • , 47 • , 88 • , 103 • ). The equivalent Nyquist frequency is 775 Hz.

The frequency range of interest is between 0 and 20 000 Hz. A synchronous excitation is considered : a 7th Engine Order. It does not coincide to any eigenfrequencies. Furthermore the system is aerodynamically unstable (flutter). A part of the initial stability diagram is shown on the figure 7. One mode is unstable : it is the mode at 1370 Hz.

The mode shape of the flutter mode is shown on the figure 8. This mode is strongly localized on the blades 19-21. The displacement on the blade 20 seen by the sensor at 0 • is shown on the figure 9. The flutter is weak, so the vibration slowly grows.

The proposed method was tested on 30 revolutions. The figure 10 shows the first obtained spectrum by an nonuniform Fourier transform. It seems to contain a lot of modes. The major part of them are replicas due to the severe undersampling. This spectrum cannot be studied directly without previous knowledge of true modes. One mode can easily be identified at 1370 Hz. It's the flutter mode. The precision in frequency is 2 Hz. Amplitudes of artifacts due to undersampling disappear. Spectra are estimated on all blades and the flutter mode can be precisely studied (figure 12). As expecting by the simulation, the mode is strongly influ- enced by the mistuning. The major part of the vibratory energy is contained in the blades 19-21. There is a good correlation with the theoretical flutter mode (figure 8).

We can identify by this spectral estimator localizations of energy in mistuned bladed assemblies for a phenomena like mistuned flutter. The whole assembly can be studied, blade per blade : this is a great advantage compared to strain gauges which only monitor one or two blades.

Experimental case

Tests were made on a bladed disc. 4 sensors were disposed around the disc at locations: 0 • , 45 • , 118 • and 189 • .

The response of the blade 1 is shown on the figure 13. An asynchronous vibration appears at t = 137s, grows until t = 153s and suddenly stops.

A first spectrum computed by an nonuniform Fourier transform is shown on the figure 14. 50 revolutions of data were taken during the growing part. The choice of the maximum frequency is arbitrary, and frequencies are normalized by this maximum. In practice, the use of the Finite Element Model can give an idea of the frequency range of interest.

The normalized equivalent Nyquist frequency is 0,19, so the frequency range of interest is approximately five times wider than the equivalent Nyquist frequency. As expected by the simulations, this spectrum is severly aliased. Several modes seem to vibrate at different frequencies from 0 to 1.

The described method gives the spectrum on the figure 15. Ten iterations are used to obtain it. The convergence is obtained for a criterion Error < 1%. We can observe that the Signal on Noise Ratio (SNR) grows. Artifacts due to undersampling disappear and permit to identify that the main part of the response has a frequential support above the equivalent Nyquist frequency, By this experimental case, we can conclude that the algorithm is suitable for real cases.

CONCLUSION

In this paper we propose a new method in order to analyse tip-timing data. A bladed disc simulator is described. It can simulate aeroelastic effects like flutter and provide tip-timing data close to those obtained on test rigs.

The main features of tip-timing measurements have been explained with an emphasis on the undersampled and irregular nature of the data. A spectral estimator designed for this particular sampling gives good results on simulated data of mistuned flutter. The frequency range of interest of estimated spectra can be several times the equivalent Nyquist frequency. We also showed that the method is able to analyse experimental forced response data.

By this method, the response level of each blade can be obtained. Contrary to methods usually used for tip-timing data analysis, no assumptions about mechanical behaviour of bladed discs were made in order to obtain a parameter estimator. Hence this method can analyse any phenomena, including forced response and instability for tuned and mistuned rotors.
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